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Using the pre-SNO neutrino oscillation data of the solar and the at-
mospheric neutrino oscillations including and excluding the LSND (Los
Alamos) measurements fits for the three mixing angle of the unitary trans-
formation between the three neutrino mass eigenstates and the weak eigen-
states are given. At the same time the differences of the squared masses
are fitted to the data. Using an averaged upper value of (m,.) = 0.62 eV
from the neutrino double beta decay, one can limit the sum of the three
neutrino masses to be less than 2.53 eV. The new data from the Sud-
bury Neutrino Observatory allow for the first time with the help of the
SuperKamiokande data to determine the solar e and (4 7) neutrino fluxes
separately. The sum is within errors identical to the theoretical electron
neutrino flux from the sun. We thus see all expected solar neutrinos. They
only oscillated partially from electron to p + 7 neutrinos. In the last part
we report calculations of neutrino masses in the R-parity violating Mini-
mal Supersymmetric Standard Model (R MSSM). The R-parity violating
interaction mixes the three neutrino flavors by R-parity violation with the
four neutralinos (photino, zino and the two higgsinos). One finds neutrino
masses for the first two neutrinos between 0.001 and 0.04 eV and for the
third one between 0.03 and 1 eV.

PACS numbers: 14.60.Pq

1. Introduction

Until now the only indication for finite masses of the neutrinos are the
neutrino oscillations. Direct measurements of the neutrino masses gave the
following upper limits [1,2]:

Mye < 2.35 my, <160 keV;  m,_ < 23 MeV. (1)
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In the standard model neutrinos are massless and left-handed. If they
would be massive, a boost can make out of a left-handed neutrino a right-
handed one.

In the supersymmetric model we add to the left-handed doublet of a
neutrino and a lepton its SUSY partners.
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If one now assumes that the neutrinos are massive with the mass eigen-
states

(Vla’/277/3) (3)
which are different form the weak or the production eigenstates
(VeanVT) (4)

one obtains automatically neutrino oscillations. The mass eigenstates (3)
and the weak or flavour eigenstates (4) are connected by a unitary matrix.

Ve Uel Ue2 Ue3 U1
vy, = Ulﬂ UMQ ng () . (5)
Vr UTl UTQ UT3 U3

The unitary matrix connecting the mass (3) and the flavour eigenstates
(4) can be characterized by three angles and in the case of Dirac neutrinos
by one C'P phase and in the case of Majorana neutrinos by two C'P phases.

U (912,913,923, P12, P23) - (6)

In this work we assume that C'P symmetry is not violated and thus the C'P
violating phases can take only two values A¢F = e = +1.

Neutrino oscillations give no information about the C'P phases, but the
charmed II results constrain the C P-phases so that they cannot be all the
same for all three neutrinos [11]. This means the choice

>\1C'2P — olP12 — +1; )\%P — ol¥23 — 41 (7)

is not allowed.
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The neutrino oscillations are often analyzed in a pairwise mixing of only
two neutrinos with the orthogonal transformation between the two mass
states and the two flavour states.

Ve _ cos?d —sind 1z (8)
vy o sin?d  cosd vy )

In this type of analysis one can construct a contradiction of the LSND
result, describing oscillations from 7, to 7, and the solar neutrino oscilla-
tions, if one assumes that the electron neutrinos v, oscillate to v,. The
first one requests a difference of the masses squared of the order of 0.3 to
1.0 €V? and the second a difference of the masses squared between 10~ and
7x107° eV?, depending if one takes a Small (SMA) or a Large (LMA) Mix-
ing Angle solution of oscillations in matter (MSW effect). But an analysis
according to equation (9) with the mixing of only two neutrinos is too re-
strictive. This is similar as when you want to fly from Muenchen to Milano
in a two dimensional plane in a straight line. The Alps make this impossible.
But as soon as you go in a space of three dimensions, you have no difficulty
having a straight line in the first two dimensions, but going up in altitude
and crossing the Alps with the help of the third dimension.

The results which we have about neutrino oscillations indicate that the
mass eigenstates are strongly mixed in the flavour or production eigenstates.
So we expect that an oscillation analysis in two dimensions including only
the difference of the masses squared of two neutrinos and their mixing angle 0
will be not sufficient and leads to totally wrong conclusions. We therefore use
in this work always a three neutrino analysis of the solar, the atmospheric
and the LSND neutrino experiments. Due to the large mixing angles it
seems that mostly all three neutrinos are involved in the oscillations.

