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The discrete symmetries of the rotating mean field lead to a variety of
rotational bands with different sequences of spin and parity. We focus on
the breaking of chiral symmetry in rotating triaxial nuclei.
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1. Introduction

Chirality appears in molecules composed of more than four different
atoms and is typical for the biomolecules. The simplest examples are mole-
cules like CH3CHy-C=IHCHj3 (2-iodobutene). It contains a sterocenter,
which is the C atom to which four different groups are attached (the bonds
are explicitly indicated). The three groups I, H, and CHs and the bond
to CH3CHs form a left-handed or a right-handed screw. These two “enan-
tiomers” are related to each other by a mirror reflection.

In chemistry chirality is of static nature because it characterizes the
geometrical arrangement of the atoms. Particle physics is the other field
where chirality is encountered. Here it has a dynamical character, since it
distinguishes between the parallel and antiparallel orientation of the spin
with respect to the momentum of massless fermions. The neutrino, which
appears only as left-handed specie, is an example. Frauendorf and Meng [1]
recently pointed out that the rotation of triaxial nuclei may attain a chiral
character. The lower panel of Fig. 1 illustrates this new possibility. We
denote the three principal axes (PA) of triaxial density distribution by I,
i, and s, which stand for long, intermediate and short, respectively. The
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Fig.1. The discrete symmetries of the mean field of a rotating triaxial reflection
symmetric nucleus (three mirror planes). The axis of rotation (z) is marked by
the circular arrow. It coincides with the angular momentum J. The structure of
the rotational bands associated with each symmetry type is illustrated on the right
side. The meaning of the symmetry operations is explained in Section 4. Note
the change of chirality induced by TR, () in the lowest panel. The axes s,i,l are
denoted by 1, 2, 3, respectively.

angular momentum vector J introduces chirality by selecting one of the
octants. In four of the octants the axes I, 7, and s form a left-handed and
in the other four a right-handed system. This gives rise to two degenerate
rotational bands because all octants are energetically equivalent. Hence the
chirality of nuclear rotation results from a combination of dynamics (the
angular momentum) and geometry (the triaxial shape).

If we speak about the “symmetry of a molecule” we mean the symmetry
of the “intrinsic” wavefunction, which describes the electrons and the relative
positions of the nuclei. The total wavefunction, which additionally includes
the orientation of the whole molecule in space, represents the symmetry of
the Hamiltonian, which is invariant under 3D rotations and space inversion.
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This higher symmetry leads to characteristic restrictions in the rotational
spectrum, as for example shown in Fig. 1. This argument must be modified
for nuclei, because the nucleons are not on fixed positions. The rotating
mean field takes the role of the molecular intrinsic wavefunction. It is de-
scribed by the cranking model, which most generally consists in applying
the mean field approximation (Hartree-Fock or related procedures) to the
two-body Routhian

H =H-wl,, (1)

where H is the two-body Hamiltonian of the nucleus and J, is the angular
momentum component on the z-axis, which we choose as the axis of rotation.
The mean field solution |) has in general a lower symmetry than implied by
the Routhian (1). In such a case one speaks of “spontaneous symmetry
breaking”. The loss of rotational symmetry with respect to the z-axis leads
to rotational spectra. Like in the case of molecules, the presence or absence
of discrete symmetries (finite rotations, space inversion and time reversal)
of (1) in |) leads to characteristic rotational spectra, examples of which are
shown in Fig. 1. In Section 4 we give a more systematic discussion.

2. Tilted Axis Cranking

The cranking model describes the uniform classic rotation of the mean
field solution |). Our symmetry argument is based on the presumption that
the axis of uniform rotation needs not to agree with one of the PA of the
density distribution. This does not hold for a rigid triaxial body, like a
molecule for example, which can uniformly rotate only about the I- and s-
axes. However, already Rieman [2] pointed out that a liquid may uniformly
rotate about an axis tilted with respect to the PA, if there is an intrinsic
vortical motion. In the case of the nucleus the quantization of the angular
momentum of the nucleons at the Fermi surface generates the vorticity which
enables rotation about a tilted axis.

The semiclassical mean field description of tilted nuclear rotation was
developed in [3-5]. In the following we shall refer to it as the Tilted Axis
Cranking (TAC) approach [5]. Figure 1 illustrates the different symmetries
if the mean field is assumed to be reflection symmetric. In the upper panel
the axis of rotation (which is chosen to be z) coincides with one of the PA,
i.e. the finite rotation R,(m) = 1. This symmetry implies the signature
quantum number «, which restricts the total angular momentum to the
values I = a + 2n, with n integer (Al = 2 band) [6]. In the middle panel
the rotational axis lies in one of the planes spanned by two PA (planar tilt).
Since then R,(mw) # 1, there is no longer a restriction of the values I can
take. The band is a sequence of states the I of which differ by 1 (AT =1
band). There is a second symmetry in the upper two panels: The rotation
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Ry(m) transforms the density into an identical position but changes the sign

of the angular momentum vector J. Since the latter is odd under the time
reversal operation 7, the combination TR, (7) = 1.

