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QUANTUM ROTORS AND THEIR SYMMETRIES�Jerzy DudekUniversité Louis Pasteur, Strasbourg IandInstitut de Reherhes Subatomiques67037 Strasbourg, FraneAndrzej Gó¹d¹ and Daniel RosªyInstitute of Physis, M. Curie-Skªodowska UniversityRadziszewskiego 10, 20-031 Lublin, Poland(Reeived May 7, 2001)A onnetion between nulear symmetries other than those of an el-lipsoidal nuleus and the properties of the implied rotational spetra aredisussed. The disussion is foused on a few examples of exoti shapes pre-dited reently by mirosopi alulations. Some possible interpretationdi�ulties related to experiment are shortly mentioned.PACS numbers: 21.60.�n, 21.60.Fw, 21.10.P, 21.30.�x1. IntrodutionQuantum rotors have been extensively studied in the past and turnedout to be powerful theoretial tools in exploring the mirosopi symmetriesof the examined objets, but the variety of possibilities that their theoryo�ers has been explored mainly in moleular physis. Nulear physis ap-pliations, although numerous, have been primarily limited to the quantumHamiltonians orresponding to a lassial rotating ellipsoid. Formally suhHamiltonians are invariant with respet to a four-element point group om-posed, in addition to the identity element, of three rotations through theangle of � about the three prinipal axes of the referene frame. This group� Invited talk presented at the High Spin Physis 2001 NATO Advaned ResearhWorkshop, dediated to the memory of Zdzisªaw Szyma«ski, Warsaw, Poland,February 6�10, 2001. (2625)



2626 J. Dudek, A. Gó¹d¹, D. Rosªyis denoted D2; the orresponding rotors are said to be D2-symmetri. Anexellent presentation of this important partiular ase of a nulear symme-try exists in Chapter 4 of Ref. [1℄, where numerous limiting ases and severalapproximate analytial expressions an be found.Quantum rotor Hamiltonians are by de�nition operator funtions of theangular momentum omponents fÎ�; � = �1; 0g only. No analog of thepotentials as funtions of the oordinates (here: rotation angles) exists forisolated nulear or moleular rotors. Although ommon in various applia-tions, the orresponding Hamiltonians are rather exoti objets. They anbe viewed upon as omposed exlusively of the `kineti energy' operator, theangular momentum playing a role analogous to that of the linear momentumin the usual kineti energy expressions. Seondly, the parity, a onept sonatural in quantum mehanis, an only be introdued with some speiale�orts, the angular momentum being a pseudo-vetor rather than a vetor.Unlike the usual kineti energy operators that are limited to the quad-rati order expressions in fp̂x; p̂y; p̂zg, the rotor Hamiltonians are in generalnot limited to the seond order expressions in fÎ�g. In moleular physisvery suessful appliations exist for the Hamiltonians that are of sixth orhigher orders. The presene of high-order terms expresses a non-rigid, manybody struture of the orresponding quantum objets. Various symmetriespresent in moleules an be suessfully modeled by the appropriately on-struted Hamiltonians that are of order higher than 2 and may simulate anysymmetry in question. We follow this line of thought here aiming at thenulear physis appliations.In nulear spetra enountered in experiments we are onfronted withthe overwhelming presene of the rotational bands, i.e. the sequenes ofenergies EI that satisfy EI � I(I + 1) and are often omposed of verymany transitions. In some ases these bands an be very well approximatedby a simple paraboli rule EI = a I(I + 1) with a single onstant a, inother ases suh an approximation is barely satisfatory, in many ases notsatisfatory at all1. It will be one of our goals here to examine amongothers, the deviations of the urvature of the energy vs. spin relations fromthe simplest paraboli rule for (seleted) symmetries of the rotors.1 It is well known that even a single nuleon may very profoundly disturb the rotationalbehavior of the whole nuleus through an alignment of its angular momentum withthe temporary axis of rotation. In this study we onsider the rotational behavior of`pure' rotors i.e. unoupled to individual nuleons. It will thus be of primary interesthere to be able to onnet the deviations from the `standard' paraboli like behaviorof the energy vs. spin relations to the deviations of the atual symmetry of a nuleusfrom the `standard', ellipsoidal, D2-symmetry.