2. Neutrino oscillations and neutrino masses

The unitary matrix which transforms from the neutrino mass eigenstates
to the flavour eigenstates (5) can be parametrized by three angles and two
phases (6), if one assumes Majorana neutrinos. The C'P violating phases
can be reduced to one in the case of Dirac neutrinos. In the literature one
finds several fits to the solar and the atmospheric neutrino oscillation data,
where the SNO data from June 17, 2001 are not yet included. These three
neutrino analyses of the solar and the atmospheric neutrino data include or
exclude the LSND data from Los Alamos. Below it will always be indicated
if the LSND data are included or if they are excluded.

The flavour neutrino mass matrix has the form

3
Mag = Z Uni mi Ug; (912,913, 923) , 9)
i=1
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where we assumed that the C'P phase factors are real and assume the values

AP = £1 and MG = £1 (7).
The three neutrino analysis of the oscillation data [4-8] yield the three

mixing angles and two differences of the squares of neutrino masses.

P12, 013,923
2
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_ 2 2
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_ 2 2
= M3z — My,

[m% + Am%l

[m% + Am3, + Am

mq (assumption) ,

]1/2

?

2
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(10)

Under the assumption that the phases are real (6), one can calculate the
transformation U of equation (5), which is under these assumptions an or-
thogonal transformation. It is not determined uniquely, since the phases can
still have the values (+1,—1) and (=1, —1) (7). The combination (+1,+1) is
excluded by CHARME II [3] and the combination (—1,+1) can be reduced
to the combination (+1,—1) by relabelling. Table I gives the results of these

fits from the literature.

TABLE 1

Fits for Am3,, Am3, and ¥12,923, 913 as defined in Egs. (6) and (11) from references
4 to 8 without or with the inclusion of LSND.

Am3, Am3, 99y 99, 995 | Ref.
[eV?] [eV?]
no LSND no LSND
(3 +70) x 1076 0.01 53-62 28-37 < 13| [§]
(4 +70) x 1076 1 51-72 2732 <4 | [§]
(4 +70) x 1076 0.1 51-72 2833 <4 | [§]
1074 8x107* | 39 45 27 | 6]
with LSND with LSND
(1+10) x 1074 0.3 35 27 13 [4]
(1+10)x 104 0.3 54 27 13 [4]
3x107* 1 45 29 4 [7]
(1+10) x 10~* 0.4 38 26 10 | [5]
(4 +70) x 1076 1 51-72 27-32 34 | [§]
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From Eq. (10) one can now calculate the neutrino mass matrix in flavour
or weak interaction space, if one makes an assumption about the value of
one neutrino mass, for example m;. Since the phases (6) do not depend on
the neutrino oscillations, they cannot be determined. In the following we
are choosing all possible different neutrino phases for Majorana neutrinos
and give for the neutrino mass matrix (9) element by element always the
largest value. So the neutrino mass matrices given in Table II are element
by element upper limits for the different assumptions of the mass mq of the
lowest mass eigenstate.

TABLE II

Neutrino mass matrix in flavour space (v, v, v;) defined in Eq. (10) calculated for
the different fits to the oscillations given in Table I. The C'P phases )\1021713 ==+1
are assumed to be real and are varied to all possible combinations. Always the
largest value, element by element, is given. The four matrices are therefore upper
limits for the assumptions m; = 0 eV and m; = 0.1 eV without and with the

inclusion of LSND.

no LSND included

mp; =0 eV mp; = 0.1 eV
0.00 0.01 0.00 0.10 0.01 o0.01
0.01 0.11 0.10 0.01 0.18 0.08
0.01 0.10 0.11 0.01 0.08 0.19

with LSND included

mq = 0 eV my = 0.1 eV
0.03 0.06 0.07 0.11  0.05 0.07
0.06 0.29 0.34 0.05 0.35 0.30
0.07 0.34 0.46 0.07 0.30 0.50

One sees clearly, that the inclusion of LSND is increasing the upper
limits of the matrix elements of the neutrino mass matrix in flavor space.
This means that the masses of the neutrinos get appreciably larger with
the inclusion of LSND. Without LSND the average neutrino mass for m; =
0.1 eV has an average value of 0.16 eV and with the inclusion of LSND an
average mass of 0.32 eV. In table two we have included an absolute mass
scale by assuming without further justification a mass for the lowest mass
eigenstate. One can also obtain an absolute mass scale also from experiment:
The triton decay and the neutrinoless double beta decay give both such
limits. The more restricted limit one obtains from the neutrinoless double
beta decay.
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3
[(mu,) | = Y mi&i(CP)|Uel?] < 0.62 [eV],
i=1
Go=1; &£=25"; &=)". (11)