In the lower panel the axis of rotation is out of the three planes spanned
by the PA. The operation TR, (m) # 1. It changes the chirality of the axes
1, i and s with respect to the axis of rotation J. Since the left- and the right-
handed solutions have the same energy, they give rise to two degenerate
AI = 1 bands. They are the even (|+)) and odd (|—)) linear combina-
tions of the two chiralites, which restore the spontaneously broken TR,(m)
symmetry.

Figure 2 illustrates how such a solution may arise. The proton aligns its
angular momentum fp with the short axis of the density distribution. This
orientation maximizes the overlap of its orbital with the triaxial density,
which corresponds to minimal energy, because the core—particle interaction
is attractive. The neutron hole aligns its angular momentum fh with the
long axis. This orientation minimizes the overlap of its orbital with the
triaxial density, which corresponds to minimal energy, because the core-hole
interaction is repulsive. The angular momentum of the core R is of collective
nature. It likes to orient along the intermediate axis, which has the largest
moment of inertia, because the density distribution deviates strongest from
rotational symmetry with respect to this axis.

Fig.2. Orbitals of a high-j proton and a high-j neutron hole coupled to the triaxial
density distribution.

The structure shown in Fig. 2 was first suggested by Frisk and Bengts-
son [4] for the configuration [rgqs, l/gg_/12] in §3Y 45 assuming a triaxial shape
with v = 30°. A later study [8] showed that this nucleus is indeed axial,
which is consistent with the absence of a chiral doublet band in this nucleus.
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TABLE 1

Chirality in the mass 134 region. TAC calculations: P — planar solution, S —
chiral solution in a short I interval, and L — chiral solution in a long I interval.
Observation of chiral doubling: CR — chiral rotation (the two AI = 1 bands come
very close), CV — chiral vibration (the two AI = 1 bands remain separated).
From [7,8].

Z\N |67 68 69 70 71 72 73 T4 75 76 77 78
65
64
63 S CV
62
61 L CR
60 L L L
59 P AC cv L CR Ccv
58 L
o7 Y M CV Ccv
96 P AC
55 cv S CV Ccv
54
53

Dimitrov, Frauendorf and Dénau [8] found the first completely self-consistent
chiral solution for %34131“75 with the maximal triaxiality of v ~ 30°. Figure 3
shows that in this nucleus one observes that two AI = 1 bands, which are
based on the [mwhy; /2 l/hl_ll/Q] configuration, merge forming a doublet struc-
ture [9]. Consistent with the experiment, the TAC solution attains chiral
character only for I > 15. Table I gives an overview over the existing TAC
calculations and the experimental evidence for chirality in the neighbour-
hood of 4Pr. The study is yet incomplete. However, it seems that there is
an island of chirality around Z = 59 and N = 75. In the N = 75 chain, the
shores have probably been reached at Z = 63 and 55. Figure 3 shows some
of the observed chiral pairs. For most cases there remains a splitting of few
100 keV between the partners. They are listed as Chiral Vibrators (CV) in
Table 1.

The cases, when the two partners merge are listed as Chiral Rotors
(CR). TAC solutions that are chiral only in a short I interval are observed
as vibrators and the solutions that are chiral in a more extended interval
are seen as rotors. Note that there are also chiral solutions for Z = 60.
They correspond to a combination of the [rhq /2 l/hl_ll/Q] configuration with
a proton in a low spin state (N = 75 and 77). For N =76 there is an
additional neutron in a low spin state.
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Fig.3. Chiral sister bands in the N = 75 isotones based on the configuration
ﬂhll/guhﬁlﬂ. The parity of the bands is + and I = 9. From [7]. The TAC
calculation from [8] is included.

TAC calculations [8, 10] predict other regions, where chirality can be
expected:

e Around '88Ir. The active high-j orbitals are hg /2 Or i13/9 protons

combined with i;3/5 neutron holes.

e Around 'Ru. The active high-j orbitals are gq /2 proton holes com-
bined with hyq/5 neutrons.

e Around "Br. The active high-j orbitals are gq /2 protons combined
with gg/o neutron holes.

