Vol. 33 (2002) ACTA PHYSICA POLONICA B No 1

AB INITIO LARGE-BASIS NO-CORE SHELL MODEL
AND ITS APPLICATION TO LIGHT NUCLET*

BRUCE R. BARRETT!, PETR NAVRATIL

Department of Physics, University of Arizona
P.O. Box 210081, Tucson, AZ 85721, USA

W.E. ORMAND

Lawrence Livermore National Laboratory, L-414
P.O. Box 808, Livermore, CA 94551, USA

AND JAMES P. VARY
Department of Physics and Astronomy, Iowa State University
Ames, TA 50011, USA

(Received December 11, 2001)

We discuss the ab initio No-Core Shell Model (NCSM). In this method
the effective Hamiltonians are derived microscopically from realistic
nucleon—nucleon (NN) potentials, such as the CD-Bonn and the Argonne
AV18 NN potentials, as a function of the finite Harmonic Oscillator (HO)
basis space. We present converged results, i.e., up to 50hf2 and 1842 HO
excitations, respectively, for the A = 3 and 4 nucleon systems. Our results
for these light systems are in agreement with results obtained by other ex-
act methods. We also calculate properties of °Li and ®He in model spaces
up to 10h82 and of '2C up to 6Af2. Binding energies, rms radii, excita-
tion spectra and electromagnetic properties are discussed. The favorable
comparison with available data is a consequence of the underlying NN
interaction rather than a phenomenological fit.

PACS numbers: 21.60.—n, 21.60.Cs, 21.30.Fe, 21.45.+v

1. Introduction

While various methods have been developed to solve the three- and four-
nucleon systems with realistic interactions [1-4], few approaches are suitable
for heavier nuclei at this time. Apart from the coupled cluster method [5]
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applied typically to closed shell and near-closed shell nuclei, the Green’s
function Monte Carlo method is the only approach for which exact solutions
of systems with A < 8 have been obtained [4].

For both few nucleon systems and p-shell nuclei, treated as systems of
nucleons interacting by realistic NNV interactions, we apply the no-core shell
model approach [6-12]. Application of this technique requires that effective
interactions appropriate for a given finite model space be employed. In the
standard formulation of this approach, utilizing a single-particle (s.p.) co-
ordinate HO basis, the effective interaction is determined for a system of
two nucleons bound in a HO well and interacting by the NN potential. We
note that the use of a HO basis is crucial for insuring that the center of
mass (c.m.) motion of the nucleus does not mix with the internal motion
of the nucleons. This approach is limited by the model space as well as by
the fact that only a two-body effective interaction is used, despite the fact
that higher-body effective interactions might not be negligible. Although the
practical applications depend on the HO frequency and the model space, our
results are guaranteed to converge to an exact solution once a sufficiently
large model space is reached [8,9].

Recently, we combined the NCSM approach to the three- and four-
nucleon systems with the use of an antisymmetrized, translationally invari-
ant HO basis [8,9], as an alternative formulation of the shell model problem
for very light nuclei. Due to the omission of the c.m. and to the use of a cou-
pled basis, this method allows us to extend the shell model calculations to
significantly larger model spaces, e.g., up to b0Af2 for A = 3 and 18A(2 for
A = 4 systems. In addition, this approach makes it possible to develop the
three-body effective interactions for applications to A > 3 systems.

In this contribution, we discuss both formulations and present results for
A = 3,4 and 6 systems as well as our recent results for '?C. For all discussed
systems we consider several realistic, or semi-realistic, NN interactions.

2. No-core shell model approach

2.1. Hamiltonian

In the no-core shell model approach we start with the one- plus two-body
Hamiltonian for the A-nucleon system, i.e.,

HA—ZPL+ZVN i — 7) | (1)

1<j=1
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where m is the nucleon mass and Vx (75 —77;), the NN interaction. In the next
step we modify the Hamiltonian (1) by adding to it the c.m. HO potential
%Am!ﬁf#, R = (1/A) Zf‘:l 7;. This potential will be subtracted in the final
many-body calculation. This added and later subtracted potential permits
the use of the convenient HO basis and provides a mean field that facilitates
the calculation of the effective interactions. The modified Hamiltonian, with
a pseudo-dependence on the HO frequency (2, can be cast into the form

A o A
HY = Z i + lm!ﬂf'-g + Z W (75 = 75) — {2 (7i — F')2 - (2)
, 2m 2 ! i<l ’ 24 ’

Since we solve the many-body problem in a finite HO model space, the
realistic nuclear interaction in Eq. (2) will yield unreasonable results unless
we employ a model-space dependent effective Hamiltonian. In general, for
an A-nucleon system, an A-body effective interaction is needed. As we will
discuss later, the effective interaction is, in the present calculations, approx-
imated by a two-body or a three-body effective interaction. Large model
spaces are desirable to minimize the role of neglected effective many-body
terms. In fact, large model spaces are desirable for the evaluation of any ob-
servable, i.e., the larger the model space is, the smaller the renormalization
contributions to any effective operator.