In Eq. (11) we have used the double beta decay matrix elements of the
Tuebingen group [9,10] and the "Ge neutrinoless double beta decay exper-
iment of Baudis et al. We build the transformation U in Eq. (5) from the
mixing angles of Table I and choose all possible phase combinations (6) and
increase the mass of the lightest neutrino m; in Eq. (10), so that we reach
the maximal allowed averaged neutrino mass of 0.62 eV (11). This yields
now element for element an other limit of the neutrino mass matrix in flavor
space.

0.60 0.97 0.85
Imag| [eV] < | 0.97 0.76 0.80
0.85 0.80 1.17

3

S

i=1

IA

trace{|mqp|max}
= 0.60 + 0.86 + 1.17 = 2.53 [eV]. (12)

One obtains therefore for the sum of all three neutrino masses an upper limit
of 2.53 eV.

From the measurement of the triton decay, where the Mingk and the
Troisk group give values of 2.8 to 2.3 eV one can extract also an upper limit
for the sum of the three neutrino masses. But this limit lies higher.

3. New results from SNO

The Sudbury Neutrino Observatory announced on June 17, 2001 results
which make it now highly probable, that one sees all the neutrinos [20]
which are produced by the sun [21]. The results indicate that about 2/3 of
the 8B electron neutrinos were oscillating into muon or tauon neutrinos. The
Sudbury Neutrino Observatory (SNO) is located in Canada in the Creighton
mine in Ontario, 2000 m under ground. The detector consists of 1 000 tons of
heavy water D5O in an acrylic spherical vessel with the diameter of 12 m and
9 456 photomultipliers on an outer sphere of a diameter of 17 m. Everything
is inside a vessel of about a cylindrical form with a diameter of 22 m. In
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principle the following reactions are possible:

ve+d —p+p+e (CO),
Vg +e —upte” (ES), (13)
vy+d —p+n+rv, (NC).
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d
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Fig.1. Charge current (CC), electron scattering (EC) and neutral current (NC)
diagrams for neutrino scattering and reactions in SNO.

Figure 1 shows the diagrams of the Charge Current (CC) the elastic
electron scattering (ES) and the Neutral Current (NC) diagrams which can
be measured in principle by SNO. Presently only (CC) and (ES) have been
measured. The charge current (CC) can only be measured because they are
using heavy water with deuterium replacing the hydrogen. The ®B solar
neutrinos go up to an energy of 14.6 MeV. They would have a too small
energy to change a neutron in '®O into a proton. But this is possible for
the deuteron which is only bound by 2.2 MeV. The lower threshold of the
SNO detector for the 8B electron neutrinos from the sun is 6.5 MeV. The
charge current reaction (CC) is measured by looking to the Cherenkov radi-
ation from the electron. But at the same time one gets also the Cherenkov
radiation from the electron, which is elastically scattered by the incoming
solar neutrinos (ES). One can now separate the two by studying the angular
correlations. In the elastic neutrino—electron scattering (ES) a neutrino of
about 10 MeV is hitting an electron, which has a rest mass of about 0.5 MeV
and thus its angular distribution is peaked forward. In the charge current
reaction (CC) one is hitting with the electron neutrino the deuteron and
one obtains roughly an isotropic distribution. The charged current mea-
sures only the electron neutrino flux from the sun. It is with the help of the
angular distribution determined to be:
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0SS0 (ve) = (1.75 +0.23) x 10° [em 25717,
dséElEIjO(Vm) = (2.39 + 0.49) x 108 [CmeSfl]’

05 (vy) = (232 £0.10) x 10° [em™257],

o(vee”) = 6- O'(Vuei; vre ). (14)

In principle one could determine from the two SNO measurements of the
neutrino fluxes for the charge current and the elastic scattering reaction with
the relation between the electron-neutrino electron and the muon—neutrino
electron cross section the flux of muon and tauon neutrinos reaching the SNO
detector. But the errors of the SNO measurement for the elastic electron
neutrino—electron scattering is too large. One can here use the more accurate
result of SuperKamiokande (14). The values given in (15) are neutrino fluxes
from the sun, calculated without neutrino oscillations. From the elastic
electron-neutrino electron scattering data from SK (SuperKamiokande) and
the electron neutrino flux determined by the charged current in SNO, one
sees that one must have muon— and tauon—neutrinos, which are detected in
the elastic electron—neutrino electron scattering (ES) in SuperKamiokande
(SK). If one now takes into account the different values for the cross sections
of the neutrino electron scattering one obtains a muon— and tauon—neutrino
flux from the sun of:

