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her
hes Subatomiques67037 Strasbourg, Fran
eAndrzej Gó¹d¹ and Daniel RosªyInstitute of Physi
s, M. Curie-Skªodowska UniversityRadziszewskiego 10, 20-031 Lublin, Poland(Re
eived May 7, 2001)A 
onne
tion between nu
lear symmetries other than those of an el-lipsoidal nu
leus and the properties of the implied rotational spe
tra aredis
ussed. The dis
ussion is fo
used on a few examples of exoti
 shapes pre-di
ted re
ently by mi
ros
opi
 
al
ulations. Some possible interpretationdi�
ulties related to experiment are shortly mentioned.PACS numbers: 21.60.�n, 21.60.Fw, 21.10.P
, 21.30.�x1. Introdu
tionQuantum rotors have been extensively studied in the past and turnedout to be powerful theoreti
al tools in exploring the mi
ros
opi
 symmetriesof the examined obje
ts, but the variety of possibilities that their theoryo�ers has been explored mainly in mole
ular physi
s. Nu
lear physi
s ap-pli
ations, although numerous, have been primarily limited to the quantumHamiltonians 
orresponding to a 
lassi
al rotating ellipsoid. Formally su
hHamiltonians are invariant with respe
t to a four-element point group 
om-posed, in addition to the identity element, of three rotations through theangle of � about the three prin
ipal axes of the referen
e frame. This group� Invited talk presented at the High Spin Physi
s 2001 NATO Advan
ed Resear
hWorkshop, dedi
ated to the memory of Zdzisªaw Szyma«ski, Warsaw, Poland,February 6�10, 2001. (2625)
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orresponding rotors are said to be D2-symmetri
. Anex
ellent presentation of this important parti
ular 
ase of a nu
lear symme-try exists in Chapter 4 of Ref. [1℄, where numerous limiting 
ases and severalapproximate analyti
al expressions 
an be found.Quantum rotor Hamiltonians are by de�nition operator fun
tions of theangular momentum 
omponents fÎ�; � = �1; 0g only. No analog of thepotentials as fun
tions of the 
oordinates (here: rotation angles) exists forisolated nu
lear or mole
ular rotors. Although 
ommon in various appli
a-tions, the 
orresponding Hamiltonians are rather exoti
 obje
ts. They 
anbe viewed upon as 
omposed ex
lusively of the `kineti
 energy' operator, theangular momentum playing a role analogous to that of the linear momentumin the usual kineti
 energy expressions. Se
ondly, the parity, a 
on
ept sonatural in quantum me
hani
s, 
an only be introdu
ed with some spe
iale�orts, the angular momentum being a pseudo-ve
tor rather than a ve
tor.Unlike the usual kineti
 energy operators that are limited to the quad-rati
 order expressions in fp̂x; p̂y; p̂zg, the rotor Hamiltonians are in generalnot limited to the se
ond order expressions in fÎ�g. In mole
ular physi
svery su

essful appli
ations exist for the Hamiltonians that are of sixth orhigher orders. The presen
e of high-order terms expresses a non-rigid, manybody stru
ture of the 
orresponding quantum obje
ts. Various symmetriespresent in mole
ules 
an be su

essfully modeled by the appropriately 
on-stru
ted Hamiltonians that are of order higher than 2 and may simulate anysymmetry in question. We follow this line of thought here aiming at thenu
lear physi
s appli
ations.In nu
lear spe
tra en
ountered in experiments we are 
onfronted withthe overwhelming presen
e of the rotational bands, i.e. the sequen
es ofenergies EI that satisfy EI � I(I + 1) and are often 
omposed of verymany transitions. In some 
ases these bands 
an be very well approximatedby a simple paraboli
 rule EI = a I(I + 1) with a single 
onstant a, inother 
ases su
h an approximation is barely satisfa
tory, in many 
ases notsatisfa
tory at all1. It will be one of our goals here to examine amongothers, the deviations of the 
urvature of the energy vs. spin relations fromthe simplest paraboli
 rule for (sele
ted) symmetries of the rotors.1 It is well known that even a single nu
leon may very profoundly disturb the rotationalbehavior of the whole nu
leus through an alignment of its angular momentum withthe temporary axis of rotation. In this study we 
onsider the rotational behavior of`pure' rotors i.e. un
oupled to individual nu
leons. It will thus be of primary interesthere to be able to 
onne
t the deviations from the `standard' paraboli
 like behaviorof the energy vs. spin relations to the deviations of the a
tual symmetry of a nu
leusfrom the `standard', ellipsoidal, D2-symmetry.