In the latter two cases the TAC calculations do not give genuine minima
in the chiral sector but a valley along which the energy does not depend
on the orientation of the rotational axis. These nuclei will probably show
soft chiral vibrational excitations. For *Nd a chiral solution was found at
I > 34, which combines a pair of hy1 /5 combined with a pair of hyy /o neutron
holes [10]. The larger angular momenta of the particles and holes imply a
larger angular momentum of the core. One may expect that the larger
angular momenta reduce the tunneling between the left- and right-handed
solutions and the chiral partners come very close together.
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3. Dynamics — particle rotor calculations

TAC permits us to find the static chiral mean-field solutions, from which
one can obtain the energies and electro-magnetic transition probabilities
under the assumption that the tunneling is negligible between the left- and
right-handed solutions (see [8,11]). The experimental candidates for chirality
found so far show an energetic splitting between sister bands, which indicates
substantial tunneling. The dynamics of the orientation of J has been studied
for the model case of a proton particle and a neutron hole coupled to a
triaxial rotor with maximal asymmetry (v = 30°) and the irrotational flow
relation J; = J; = J;/4 between the moments of inertia [1,12,13].

Figure 4 shows the result of such calculations. At the beginning of the
lowest band the angular momentum originates from the particle and the
hole, whose individual angular momenta are aligned with the s- and [-axes.
These orientations correspond to a maximal overlap of the particle and hole
densities with the triaxial potential, as illustrated in Fig. 2. A Al =1 band
is generated by adding the rotor momentum R in the s/ plane (planar tilt).

34 JnV hf11/2

5 10 15 20 25

R increases 1 [A]

Fig. 4. Rotational levels of hyy /; particles and holes coupled to a triaxial rotor with
~v = 30°. Full lines: @ =0 (even I). Dashed lines: a =1 (odd I). The insets show
the orientation of the angular momentum with respect to the triaxial potential,
where 1, 2 and 3 correspond to the short, intermediate and long principal axes,
respectively. The angular momentum vector moves along the heavy arcs. The
position displayed corresponds to the spin interval 13 < I < 18, where the two
lowest bands are nearly degenerate. The right-handed position is shown. The
left-handed is obtained by reflection through the 1-3 plane. From [1].
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There is a second Al = 1 band representing a vibration of J out of the
s-1 plane, which is generated by a wobbling of R. This is a more precise
description of the chiral vibration mentioned above. Higher in the band, R
reorients towards the i-axis, which has the maximal moment of inertia. The
left- and the right-handed positions of J separate. Since they couple only by
some tunneling, the two bands come very close together in energy. This is the
regime we called chiral rotation. The reorientation of R, i.e. the transition
from chiral vibration to rotation is well localized in the spectrum Fig. 4. It
appears also in the higher bands at larger I. The transition is signalized
by a marked change of the M1 transition: The B(M1) values between the
chiral vibrational bands are small as compared to the intra band values. The
B(M1) values between the sister bands of chiral rotors are comparable with
the intra band values.

4. Broken reflection symmetry

Let us discuss the discrete symmetries more systematically. The two-
body Routhian (1) is invariant with respect to

1. R,(v), rotation about the z-axis,
2. P, space inversion,
3. R,(m), rotation about the z-axis by an angle of m,

4. TRy(m), rotation about the y-axis by an angle of 7 combined with the
time reversal 7.

The symmetry (4) is a consequence of J being odd under the time reversal
operation 7. Since we discuss rotational bands, we assume that 1 is broken.
The symmetry operations 2-4 are two-fold and commute. Table II lists the
different combinations by which the rotating mean field can break the three
symmetries.

In the preceding sections the case of a reflection symmetric mean field
was considered. In addition to the three symmetries illustrated in Fig. 1,
there are two more (IV and V) mentioned in Table II. It is not clear if they
exist in nuclei. If the restriction to reflection symmetry is lifted many new
discrete symmetries arise. Let us start by assuming that the mean field has
no discrete symmetry at all. There is no restriction of I by R,(w). The
operations P, and TRy(7), which leave the two-body Routhian invariant,
define four nonequivalent degenerate mean field solutions |), P|), TR, (7)]),
and PTRy(m)|). This means that the bands appear as four fold degenerate
AI = 1 sequences. For each value of I, there are two levels of positive
and two levels of negative parity. The cases when symmetries reduce this
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TABLE II

Discrete symmetries of the rotating mean field. Columns 24 list the result of the
symmetry operation. D(ifferent) means the mean field has changed and S(ame) it
has not. An operation as entry means it is identical with the one of the column.
Columns 5 shows the spin and parity I™ of the rotational states, where I* means
that there are two degenerate states of opposite parity (parity doubling). The 2
indicates that there are two degenerate states with the same I™ (chiral doubling)
and 2I* means that there are four degenerate states, two with IT and two with
I~ (parity and chiral doubling). For I-V also 7 = — appears, although it is not
explicitly indicated. From [11].