(v, +vr) = (3.69 £ 1.13) x 10° [em 25717,
Proral (Ve + vy +vr) = (544 £0.99) x 10° [em 2571,
Psun (V) ~ 5.1 x 108 [em 2571, (15)

The sum of the muon— and tauon—neutrino fluxes and the electron—
neutrino flux determined by the charge current reaction (15) agrees very
nicely with the theoretical result of Bahcall and Pinsonneault [21], who
predict a total electron neutrino current produced by the sun of about
5.1 x 10% em™2s~! thus we seem to see all electron neutrinos from the sun.
But two third of the electron neutrinos have been oscillating into other neu-
trinos.

The analysis using the charge current electron neutrino flux measure-
ment from SNO and the elastic scattering neutrino flux measurement from
SuperKamiokande is shown in figure 2.

The results seem to indicate within the error bars that there is now
oscillation of the electron neutrinos from the sun to sterile neutrinos.

The next step is the measurement of the neutral current reaction (NC)
(14). Figure 1 shows that for the neutral current reaction one has only
neutrinos, neutrons and protons in the final state. All three do not produce



The SNO-Ezperiment and Neutrino Oscillations 165

®v,) (relative to BPBO1)

0 0.2 04 0.6 0.8 1 1.2
N N A SO A I B
8 K = SNO ’(pg;:(p(ve)+0.154(p(vm)‘f )
1 % = Pcc -
1.4
=
% I
=} - —
© SK+SNO [
g/ 4- @, ,4)'8 %
= oSV 06 &
5 0.4 %5
] —0.2
01, I AAMMLARASY AR ASRS I - 0
0 1 2 3 4 5 6

®v,) (10° emsY)

Fig.2. The figure shows the charge current (CC) measurement of SNO &5, (ve) =
(1.754+0.23) x 105 cm 25! on the abscissa and the muon and tauon neutrino flux
derived with help of the SuperKamiokande (SK) elastic neutrino—electron measure-
ment at the ordinate (from Ref. [20]).

Cherenkov radiation in water. To detect this Neutral Current reaction (NC)
(14) the SNO collaboration has given salt NaCl into the heavy water of the
detector. This now allows to see the capture y-rays of the neutrons cascading
down in Na or Cl. The neutral current reaction (NC) (14) will measure the
total neutrino flux from the sun without distinguishing between electron,
muon and tauon neutrinos. If everything is consistent and correct, it should

give within error bars the same number of the total flux already given in
Eq. (16).

4. Neutrino masses and supersymmetry

In the minimal supersymmetric model (MSSM) one has for every boson
and for every fermion an supersymmetric partner. Each fermion has a SUSY
boson and each boson has a SUSY fermion. In the standard model (SM) the
fermions are the matter particles like the quarks and the leptons, while the
bosons are the carrier of the forces like the photon 7, the charged W+ and
the neutral Z° vector bosons and the gluons. To each multiplet of particles
in the SM we add in the MSSM the corresponding superfields.
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The interactions in the MSM are the same as in the SM, one only replaces
the fields by the superfields. Figure 1 shows that one has to replace always
zero or an even number of fields from the standard model (SM) by SUSY
particles. If one replaces and odd number of SM fields by SUSY particles, one
cannot conserve the total angular momentum. Thus this minimal extension
of the SM to the Minimal Supersymmetric Standard Model (MSSM) one
has a new quantum number which one calls R parity. It is R = 41 for an
even number of SUSY particles and R = —1 for an odd number of SUSY
particles.

The mass of the three neutrinos in supersymmetry is zero originally and
their acquire mass by mixing with the four neutralinos: The photino ¥, the
zino Z°, the Higgsino H0 and a second Higgsino HO But in the MSSM one
cannot mix standard partlcles like the three neutrinos ve, v, and v; with
SUSY particles. This violates R parity.

One now argues that R parity is until now not a quantity which is con-
served by a symmetry principle. Thus one expects to have also terms in the
Lagrangian which violate R parity conservation.