Quantum Rotors and Their Symmetries 2627We are going to study the rotor Hamiltonians of the following generalstru
ture Ĥ = Î 2x2Jx + Î 2y2Jy + Î 2z2Jz + ĥ(fpg ; Îx; Îy; Îz) ; (1)where ĥ 
ontains terms that formally represent symmetries other than theD2 symmetry and fpg denotes the ensemble of Hamiltonian parameters.2. Generalized rotor HamiltonianIn order to be able to 
onveniently represent various possible point-groupsymmetries we are going to introdu
e the basis of the tensor-operatorsT̂�� (n; �2; �3; : : : �n�1) � 24 ��Î
Î��2 
Î ��3 
 : : : 
Î !�n�135�� ; (2)where e.g. symbol (Î
Î)�2 represents an ensemble of all 
omponents of theirredu
ible spheri
al tensors of rank �2 = 0, 1 or 2, that are obtained throughthe Clebs
h�Gordan 
oupling i.e.(Î
Î )�2 � f (Î
Î )�2�2 ; �2 = ��2;��2 + 1; : : : �2 g : (3)The most important parti
ular 
ase of Eq. (2) 
orresponds to what we 
allmaximum stret
hing situation where �n = n. In su
h a 
ase we may simplifythe notation without mu
h ambiguityT̂�� (n; �2; �3; : : : �n�1)! T̂�� (n) : (4)Ea
h of the above obje
ts represents a spheri
al tensor operator of rank �, anelement of the basis 
onstru
ted with the help of the rotor angular momen-tum operator fÎ�1; Î0; Î+1g. More pre
isely T̂�� (n) is a uniform polynomialof order n with the 
oe�
ients de�ned through the Clebs
h�Gordan 
ou-pling, where additionally � = n. Sin
e in general i.e. for the non-stret
hed
ouplings one has � 6= n, we prefer to stress this fa
t in the notation belowin whi
h we keep expli
itly � and n. In what follows we will parameterizethe last expression in Eq. (1) in terms of sums of the nth order uniformpolynomials that are at the same time tensors of rank nĥ(n; �) � �X�=��
 ��� (n) T̂�� (n) ; (5)
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�� are arbitrary 
onstants2 i.e. they are ~I-independent obje
ts; asusual, they may, however, depend on any s
alar fun
tion of the quantumnumber I and this freedom will be used in Eq. (7) later on.After all these preliminaries we may 
omplete the de�nition of the gen-eralized rotor Hamiltonian withĥ(fpg; Îx; Îy; Îz) = nmaxXn=3 ĥ(n; �) ; (6)where fpg represents the ensemble of all the Hamiltonian parameters i.e. allthe 
onstants f
�� (n); � = 3; 4; : : : �maxg.3. Rotors and symmetriesA strong motivation for studying the symmetries of the quantum ro-tating obje
ts via the properties of the 
orresponding ex
itation spe
tra isprovided by numerous examples in mole
ular physi
s (the reader is referredto the monograph [2℄ for a detailed dis
ussion). There the symmetries pro-vide several possible identi�
ation 
riteria, mainly through the 
hara
teristi
degenera
ies of ex
itation energies at a given spin. Often the degenera
iesare satis�ed only to a 
ertain approximation (see below) and are experimen-tally manifested by a grouping of levels with 
ertain quantum 
hara
teristi
sthat are di
tated by the 
onsidered symmetry.In the re
ent nu
lear stru
ture literature the only remarkable series ofdis
ussions that deviate from the question of the D2-symmetri
 rotors wasthe one related to the hypotheti
al C4-symmetry in superdeformed (SD) nu-
lei, Ref. [3℄. This idea originated from the experimental dis
overy of theso-
alled (�I = 2)-staggering [(�I = 4)-os
illations℄ in rotational bands ofsome SD nu
lei. Although mi
ros
opi
 arguments in favor of su
h a me
ha-nism in some superdeformed nu
lei 
an be given in terms of �44-deformationdriving orbitals, Ref. [4℄, the same referen
e �nds no su�
ient argument tojustify the stati
 �44-deformation hypothesis. No other mi
ros
opi
 