Quantum Rotors and Their Symmetries 2627We are going to study the rotor Hamiltonians of the following generalstruture Ĥ = Î 2x2Jx + Î 2y2Jy + Î 2z2Jz + ĥ(fpg ; Îx; Îy; Îz) ; (1)where ĥ ontains terms that formally represent symmetries other than theD2 symmetry and fpg denotes the ensemble of Hamiltonian parameters.2. Generalized rotor HamiltonianIn order to be able to onveniently represent various possible point-groupsymmetries we are going to introdue the basis of the tensor-operatorsT̂�� (n; �2; �3; : : : �n�1) � 24 ��Î
Î��2 
Î ��3 
 : : : 
Î !�n�135�� ; (2)where e.g. symbol (Î
Î)�2 represents an ensemble of all omponents of theirreduible spherial tensors of rank �2 = 0, 1 or 2, that are obtained throughthe Clebsh�Gordan oupling i.e.(Î
Î )�2 � f (Î
Î )�2�2 ; �2 = ��2;��2 + 1; : : : �2 g : (3)The most important partiular ase of Eq. (2) orresponds to what we allmaximum strething situation where �n = n. In suh a ase we may simplifythe notation without muh ambiguityT̂�� (n; �2; �3; : : : �n�1)! T̂�� (n) : (4)Eah of the above objets represents a spherial tensor operator of rank �, anelement of the basis onstruted with the help of the rotor angular momen-tum operator fÎ�1; Î0; Î+1g. More preisely T̂�� (n) is a uniform polynomialof order n with the oe�ients de�ned through the Clebsh�Gordan ou-pling, where additionally � = n. Sine in general i.e. for the non-strethedouplings one has � 6= n, we prefer to stress this fat in the notation belowin whih we keep expliitly � and n. In what follows we will parameterizethe last expression in Eq. (1) in terms of sums of the nth order uniformpolynomials that are at the same time tensors of rank nĥ(n; �) � �X�=�� ��� (n) T̂�� (n) ; (5)



2628 J. Dudek, A. Gó¹d¹, D. Rosªywhere �� are arbitrary onstants2 i.e. they are ~I-independent objets; asusual, they may, however, depend on any salar funtion of the quantumnumber I and this freedom will be used in Eq. (7) later on.After all these preliminaries we may omplete the de�nition of the gen-eralized rotor Hamiltonian withĥ(fpg; Îx; Îy; Îz) = nmaxXn=3 ĥ(n; �) ; (6)where fpg represents the ensemble of all the Hamiltonian parameters i.e. allthe onstants f�� (n); � = 3; 4; : : : �maxg.3. Rotors and symmetriesA strong motivation for studying the symmetries of the quantum ro-tating objets via the properties of the orresponding exitation spetra isprovided by numerous examples in moleular physis (the reader is referredto the monograph [2℄ for a detailed disussion). There the symmetries pro-vide several possible identi�ation riteria, mainly through the harateristidegeneraies of exitation energies at a given spin. Often the degeneraiesare satis�ed only to a ertain approximation (see below) and are experimen-tally manifested by a grouping of levels with ertain quantum haraterististhat are ditated by the onsidered symmetry.In the reent nulear struture literature the only remarkable series ofdisussions that deviate from the question of the D2-symmetri rotors wasthe one related to the hypothetial C4-symmetry in superdeformed (SD) nu-lei, Ref. [3℄. This idea originated from the experimental disovery of theso-alled (�I = 2)-staggering [(�I = 4)-osillations℄ in rotational bands ofsome SD nulei. Although mirosopi arguments in favor of suh a meha-nism in some superdeformed nulei an be given in terms of �44-deformationdriving orbitals, Ref. [4℄, the same referene �nds no su�ient argument tojustify the stati �44-deformation hypothesis. No other mirosopi alu-lations performed so far did on�rm the possibility of an existene of statideformations of this kind in nulei. The partile�rotor oupling mehanismthat ould inrease the deviations from the regular energy vs. spin behaviorannot, after a model alulation of Ref. [5℄, replae the e�et of a statideformation with the four-fold symmetry. To the ontrary, arguments anbe given that the staggering as de�ned and observed so far in experimentan be aused by a weak-interation band-rossing.Yet, the reviving disussion of a possibility that nulei with symmetriesnon-trivially di�erent from the D2-symmetry exist in nature is to our opin-ion an important step forward in studying the potential rihness of nulear2 The only limitation imposed is that the resulting Hamiltonian remains Hermitian.