type P R.(m) TRy(nm) level sequence
I S S S It (I+2)",(I+4)T,
I S D S It (I+0)t (I +2)1, ..
11 S D D 21T, 2(I+ 1) ,2(1+2)*, ...
v S S D 21T, 2(I +2),2(T +4)*, ...
% S D R.(7) It (I+ 1)t (I+2)t,
VI D S S I (I+2)*,(I+4)*,
VII D D S It (I+1)* (I+2)*
VIII D S D 21%,2(1 +2)*,2(1 +4)*,
IX D D R.(m) I (I +1)* (I +2)*,
X R.(m) D S It (I+1),(I+2)",
XI | R.(m) D D 2I7,2(I+1)7,2(I +2)F,
XIT | TRy(m) S D It (I+2)%, (I +4)*
XIII | TRy (m) D D It (I + 1%, (I +2)7F,
XIV | R.(nm) D R (m) It (I+1)~,(I+2)%,
XV D D D 21, 2(T + 1)*,2(1 +2)*,

degeneracy are summarized in Table II. Figs. 5 and 6 illustrate the cases,
which can be visualized by combining the angular momentum vector J with
the density distribution.

Figure 5 shows the symmetry types when the density distribution has
two mirror planes. In the middle panel the rotational axis lies perpendicular
to one of the mirror planes (X in Table IT), which contains the important
special case of axial symmetry with the axis of rotation perpendicular to the
symmetry axis. The symmetry TR, (7) = 1 ensures that there is only one
state for a given parity and S = PR, (w) = 1 defines the simplex quantum
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Fig.5. The discrete symmetries of the mean field of a rotating nucleus with two
mirror planes. Cf. caption of Fig. 1. From [11].

number o, which fixes the parity for a given spin I, as 7 = (—)'=7 [14,15].
This symmetry is well known in the light actinides (see e.g. [11,16]).

In the lower panel of Fig. 5 the rotational axis lies in one of the two
mirror planes but is not perpendicular to the other plane (VII). Since the
simplex is no longer a good quantum number, the parity is not fixed by the
spin any more. There is a parity doublet for each spin I. Some evidence for
this symmetry exists in the light actinides (see e.g. [11,16]).

Ref. [17] recently classified the mean field solutions according to the dis-
crete symmetries, which arise from the combination of Ry (7), Ry(7), R, (7),
TRy(m), TRy(m), TR,(m) and T. The symmetries listed in Table IT are
special cases of their scheme. Since their remaining symmetries do not leave
the two-body Routhian invariant, they are not relevant for the discussion of
spontaneous symmetry breaking in rapidly rotating nuclei.
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Fig. 6. Discrete symmetries of the mean field of a rotating nucleus with one mirror
plane. Cf. caption of Fig. 1. From [11].

5. Conclusions

The cranking model, which provides uniformly rotating mean field so-
lutions, is the standard microscopic description of high spin states. The
existence and structure of rotational bands reflects the symmetries of these
solutions. The relation between angular momentum J and velocity & is
much more complex than for molecules or liquids, because nuclei are com-
posed of nucleons on orbits with an angular momentum, which is largely
controlled by quantization. As a consequence, the axis for uniform rotation
(the angular momentum vector J) can take any direction with respect to
the density distribution.

The combination of .J with the density distribution gives rise to a variety
of discrete symmetries. A new possibility is the breaking of chiral symmetry
in triaxial reflection symmetric nuclei. It shows up as a pair of identical



2672 S. FRAUENDORF

AT = 1 bands of the same parity. Mean field solutions of this type have been
found in nuclides around A = 134, where there is experimental evidence for a
small island of chirality. The existence of chiral sister bands is also predicted
for other mass regions.

There are 15 different discrete symmetries of the rotating mean field
if time odd components are considered and no reflection asymmetry is de-
manded. Some of them have a spin-parity sequence that is distinctly differ-
ent from the familiar ones, which would be a clear experimental signature
of the symmetry. So far there is only evidence for the symmetries leading
to the spin parity sequences: I, (I + 2)T, (I +4)™,... (good signature),
IT,(I+1)",(I+2)",... (tilted rotation), 21", 2(I+1)",2(I+2)™, ... (chiral
doubling), I, (I +1)7,(I +2)*,... (good simplex), and I*, (I + 1)*, (I +
2)*, ... (parity doubling).

Support by the grant DE-FG02-95ER40934 is acknowledged.
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