As the Hamiltonian H¥ (2) differs from the Hamiltonian H4 (1) only by
a c.m. dependent term, no dependence on {2 should exist for the intrinsic
properties of the nucleus. However, because of the neglect of many-body
terms in the effective-interaction derivation, a dependence on (2 appears in
our calculations. This dependence decreases as the size of the model-space
is increased.

2.2. Unitary transformation of the Hamiltonian
and the two-body effective interaction

For the derivation of the effective interaction, we adopted approaches
presented by Lee, Suzuki [13], Da Providencia, Shakin [14]|, and Suzuki,
Okamoto [15], which yield an Hermitian effective Hamiltonian.

In the spirit of the above mentioned papers, we introduce a unitary trans-
formation of the Hamiltonian, by choosing an anti-Hermitian operator S,
such that

H=e SHS. (3)

In our approach, S is determined by the requirements that H and H ;? have
the same symmetries and eigenspectra over the subspace K of the full Hilbert
space. In general, both S and the transformed Hamiltonian are A-body oper-
ators. Our simplest, non-trivial approximation to H is to develop a two-body
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effective Hamiltonian. The next improvement is to develop a three-body
effective Hamiltonian. This approach consists then of an approximation to
a particular level of clustering:

H=H 4 H, (4)

where the one-body and a-body (a < A) pieces are given as

A
H(a) == (A) (a) Z ‘/ilig...ia 3 (6)
a 2) 11<i9<...<ig

with .
Viga = SO HES W — 3"y, (7)
=1

where S(@ is an a-body operator;
Hf:h1+h2+h3+---+ha+vaa (8)

and .
Vo=> V. 9)
1<j
Note that there is no sum over a in Eq. (4). In the above equations, it has
been assumed that the basis states are eigenstates of the one-body, in our
case HO, Hamiltonian ZZA: 1 hi. We now introduce our present application,
in which we take a = 2, so that the interaction, Vi9, is given by Eq. (7)

Vio = e 57 (hy + ho + Vi) €5 — (hy + ha) . (10)

The full space is divided into a model or P-space, and a @)-space, using the
projectors P and @ with P + @ = 1. It is then possible to determine the
transformation operator S from the decoupling condition

S(2)

Qge_5(2)(h1 + hy + Vlg) e P,=0. (11)

The two-nucleon-state projectors (P, Q2) follow from the definitions of the
A-nucleon projectors P, Q. The solution for this approach [15] is given by

S$@) = arctanh(w — w'), (12)
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with the operator w satisfying w = QowP,. This is the same operator,
which we previously employed [7-9]. It can be directly obtained from the
eigensolutions |k) of h1+ho+Vis as (ag|w|ap) = ZkeK(aQ|k)<l~c|ap), where
we denote by tilde the inverted matrix of (ap|k). In the above relation,
lap) and |ag) are the two-particle model-space and Q-space basis states,
respectively, and K denotes a set of dp eigenstates, whose properties are
reproduced in the model space, with dp equal to the model-space dimension.

The resulting two-body effective interaction P,Vi9 P> depends on A, on
the HO frequency {2 and on Np,x, the maximum many-body HO excitation
energy (above the lowest configuration) defining the P-space. It follows
that (D +H® — H, . is translationally invariant and that Vig — Vig for
Npax — 00.

2.3. Three-body effective interaction

The most significant approximation used in the present application is the
neglect of higher than two-body clusters in the unitary transformed Hamil-
tonian expansion. Because our method is not a variational approach, the
neglected clusters can contribute either positively or negatively to the bind-
ing energy. Indeed, we find that the character of the convergence depends
on the choice of £2 [6,8,9]. Our approach can be readily generalized in order
to include, e.g., three-body clusters, and to demand the model-space decou-
pling on the three-body cluster level. A method for deriving the three-body
effective interaction was presented in our papers [8,9], which can be obtained
by setting a = 3 in Eqgs. (4)-(9).