Quantum Rotors and Their Symmetries 2629behavior. Indeed, theoretial preditions exist of low-lying isomeri statesin nulei that possibly manifest an approximate ubi symmetry (Td-groupsymmetry) or a symmetry of a triangle (C3 or D3 symmetries), Refs. [6℄and [7℄. These symmetries orrespond to the predited (nearly) pure o-tupole shapes related to the deformations of the type �32 and �33. Thus theimportant message from the quoted referenes is that in many nulei fromthe viinity of the doubly-magi shell-losure nulei there are large otupoletype deformations that may develop. More preisely: they ould either setin the ground-states before the quadrupole deformation eventually overtakesor they ould set in the otupole deformation dominated isomers that om-pete energetially with the quadrupole deformation dominated ground-stateminima [6℄.It will be one of our goals here to examine the quantum behavior of therotors that are haraterized by this type of exoti shapes. Before proeedingwith that, however, we would like to disuss a number of questions that inthe present ontext often have lead to onfusion in the past. Here it will beonvenient to use the C4-symmetry ase as a relatively reent one. Whentrying to explain the energy �utuations in funtion of spin that produe`osillations' with the `period' of �I = 4 an existene of the 4-fold symmetryaxis is a neessary (although far from su�ient) ondition. In order to satisfythis ondition a C4-symmetry ase has been onsidered. Figure 1 belowshows most of the possibilities that should be a priori under onsideration.Although some of these symmetry groups may represent similar physialproperties there are ertainly several possibilities that remain unexplored.
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C2i sCCFig. 1. Diagram of subgroups of the D4h-group. It shows several possible nulearsymmetries that one needs to onsider when the only riterion in mind is an exis-tene of a 4-fold symmetry axis among the symmetries of the nuleus in question.These groups are: D4h, C4h, D4, D2d, C4v , S4 and C4; in the literatures there hasonly been the latter possibility onsidered.Another aspet to onsider is the physial meaning of the parametersthat enter into the generalized rotor Hamiltonian of Eqs. (1)�(5). Althougha priori all hoies of these parameters are mathematially allowed as long asthe resulting model Hamiltonian remains hermitian, in our study we would



2630 J. Dudek, A. Gó¹d¹, D. Rosªylike to keep trak of the role of the rotor moments of inertia Jx, Jy andJz in (1) as leading-role parameters that determine the dominating partof the Hamiltonian. In other words, when working with the well deformednulei we expet that the seond term in (1) is `small' (see below). This isa natural way to ahieve the result that in nulear physis of well deformednulei the deviations from the paraboli EI � I(I+1) rule are small. In ourrealization of the quantum rotors in this paper we therefore limit the libertyof the hoie of the �� parameters and use�� = C��[I(I + 1)℄(��1)=2 ; (7)where I is the angular momentum quantum number to be distinguished fromthe angular momentum operator Î and C�� are merely numerial onstants.This is our way of de�ning the `smallness' of the perturbing term with re-spet to what we onsider as dominating: the traditional quadrati rotorHamiltonian.4. Advantages of a tensor representation of the rotor HamiltonianIn their exellent study of the barrier-penetration properties in the spinmotion of the quantum rotors the authors of [3℄ have hosen an expliit-formĤH�M = AÎ2z +B1(Î2x � Î2y )2 +B2(Î2x + Î2y )2 (8)rather than ovariant (f. Eqs. (5)�(6)) of the Hamiltonian de�nition; theformer was well suited for the purposes of the referene quoted, the latter hasseveral important advantages when disussing diret physial appliations tonulei as it will be illustrated below.The tensor representation introdued earlier provides a basis in the math-ematial sense and allows to express the fourth order terms in (8) as�Î2x � Î2y�2 = 3� 4I25p3 T̂00(2) + 3� 4I2p150 +r32 + 235p6 �2� I2�! T̂20(2)+r 235 T̂40(4) + T̂44(4) + T̂4�4(4) (9)and�Î2x + Î2y�2 = 1105  �140p33 I2 � 73 �4I2 � 3�! T̂00(2)� 175r23I2 + 7r23 �3� 4I2�+ 9p6(2� I2 )! T̂20(2)+6 p70 T̂40(4) : (10)