al
u-lations performed so far did 
on�rm the possibility of an existen
e of stati
deformations of this kind in nu
lei. The parti
le�rotor 
oupling me
hanismthat 
ould in
rease the deviations from the regular energy vs. spin behavior
annot, after a model 
al
ulation of Ref. [5℄, repla
e the e�e
t of a stati
deformation with the four-fold symmetry. To the 
ontrary, arguments 
anbe given that the staggering as de�ned and observed so far in experiment
an be 
aused by a weak-intera
tion band-
rossing.Yet, the reviving dis
ussion of a possibility that nu
lei with symmetriesnon-trivially di�erent from the D2-symmetry exist in nature is to our opin-ion an important step forward in studying the potential ri
hness of nu
lear2 The only limitation imposed is that the resulting Hamiltonian remains Hermitian.



Quantum Rotors and Their Symmetries 2629behavior. Indeed, theoreti
al predi
tions exist of low-lying isomeri
 statesin nu
lei that possibly manifest an approximate 
ubi
 symmetry (Td-groupsymmetry) or a symmetry of a triangle (C3 or D3 symmetries), Refs. [6℄and [7℄. These symmetries 
orrespond to the predi
ted (nearly) pure o
-tupole shapes related to the deformations of the type �32 and �33. Thus theimportant message from the quoted referen
es is that in many nu
lei fromthe vi
inity of the doubly-magi
 shell-
losure nu
lei there are large o
tupoletype deformations that may develop. More pre
isely: they 
ould either setin the ground-states before the quadrupole deformation eventually overtakesor they 
ould set in the o
tupole deformation dominated isomers that 
om-pete energeti
ally with the quadrupole deformation dominated ground-stateminima [6℄.It will be one of our goals here to examine the quantum behavior of therotors that are 
hara
terized by this type of exoti
 shapes. Before pro
eedingwith that, however, we would like to dis
uss a number of questions that inthe present 
ontext often have lead to 
onfusion in the past. Here it will be
onvenient to use the C4-symmetry 
ase as a relatively re
ent one. Whentrying to explain the energy �u
tuations in fun
tion of spin that produ
e`os
illations' with the `period' of �I = 4 an existen
e of the 4-fold symmetryaxis is a ne
essary (although far from su�
ient) 
ondition. In order to satisfythis 
ondition a C4-symmetry 
ase has been 
onsidered. Figure 1 belowshows most of the possibilities that should be a priori under 
onsideration.Although some of these symmetry groups may represent similar physi
alproperties there are 
ertainly several possibilities that remain unexplored.
D

4h

C4h D4 C4v D2h

S C
4 4 C2h2D

2dD

C2v

C2i sCCFig. 1. Diagram of subgroups of the D4h-group. It shows several possible nu
learsymmetries that one needs to 
onsider when the only 
riterion in mind is an exis-ten
e of a 4-fold symmetry axis among the symmetries of the nu
leus in question.These groups are: D4h, C4h, D4, D2d, C4v , S4 and C4; in the literatures there hasonly been the latter possibility 
onsidered.Another aspe
t to 
onsider is the physi
al meaning of the parametersthat enter into the generalized rotor Hamiltonian of Eqs. (1)�(5). Althougha priori all 
hoi
es of these parameters are mathemati
ally allowed as long asthe resulting model Hamiltonian remains hermitian, in our study we would