In this case, our Hamiltonian formally consists only of one-body and
three-body terms. We next calculate the three-body effective interaction
that corresponds to Vj; + Vi + Vjj from the three-nucleon system condition

Q365" (h1 + ho + hg + Vig + Vig + Vag)e® " Py = 0, (13)

in complete analogy to Eq. (11). The three-body effective interaction
P3Vi93 P5 is then obtained utilizing the solutions of the three-nucleon system
for the Hamiltonian

HY =hy+hy + hs + Vig + Vis + Vas (14)

in a manner similar to that discussed after Eq. (12). As the interaction de-
pends only on the relative positions of nucleons 1, 2 and 3, the three-nucleon
c.m. can be separated, when solving the Schrédinger equation with H 39 As
for the two-nucleon Hamiltonian, hy + hs + Vig, the c.m. term is not con-
sidered in the effective-interaction calculation. We obtain the three-nucleon
solutions corresponding to the Hamiltonian (14) by, first, introducing Jacobi
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coordinates, and, second, introducing for the interactions Vis, Vi3, Va3, the
two-body effective interactions corresponding to a large space, characterized
by N3max = 30, which defines the size of the three-nucleon model space, and
derived according to the procedure described in the previous subsection.
A space of this size is sufficient for obtaining exact or almost exact solutions
of the three-nucleon problem [8,9].

As for two-body effective interaction P21~/12P2, P31~/123P3 is a function
of the nucleon number A and depends on the HO frequency {2 and on the
model-space defining-parameter Npax. In addition, it also depends on the
choice of N3max. Obviously, N3max must be sufficiently large, in order to
make this dependence negligible. The limiting properties of Vis3 are as
follows:

3
PsVipsPs — Py VijP3 for  Npax = Namax
i<j=1
and
) 3
Viss = Y Vij for  Nmax, Namax — 00.
i<j=1
We have applied this approach successfully to the A = 4 system [8,9].

2.4. Standard and translationally-invariant approaches

As discussed in the previous subsections, by using the effective interac-
tion theory, we arrive at a Hamiltonian that has the following structure

A r>2
: 1 .
{H } oy = Z [%n + §m927'i2]

i=1
A
L o m&?
S [we-m - w0
i<j=1 off

with the interaction term depending on relative coordinates (and/or relative
momenta) only. The notation { }eg on the right-hand side means that the
interaction within the curly braces is utilized in the calculation of the effec-
tive interaction for a given model-space size. The c.m. dependence appears
only in the one-body HO term. There are two possibilities for solving the
many-body Schrodinger equation with the Hamiltonian (15).

First, we may work with s.p. coordinates and the Slater-determinant for
the complete NAf2, HO basis. In this case, we employ the m-scheme Many-
Fermion Dynamics (MFD) shell model code [16] to perform the Hamiltonian-
matrix evaluation and diagonalization. A significant consequence of preserv-
ing translational invariance of the interaction term is the factorization of our
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wave function into a product of a c.m. (3/2)Af2 component times an internal
component, which allows exact correction of any observable for c.m. effects.
This feature distinguishes our approach from most phenomenological shell
model studies that involve multiple HO shells.

Second, we may introduce Jacobi coordinates and a HO basis that de-
pends on these coordinates [8,9]. Then the c.m. degrees of freedom can be
completely removed. This approach has the advantage that larger model
spaces can be utilized. In addition, due to the flexibilty of the HO basis de-
pending on the Jacobi coordinates, three- or even higher-body interactions
can be employed. On the other hand, it is rather demanding to antisym-
metrize such a basis. This limits applicability of this approach to very light
nuclei. Here we present results only for A = 3 and 4 systems solved in
this way. The results given for A = 6 systems and for '?C are obtained in
the standard way using the MFD shell model code. It should be stressed,
however, that the two alternative approaches are completely equivalent and
lead to the same results.

3. Results
3.1.3H, 3He

We performed calculations for the A = 3 systems interacting by sev-
eral realistic and semi-realistic NN potentials in model spaces up to 50Af2
(Nmax = 50), i.e., in still larger model spaces than in our previous published
papers [8,9]. We employed the semi-realistic Minnesota (MN) [17] and MT-V

TABLE 1

Results for the ground-state energies (in MeV) obtained for H, *He and *He using
the Minnesota (MN), Malfliet-Tjon V (MT-V), CD-Bonn, AV18 and AV8' NN
potentials are presented. Shown values are based on the results calculated in the
model spaces up to Nyax = 50 for °H, 3He, and Npax = 18 for “He, respectively.
The errors were estimated from the dependences on the HO frequency {2 and on
the model-space size characterized by Npax-