Quantum Rotors and Their Symmetries 2631From the above expressions it beomes lear that the apparently fourth-orderform of the Hamiltonian in Eq. (8) is in fat omposed of a generi fourth-order (tensor) expressions that remain in that order when performing anyorthogonal transformations of this Hamiltonian in spae and of the seondand zeroth order (tensor) operator expressions preeded by the quadrati(salar) funtions of the spin quantum number I. One an easily showthat the `usual' quadrati rotor Hamiltonian (i.e. the one with the onstantoe�ients) an be expressed asÎ2x2Jx + Î2y2Jy + Î2z2Jz = b00 T̂00(2) + b20 T̂20(2) + b22 hT̂22(2) + T̂2�2(2)i ; (11)where b�� are some numerial oe�ients � known funtions of fJx;Jy;Jzg.Consider an `aademi' ase of a C4�symmetri (Jx = Jy) Hamiltonian:Ĥ = Î 2x2Jx + Î 2y2Jy + Î 2z2Jz +B1(Î 2x � Î 2y ) 2 +B2(Î 2x + Î 2y ) 2 : (12)Using tensor expressions of Eqs. (9)�(10) we may show an instrutive identityĤ = Î 2x2 ~Jx(I) + Î 2y2 ~Jy(I) + Î 2z2 ~Jz(I)+ r 235 + 6p70! T̂40(4) + T̂4+4(4) + T̂4�4(4) : (13)The latter expression shows that the C4-symmetri operator (8) is a sum ofa C4-symmetri tensor operator of the 4-th order and of a quadrati rotorHamiltonian whose oe�ients (moments of inertia f ~Jx(I); ~Jy(I); ~Jz(I)g)are strongly varying with spin. Indeed, these oe�ients an be expliitlyalulated for any set of onstants B1 and B2 and the orresponding resultsare illustrated in Fig. 2, at B2 = 0, as an example.Most of the nulei known so far do not produe any evidene for theC4-symmetry and thus we may believe that, should oasionally suh a phe-nomenon arise, this ould only be beause of a perturbation of the usualD2-type rotor struture by a C4-type admixture. In suh a ase one wouldhoose the moments of inertia fJi; i = x; y; zg in Eqs. (1), (11)�(12), thatorrespond roughly to the expeted rotational band urvature in aordanewith experiment and then inrease the e�et of the fourth-order term (pos-sibly modifying the Ji parameters slightly) to obtain at the same time thestaggering and the right order of magnitude of (nearly onstant) momentsof inertia. Suh an intuitive approah does not seem possible with Hamilto-nian (8) as the tensor expansion demonstrates and Fig. 3 illustrates. More
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Fig. 3. Diagram of subgroups of the D6h-group. A three-fold symmetry axis appearsas a `seondary' symmetry element in all the groups ontaining a six-fold symmetryand we are not going to disuss these ases here. Instead let us point out that theother groups ontaining a three-fold axis are: D3d, D3h, D3, C3h, C3v and C3.Let us begin with an axially-symmetri rotor whose Hamiltonian ontainsthe f� = 3; � = 0g terms in its de�nition (1). The mathematial strutureof this third-order term is modeling the symmetry of a pear-shape nulearmass distribution of an otherwise ompliated, rotating many-body nulearsystem. In the following we would like to illustrate the evolution of therotor spetra when the orresponding oupling onstant C3;0 inreases. Foran axially symmetri rotor the K quantum number is onserved and theorresponding symmetry group is C1. In the disussion it will be onvenientto distinguish the states that have K = 0 from the other states that willbe arbitrarily divided into two groups (distinguished by two shades of grayolors) that orrespond by de�nition to positive-K values (related statesare labeled with [K1℄), and to negative-K values (labeled with [K2℄). Wefollow here our earlier suggestion that the e�etive nulear rotors an berepresented by the leading quadrati term plus the third order modifyingterm (f. Eq. (1)). Sine the mirosopi