2630 J. Dudek, A. Gó¹d¹, D. Rosªylike to keep tra
k of the role of the rotor moments of inertia Jx, Jy andJz in (1) as leading-role parameters that determine the dominating partof the Hamiltonian. In other words, when working with the well deformednu
lei we expe
t that the se
ond term in (1) is `small' (see below). This isa natural way to a
hieve the result that in nu
lear physi
s of well deformednu
lei the deviations from the paraboli
 EI � I(I+1) rule are small. In ourrealization of the quantum rotors in this paper we therefore limit the libertyof the 
hoi
e of the 
�� parameters and use
�� = C��[I(I + 1)℄(��1)=2 ; (7)where I is the angular momentum quantum number to be distinguished fromthe angular momentum operator Î and C�� are merely numeri
al 
onstants.This is our way of de�ning the `smallness' of the perturbing term with re-spe
t to what we 
onsider as dominating: the traditional quadrati
 rotorHamiltonian.4. Advantages of a tensor representation of the rotor HamiltonianIn their ex
ellent study of the barrier-penetration properties in the spinmotion of the quantum rotors the authors of [3℄ have 
hosen an expli
it-formĤH�M = AÎ2z +B1(Î2x � Î2y )2 +B2(Î2x + Î2y )2 (8)rather than 
ovariant (
f. Eqs. (5)�(6)) of the Hamiltonian de�nition; theformer was well suited for the purposes of the referen
e quoted, the latter hasseveral important advantages when dis
ussing dire
t physi
al appli
ations tonu
lei as it will be illustrated below.The tensor representation introdu
ed earlier provides a basis in the math-emati
al sense and allows to express the fourth order terms in (8) as�Î2x � Î2y�2 = 3� 4I25p3 T̂00(2) + 3� 4I2p150 +r32 + 235p6 �2� I2�! T̂20(2)+r 235 T̂40(4) + T̂44(4) + T̂4�4(4) (9)and�Î2x + Î2y�2 = 1105  �140p33 I2 � 73 �4I2 � 3�! T̂00(2)� 175r23I2 + 7r23 �3� 4I2�+ 9p6(2� I2 )! T̂20(2)+6 p70 T̂40(4) : (10)



Quantum Rotors and Their Symmetries 2631From the above expressions it be
omes 
lear that the apparently fourth-orderform of the Hamiltonian in Eq. (8) is in fa
t 
omposed of a generi
 fourth-order (tensor) expressions that remain in that order when performing anyorthogonal transformations of this Hamiltonian in spa
e and of the se
ondand zeroth order (tensor) operator expressions pre
eded by the quadrati
(s
alar) fun
tions of the spin quantum number I. One 
an easily showthat the `usual' quadrati
 rotor Hamiltonian (i.e. the one with the 
onstant
oe�
ients) 
an be expressed asÎ2x2Jx + Î2y2Jy + Î2z2Jz = b00 T̂00(2) + b20 T̂20(2) + b22 hT̂22(2) + T̂2�2(2)i ; (11)where b�� are some numeri
al 
oe�
ients � known fun
tions of fJx;Jy;Jzg.Consider an `a
ademi
' 
ase of a C4�symmetri
 (Jx = Jy) Hamiltonian:Ĥ = Î 2x2Jx + Î 2y2Jy + Î 2z2Jz +B1(Î 2x � Î 2y ) 2 +B2(Î 2x + Î 2y ) 2 : (12)Using tensor expressions of Eqs. (9)�(10) we may show an instru
tive identityĤ = Î 2x2 ~Jx(I) + Î 2y2 ~Jy(I) + Î 2z2 ~Jz(I)+ r 235 + 6p70! T̂40(4) + T̂4+4(4) + T̂4�4(4) : (13)The latter expression shows that the C4-symmetri
 operator (8) is a sum ofa C4-symmetri
 tensor operator of the 4-th order and of a quadrati
 rotorHamiltonian whose 
oe�
ients (moments of inertia f ~Jx(I); ~Jy(I); ~Jz(I)g)are strongly varying with spin. Indeed, these 
oe�
ients 
an be expli
itly
al
ulated for any set of 
onstants B1 and B2 and the 
orresponding resultsare illustrated in Fig. 2, at B2 = 0, as an example.Most of the nu
lei known so far do not produ
e any eviden
e for theC4-symmetry and thus we may believe that, should o