+p;LiH, + )J’,cUCDC
+{soft R terms}. (17)

Here L; are the left-handed lepton superfields of the three families defined
in Eq. (13) and Q; are the left-handed super quark fields, where j runs over
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Fig.3. The left diagram is showing in the standard model (SM) the microscopic
process of the weak beta decay changing a “down” into an “up”’-quark and the
emission of a W~ vector boson with the coupling constant g. The right side shows
a diagram in the minimal supersymmetric model (MMSM) which changes a “down”-
quark into a SUSY-“up”-quark and into a SUSY-vector boson W~ with the same
coupling constant g.

the three families (13). The superfields Ey and Dy, correspond to the right-
handed lepton and quark super fields.

- d
By = < Z_ ) i Dy=1 = < i ) : (18)
right right

The index k can run over the three families k¥ = 1,2,3. The upper index “c” in

q. (17) indicates the charge conjugate state. The soft SUSY breaking terms
contaln only superfields. The coupling constant X/ ik and the corresponding
term in the soft R-parity breaking terms are put to zero to prevent a fast
decay of the protons.

The R-parity breaking terms allow for a vacuum expectation value of
the SUSY neutrinos. These and the p; terms yield tree diagrams for the
mixing of the neutrinos with the neutralinos (photinos, zinos, higgsinos) by
eliminating the four neutralinos (one has two neutral higgsinos) one obtains
a separable mass matrix.

Zmag cﬂ = m; cfl with: meg = aq - ag,

aaZag cﬂ = m; ¢, with : Qs Qs Gy - (19)
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For such a separable mass matrix of rank 1, one has two mass eigenvalues,
which are zero. This can be easily seen from the lines three and four from
Eq. (16). The vector in flavour space (aye,Guy,avr) allows in this three
dimensional space two vectors {c'} which are orthogonal to {a} and thus
one has two mass eigenvalues which are zero. The hierarchical neutrino
mass spectrum must have the form as shown in figure 2.

m,

m,

my

Fig.4. On the tree level two eigenvalues of the neutrino mass matrix are zero and
one is only different from zero. The inclusion of loop diagrams (see Fig. 3) yield
for all masses values different from zero. But one expects, that the hierarchical
structure of the neutrino masses remain. Two masses very small and the third
neutrino mass larger.

On the tree level we have therefore mq = mo = 0 and m3 # 0. From
the atmospheric neutrino measurement of SuperKamiokande, one therefore
obtains immediately for the third neutrino mass:

2x 1072 eV <mz < 107! [eV]. (20)

This naturally cannot be the final truth. So we have to calculate also loop
diagrams.

The lepton—slepton and the quark-squark loops yield again a separable
contribution to the neutrino mass matrix in the three dimensional neutrino
flavour space. One has therefore now a rank tree spearable matrix of which
the mass eigenvalues are all different from zero.

3
Mag = Zaﬁ ag. (21)
k=1

The upper index k runs over the tree diagrams, the lepton loop and
the quark loop diagrams since we are assuming C' P conservation the matrix
Mq,g is symmetric and the separable rank three mass matrix (18) has alto-
gether nine parameters. On the other side we have only five experimental
quantities: the three mixing angles 62, 013,023 and the differences of the
masses squared Am3;, Am%,. We therefore must reduce the nine parame-
ters in the 3 X 3 neutrino mass matrix (18) from 9 to a maximum of 5. This
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Fig.5. The quark-squark (a) and the lepton—slepton (b) 1-loop contributions to
the neutrino masses. The crosses on the lines denote the left-right mixing by a
mass term.

is possible with a horizontal flavour symmetry. Such a horizontal flavour
symmetry [12-16] of U(1) type has been used to explain the quark masses.
The U(1) field, which we want to call # has a new type of charge Cyp = —1,
which is not conserved in R-parity violating processes. Thus this horizon-
tal U(1) field forbids R-parity violation. The anomaly of the U(1) field is
canceled by the Green—Schwarz mechanism.

The U(1) charge conservation is broken by a vacuum expectation value
of this field (#) # 0. The R-parity violating terms in the Lagrangian (14)
have in form of an effective Lagrangian for example for the term involving
one lepton and two quark superfields the following form:

LR = ...9L;Q;Dpo"iik 4 ...
with @ Xy oc g{d9)"isk. (22)

The power n;;, of the 9 field in the effective R-parity violating La-
grangian conserves the charge Cyp. This determines the exponent n;j;,. Here
automatically a sum over all three families over the indices 7, j and k is in-
cluded. As long as the vacuum expectation value of the U(1) field ¢ is zero
R-parity is conserved. But if the vacuum expectation value of 0 is differ-
ent from zero () # 0 one obtains terms with R-parity violation. It is now
possible to reduce the six coupling constants which are needed for the loop
diagrams to only one.