alulations suggest the existeneof suh states for rather small quadrupole deformations we set in the modelalulations of the moments of inertia �2;0 = 0:1, that for Z=86 and N=132gives by using a uniform nuleoni density ansatz, Jx = Jy = 13:3~2=MeVand Jz = 12:1~2=MeV. Stritly speaking we take the proportion between thetwo numbers above as suggested by the geometrial model and redue theabsolute values by a ommon fator to simulate the di�erene between therigid-like and pairing dominated nuleus. Figure 4 represents the spetrumobtained with C3;0 = 0:001 while Fig. 5 analogous results for C3;0 = 0:01.Let us mention that at the present stage we have no way of determiningthe size of this onstant in the Hamiltonian diretly on the mirosopigrounds; this is not so in the ase of the moments of inertia of the ellipsoidalrotor. One an see that the exitation of states [K1℄ relative to the yrastline dereases with inreasing spin while that of states [K2℄ inreases, as
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Fig. 4. Spetrum of an axially-symmetri rotor with the moments of inertia orre-sponding to the quadrupole deformation of �2;0 = 0:1 (see text); C3;0 = 0:001.
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Fig. 5. Similar to Fig. 4 but inluding the `otupole' term with C3;0 = 0:01; observethe progressive splitting of the positive-K vs negative-K partner states.the omparison of both Figures demonstrates. At the same time we anobserve that inreasing the oupling onstant leads to a rearrangement ofthe spetrum; in partiular the K = 0 sequene is not anymore the yrastand is getting further away from the yrast position.There are several interesting properties of suh `otupole' rotors butwe will have to limit ourselves to one illustration only that presents theexpetation values of the angular momentum operators and the (�I = 2)-staggering properties of the disussed axially symmetri otupole rotor, f.Fig. 6. It is indeed interesting to observe a harateristi staggering in theillustrated observables that, when displayed in terms of the yrast energy,an reah several hundreds of keV in the model situation hosen here.
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Fig. 6. Three-dimensional aspets of the motion of an axial `otupole' rotor repre-sented through the normalized expetation values of Î 2x , Î 2y and Î 2z , top, omparedto the staggering properties of the same objets, middle part, and to the energystaggering, bottom, for the yrast line of the C3;0 = 0:01 ase. (The staggeringobservable is de�ned as in Ref. [3℄.)6. Quantum rotors with three-fold symmetry axisIn this setion we are going to illustrate just a ouple of spetrosopifeatures of a quantum rotor with a three-fold symmetry axis and a minorquadrupole (axially symmetri) deformation equal to that used in the pre-vious ase of an axial symmetry, f. Figs. 7 and 8 and ompare to Figs. 4and 5. In the ase of the C3 group disussed here, there are three irreduiblerepresentations denoted [A1℄, [A2℄ and [A3℄, that generate three families ofthe rotational states. (The mathematial and interpretation aspets of thephysis of related rotors will be disussed in more detail in a forthomingpubliation.) Observe that with a small-strength third order perturbativeterms in the Hamiltonian the states are grouped harateristially: �rstthere is the yrast line omposed of single states of [A1℄ representation that



2636 J. Dudek, A. Gó¹d¹, D. Rosªyis aompanied by doubly degenerate exited bands belonging to the sameirreduible representation. These double degeneraies are only approximate;they vary from a fration of eV to several keV. In addition we have in be-tween the [A1℄ sequenes two well spaed sequenes of exited bands. Eahof them is omposed of doublets of nearly degenerated pairs of states; inthis latter ase, however, eah member of a doublet belongs to a di�erentirreduible representation, [A2℄ or [A2℄, and thus orresponds to a di�erentsymmetry.