asionally su
h a phe-nomenon arise, this 
ould only be be
ause of a perturbation of the usualD2-type rotor stru
ture by a C4-type admixture. In su
h a 
ase one would
hoose the moments of inertia fJi; i = x; y; zg in Eqs. (1), (11)�(12), that
orrespond roughly to the expe
ted rotational band 
urvature in a

ordan
ewith experiment and then in
rease the e�e
t of the fourth-order term (pos-sibly modifying the Ji parameters slightly) to obtain at the same time thestaggering and the right order of magnitude of (nearly 
onstant) momentsof inertia. Su
h an intuitive approa
h does not seem possible with Hamilto-nian (8) as the tensor expansion demonstrates and Fig. 3 illustrates. More
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B1Fig. 2. The C4-symmetri
 Hamiltonian of Ref. [3℄ 
an be represented as a sum ofthe traditional-looking se
ond order Hamiltonian with the spin-dependent momentsof inertia and the fourth order C4-symmetri
 tensor term. The �gure illustratesthe ~Jx(I) (left) and ~Jz(I) (right), in fun
tion of I for various 
hoi
es of the B1parameter. Parameter B2 = 0 here; the staggering is implied in a part of the(I; B1)-plane.generally, an advantage of using tensor expansions in (1), is the possibilityof taking into a

ount the experimental fa
t that most of the nu
lei seem toprodu
e the D2-rotor type behavior with a possible slight modi�
ations dueto other symmetry admixtures. Su
h a separation 
omes naturally withinthe tensor-operator des
ription.5. O
tupole-deformed nu
lei and the 
orrespondingquantum rotorsA di�erent situation takes pla
e if the nu
lei with small quadrupole de-formations are 
onsidered where the higher order multipoles 
ontribute im-portantly or even dominate in the nu
lear shape des
ription. Cal
ulationsof Refs. [6℄ and [7℄ suggest that in the transitional nu
lei with Z- and N -numbers slightly in ex
ess of the doubly-magi
 shell 
losures (similarly fordoubly-magi
 nu
lei with a few proton and/or neutron holes) su
h situa-tions may take pla
e either in the ground-states or in the low-lying isomeri
minima. The 
orresponding symmetries 
orrespond to � = 3 in Eqs. (1)and (5); they may 
ontain, among others the mass-asymmetry degrees offreedom (� = 3; � = 0) or alternatively a three-fold symmetry axis as one ofthe symmetry elements (� = 3; � = 3). (Other symmetries that may arisewhen using higher order multipole operators will be dis
ussed elsewhere andbelow we will limit ourselves to presenting only very few illustrations fo
usedon the two 
ases just mentioned).From the theory of symmetry point of view the three-fold axis may ap-pear as an element of several point groups as illustrated in Fig. 3. There aretherefore several forms of the quantum rotor Hamiltonians that may appearin the three-fold axis 
ontext; as mentioned we limit the dis
ussion to the
ase of the C3 group.
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Fig. 3. Diagram of subgroups of the D6h-group. A three-fold symmetry axis appearsas a `se
ondary' symmetry element in all the groups 
ontaining a six-fold symmetryand we are not going to dis
uss these 
ases here. Instead let us point out that theother groups 
ontaining a three-fold axis are: D3d, D3h, D3, C3h, C3v and C3.Let us begin with an axially-symmetri
 rotor whose Hamiltonian 
ontainsthe f� = 3; � = 0g terms in its de�nition (1). The mathemati
al stru
tureof this third-order term is modeling the symmetry of a pear-shape nu
learmass distribution of an otherwise 
ompli
ated, rotating many-body nu
learsystem. In the following we would like to illustrate the evolution of therotor spe
tra when the 
orresponding 
oupling 
onstant C3;0 in
reases. Foran axially symmetri
 rotor the K quantum number is 
onserved and the
orresponding symmetry group is C1. In the dis
ussion it will be 
onvenientto distinguish the states that have K = 0 from the other states that willbe arbitrarily divided into two groups (distinguished by two shades of gray
olors) that 
orrespond by de�nition to positive-K values (related statesare labeled with [K1℄), and to negative-K values (labeled with [K2℄). Wefollow here our earlier suggestion that the e�e
tive nu
lear rotors 
an berepresented by the leading quadrati
 term plus the third order modifyingterm (
f. Eq. (1)). Sin
e the mi
ros
opi
 