4

I RN
i33 = As33 € )
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(et —1)et
>\i33 = )\333 (6 — 1)6 . (23)
0

Since the loop diagrams in figure 3 are proportional to the mass of the
intermediate particles squared, one needs only to include in the loops the
particles of the third family.

The quantity e

. {9)
My )

~ 0.23 (24)

has been determined in [12-16] by explaining with the same horizontal sym-
metry the masses of the quarks and the masses of the leptons e™, u~
and 7.

The zero in Eq. (20) comes from the Pauli principle since one has two
identical lepton fields in the third family. The powers of ¢ = 0.23 can be
derived from the charges Cy of the particles in the first family Cy = —3, the
second family Cy = 2 and the third family Cy = 1.

Since we replace in this way six different coupling constants A3 and
Aiss (with ¢ = 1,2,3) by one M55, one reduces the nine free parameters
to four. Now one is able with the five experimental quantities of the three
mixing angles and the two squares of the differences of the neutrino masses
to determine completely neutrino mass matrix and diagonalize it. Including
the uncertainties which show up in the different fits and including also the
uncertainties in the CP phases (6) one can now diagonalize the flavour
neutrino mass matrix (9) and obtains:

Imy1| = 0.000 + 0.02 [eV],
Imya| = 0.002 = 0.04 [eV],
Imys| = 0.03 = 1.05 [eV],
[(my,)| = 0.009 = 0.045 [eV]. (25)

Since supersymmetry yields only a Majorana mass term, the three masses
are given here as absolute values. They can be positive or negative and even
complex if C'P violation is allowed. With the inclusion of LSND one is more
at the upper end of the interval given in the first three masses and without
LNSD one would more prefer the lower values of the intervals. The last
value in Eq. (22) is the averaged electron neutrino mass for the neutrinoless
double beta decay.

One can now answer the question how large the coupling parameter Aj34
can be, so that the masses get not larger than the upper limits given in (22).
This is shown in Table III.
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TABLE III

Upper limits for the coupling constants A} and \;33 of the R parity violating terms
in the Lagrangian (14). The previous values are taken from Rakshit et al. [17].

This work | Previous* | Improvement
M3z | L7x 1072 | 3x 1073 1.8
Aoz | 1.9x 1073 | 6 x 1072 32
N | 38x107* | 7x107* 1.8
bas | 4.3 x 1074 0.36 950
Nyas | 5.3 x 1072 0.48 900

5. Conclusion

From the pre-SNO solar, atmospheric and LSND neutrino oscillation
data we took the three mixing angles and the two differences of the masses
squared to determine the neutrino masses. Hereby we included and excluded
the LSND result to see how it is influencing the final neutrino masses. We
found that the Majorana neutrino masses have without inclusion of LSND
an average value which is smaller than 0.06 eV and with the inclusion of
LSND an average value of around 0.2 eV [18,19].

On the theoretical side we used the minimal supersymmetric model
(MSSM) with R-parity violation. The mass of the neutrino originates in
this model by mixing the three neutrinos which are originally massless with
the four neutralinos: iiphotino ¥, zino Z°, higgsino 1 h° and higgsino 2 ﬁg
This yields, if one requests C'P conservation, a real neutrino mass matrix
which is separable of rank 3. Thus we have nine parameters, but only five
experimental quantities, the three mixing angles and the two squares of the
differences of the masses, to which we could fit these nine parameters.

By using a horizontal U(1) flavour symmetry, one can reduce six
R-parity violating coupling constants to one value. This reduces the nine
free parameters to four and allows now to calculate the masses of the three
neutrinos which varies roughly from 0 to 1.0 eV. The hierarchical structure
is so that the first two masses are quite small, while the third mass can be
up to 1 eV. If one omits LSND, one finds an averaged neutrino mass (the
parameter (m,.), which can be determined in the neutrinoless double beta
decay) to be smaller than 0.06 eV, while the inclusion of LNSD gives an
averaged neutrino mass of the order of 0.2 eV. The supersymmetric model
with R-parity violation yields a Majorana neutrino.
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