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Fig. 7. The quantum rotor spetrum obtained with C3;3 = 0:001; the quadratiterm in the rotor Hamiltonian has the moments of inertia that orrespond to asmall quadrupole deformation of �2 = 0:10, see aptions to Figs. 4 and 5.
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Fig. 8. Similar to that in Fig. 7, but for C3;3 = 0:01; observe that in the lower-rightsetor of the �gure the spetrum is omposed of nearly degenerate triplets of statesharateristi of the presene of a three-fold symmetry axis among the Hamiltoniansymmetries. In the upper setor of the Figure we �nd the states grouped into nearlydegenerate doublets that were harateristi of a `weak otupole oupling' of Fig. 7.In between the two areas there is a `separatrix' region for whih none of the twoasymptoti behavior applies.



Quantum Rotors and Their Symmetries 2637We an diretly observe the role of the three-fold symmetry that mani-fests itself through the triplets of nearly degenerate states at the lower partof the spetrum. A disussion of many interesting features of the rotors ofthat kind will have to be postponed to the forthoming publiation.7. Summary and onlusionsIn this artile we examine the onept of the generalized-rotor Hamil-tonians. They are built-up using spherial-tensor operators, the latter on-struted with the help of angular momentum omponents fÎ�1; Î0; Î+1g.Using these tensor operators we arrive at the struture of the Hamiltoni-ans that is well adapted to the nulear physis appliations i.e. a sum ofa quadrati, often dominating term with an ellipsoidal (or spherial) sym-metry and of higher order terms responsible for the (expeted to be small)exoti-symmetry admixtures. We illustrate the funtioning of this mathe-matial formulation using C4-symmetri rotors disussed previously by otherauthors.Next we follow up the results of the earlier mirosopi alulationssuggesting an existene of isomeri on�gurations with exoti symmetries.We have limited our illustrations to those dominated by omponents withf� = 3; � = 3g, C3-group, and f� = 3; � = 0g, C1-group. Both thesesymmetries indue the spetra that deviate harateristially from those ofthe well known ellipsoidal-rotors. We suggest the use of these di�erenes fora possible identi�ation of these symmetries through experiments.An interesting question related to the symmetries is that of an experi-mental veri�ation. At �rst glane the predited spetrosopi features mayseem easy to identify beause of the harateristi dependene of the energyvs. spin. However in reality, there are several ompliations to be expeted.First of all, the yrast and low lying exited bands of interest are expetedto have very similar moments of inertia and onsequently they are likelyto remain unresolved. This aspet is ertainly the one that will hallengethe new lass of gamma-ray traking detetion systems; we believe that thesignals sought exist in many experimental data already taken. Seondly, thesymmetry-manifesting behavior of the bands in question that are in a sensemuh more interesting than the other ones, will be disturbed by pairing andby individual nuleoni alignment. This latter aspet, is a question to theoryto selet the minima that are preferably free from `bak-bending' and that`keep' the paring orrelations at a more or less onstant level.A support from the Frane�Poland sienti� exhange programPOLONIUM and from the IN2P3, Frane, is aknowledged.
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