al
ulations suggest the existen
eof su
h states for rather small quadrupole deformations we set in the model
al
ulations of the moments of inertia �2;0 = 0:1, that for Z=86 and N=132gives by using a uniform nu
leoni
 density ansatz, Jx = Jy = 13:3~2=MeVand Jz = 12:1~2=MeV. Stri
tly speaking we take the proportion between thetwo numbers above as suggested by the geometri
al model and redu
e theabsolute values by a 
ommon fa
tor to simulate the di�eren
e between therigid-like and pairing dominated nu
leus. Figure 4 represents the spe
trumobtained with C3;0 = 0:001 while Fig. 5 analogous results for C3;0 = 0:01.Let us mention that at the present stage we have no way of determiningthe size of this 
onstant in the Hamiltonian dire
tly on the mi
ros
opi
grounds; this is not so in the 
ase of the moments of inertia of the ellipsoidalrotor. One 
an see that the ex
itation of states [K1℄ relative to the yrastline de
reases with in
reasing spin while that of states [K2℄ in
reases, as
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Fig. 4. Spe
trum of an axially-symmetri
 rotor with the moments of inertia 
orre-sponding to the quadrupole deformation of �2;0 = 0:1 (see text); C3;0 = 0:001.
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Fig. 5. Similar to Fig. 4 but in
luding the `o
tupole' term with C3;0 = 0:01; observethe progressive splitting of the positive-K vs negative-K partner states.the 
omparison of both Figures demonstrates. At the same time we 
anobserve that in
reasing the 
oupling 
onstant leads to a rearrangement ofthe spe
trum; in parti
ular the K = 0 sequen
e is not anymore the yrastand is getting further away from the yrast position.There are several interesting properties of su
h `o
tupole' rotors butwe will have to limit ourselves to one illustration only that presents theexpe
tation values of the angular momentum operators and the (�I = 2)-staggering properties of the dis
ussed axially symmetri
 o
tupole rotor, 
f.Fig. 6. It is indeed interesting to observe a 
hara
teristi
 staggering in theillustrated observables that, when displayed in terms of the yrast energy,
an rea
h several hundreds of keV in the model situation 
hosen here.
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Fig. 6. Three-dimensional aspe
ts of the motion of an axial `o
tupole' rotor repre-sented through the normalized expe
tation values of Î 2x , Î 2y and Î 2z , top, 
omparedto the staggering properties of the same obje
ts, middle part, and to the energystaggering, bottom, for the yrast line of the C3;0 = 0:01 
ase. (The staggeringobservable is de�ned as in Ref. [3℄.)6. Quantum rotors with three-fold symmetry axisIn this se
tion we are going to illustrate just a 
ouple of spe
tros
opi
features of a quantum rotor with a three-fold symmetry axis and a minorquadrupole (axially symmetri
) deformation equal to that used in the pre-vious 
ase of an axial symmetry, 
f. Figs. 7 and 8 and 
ompare to Figs. 4and 5. In the 
ase of the C3 group dis
ussed here, there are three irredu
iblerepresentations denoted [A1℄, [A2℄ and [A3℄, that generate three families ofthe rotational states. (The mathemati
al and interpretation aspe
ts of thephysi
s of related rotors will be dis
ussed in more detail in a forth
omingpubli
ation.) Observe that with a small-strength third order perturbativeterms in the Hamiltonian the states are grouped 
hara
teristi
ally: �rstthere is the yrast line 
omposed of single states of [A1℄ representation that
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ompanied by doubly degenerate ex
ited bands belonging to the sameirredu
ible representation. These double degenera
ies are only approximate;they vary from a fra
tion of eV to several keV. In addition we have in be-tween the [A1℄ sequen
es two well spa
ed sequen
es of ex
ited bands. Ea
hof them is 
omposed of doublets of nearly degenerated pairs of states; inthis latter 
ase, however, ea
h member of a doublet belongs to a di�erentirredu
ible representation, [A2℄ or [A2℄, and thus 
orresponds to a di�erentsymmetry.
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Fig. 7. The quantum rotor spe
trum obtained with C3;3 = 0:001; the quadrati
term in the rotor Hamiltonian has the moments of inertia that 
orrespond to asmall quadrupole deformation of �2 = 0:10, see 
aptions to Figs. 4 and 5.
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Fig. 8. Similar to that in Fig. 7, but for C3;3 = 0:01; observe that in the lower-rightse
tor of the �gure the spe
trum is 
omposed of nearly degenerate triplets of states
hara
teristi
 of the presen
e of a three-fold symmetry axis among the Hamiltoniansymmetries. In the upper se
tor of the Figure we �nd the states grouped into nearlydegenerate doublets that were 
hara
teristi
 of a `weak o
tupole 
oupling' of Fig. 7.In between the two areas there is a `separatrix' region for whi
h none of the twoasymptoti
 behavior applies.
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an dire
tly observe the role of the three-fold symmetry that mani-fests itself through the triplets of nearly degenerate states at the lower partof the spe
trum. A dis
ussion of many interesting features of the rotors ofthat kind will have to be postponed to the forth
oming publi
ation.7. Summary and 
on
lusionsIn this arti
le we examine the 
on
ept of the generalized-rotor Hamil-tonians. They are built-up using spheri
al-tensor operators, the latter 
on-stru
ted with the help of angular momentum 
omponents fÎ�1; Î0; Î+1g.Using these tensor operators we arrive at the stru
ture of the Hamiltoni-ans that is well adapted to the nu
lear physi
s appli
ations i.e. a sum ofa quadrati
, often dominating term with an ellipsoidal (or spheri
al) sym-metry and of higher order terms responsible for the (expe
ted to be small)exoti
-symmetry admixtures. We illustrate the fun
tioning of this mathe-mati
al formulation using C4-symmetri
 rotors dis
ussed previously by otherauthors.Next we follow up the results of the earlier mi
ros
opi
 
al
ulationssuggesting an existen
e of isomeri
 
on�gurations with exoti
 symmetries.We have limited our illustrations to those dominated by 
omponents withf� = 3; � = 3g, C3-group, and f� = 3; � = 0g, C1-group. Both thesesymmetries indu
e the spe
tra that deviate 
hara
teristi
ally from those ofthe well known ellipsoidal-rotors. We suggest the use of these di�eren
es fora possible identi�
ation of these symmetries through experiments.An interesting question related to the symmetries is that of an experi-mental veri�
ation. At �rst glan
e the predi
ted spe
tros
opi
 features mayseem easy to identify be
ause of the 
hara
teristi
 dependen
e of the energyvs. spin. However in reality, there are several 
ompli
ations to be expe
ted.First of all, the yrast and low lying ex
ited bands of interest are expe
tedto have very similar moments of inertia and 
onsequently they are likelyto remain unresolved. This aspe
t is 
ertainly the one that will 
hallengethe new 
lass of gamma-ray tra
king dete
tion systems; we believe that thesignals sought exist in many experimental data already taken. Se
ondly, thesymmetry-manifesting behavior of the bands in question that are in a sensemu
h more interesting than the other ones, will be disturbed by pairing andby individual nu
leoni
 alignment. This latter aspe
t, is a question to theoryto sele
t the minima that are preferably free from `ba
k-bending' and that`keep' the paring 
orrelations at a more or less 
onstant level.A support from the Fran
e�Poland s
ienti�
 ex
hange programPOLONIUM and from the IN2P3, Fran
e, is a
knowledged.
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