NN potential

MN MT-V CD-Bonn AV18 AVS'
SH | —8385(2) —8239(4)  —8.002(4)  —T7.61(1) —7.75(2)
3He — — —7.249(4)  —6.90(1) —

‘He | —29.94(1) —31.28(8)  —26.30(15) — —25.80(20)
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[18] NN potentials as well as modern, realistic CD-Bonn [19], AV18 and
AVS' [4] NN potentials. Our *H and *He results are summarized in Table 1.
The MN and MT-V potentials include no tensor force, while the non-local
CD-Bonn NN potential has a weaker tensor force than the local AV18 and
AVS8'. 1In general, we observe that the stronger the tensor force is, the
stronger the HO frequency dependence and the slower the convergence with
Nmax- In particular, our MN potential results are the fastest to converge.
On the other hand, even for the AV18 NN potential, the Ny.x = 50 models
space is sufficient for obtaining a converged result with an error less than
10 keV, as shown in Fig. 1. The AV8 NN potential is more difficult and
some HO frequency dependence remains even at 504(2. Our overall A = 3
results, however, are in excellent agreement with other exact methods, as
can be judged by comparing numbers from Table I with results presented in
Refs. [17,20,21] and references therein.

'6-0I'I'I'I'I'I'I'I'I'I'I'I'I'

-6.2 _
e "He AV18 ]
2 6.8 .

——hQ=32 MeV
——hQ=28 MeV
——hQ=24 MeV ]

|
8 12 16 20 24 28 32 36 40 44 48

Nmax

Fig. 1. Ground-state energy dependence on the model-space size for *He interacting
by the AV18 NN potential.

3.2. *He

In this paper, we present our *He results obtained in model spaces up
to 18hf2, as also shown in Table I. This extension of the model-space size
from earlier work allowed us to reduce errors on our CD-Bonn He result
published in Ref. [9] and bring our results into even better agreement with
the recent Faddeev—Yakubovsky calculations by Nogga et al. [21]. As for the
A = 3 systems, the MN potential calculations are the fastest to converge.
In Fig. 2 we show the basis-space dependence for different HO frequencies.
The effective two-body interaction determined with this potential is sufficient



Ab initio Large-Basis No-Core Shell Model and . .. 305

-27 16
28k 4 —19
B N —r— 25
3 29 ] 28
E L 4
w -30F 4 —34
- 1 ——40
8iF 1 —as
24 ol AN R R T T T T T ) ——49

0 2 4 6 8 10 12 14 16 18
Nmax

Fig. 2. Ground-state energy dependence on the model-space size for *He interacting
by the MN potential.

for obtaining convergence in the 187%(2 model space to an accuracy of 10 keV.
For the CD-Bonn potential our results are essentially converged, while for
the AV8' or AV18 potentials, convergence is slower. For AV8' we used the
three-body effective interaction, which improved the convergence. In Fig. 3
we present the model-space size dependence for the CD-Bonn NN potential.
Results obtained using the three-body effective interaction, in model spaces
up to 16A4f2, are also displayed in Fig. 3.

'

N

(2]
1

4 ~0--31.0 —o—31.0
He
=---22.0 ——22.0

-30F CD”BOnn 7 --=--19.0

-31

Nmax

Fig. 3. Ground-state energy dependence on the model-space size for *He interacting
by the CD-Bonn NN potential. The solid lines correspond to calculations with the
three-body effective interaction.
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3.8.5Li, SHe

We performed calculations for °Li and SHe [11], utilizing the m-scheme
MFD code [16], in model spaces up to 10Af2 for the MN, AV8' and the
CD-Bonn NN potentials. For the semi-realistic MN potential we achieve
convergence and our ground-state energy result, —34.48(26) MeV, is in good
agreement with the result, —34.59 MeV, obtained by the stochastic varia-
tional method [17]. For the AV8' (without Coulomb) NN potential, conver-
gence is more difficult to achieve. In the frequency dependence minimum,
we obtain a result of —30.30 MeV in the 1042 space compared with the
GFMC result of —29.47 MeV. We again emphasize that no Coulomb inter-
action is included. As our calculation is not variational, our binding energy
may decrease with the model space enlargement. In Fig. 4, we compare our
energy levels with those obtained by the GFMC for the AV8&. We obtain
quite reasonable agreement, and the spectrum exhibits good stability for the
low-lying states. states are broad resonances and, therefore, their movement
is not surprising.

13
i 6T ¢
12 | Li »Q=13MeV =~ ——
11 —_—
jofvi-  __—_ T
9 [ 281 — —_— —_—t 1
i '
",: 8 AVS v
§ 710 __ Famtt P
<G 2l —,— — = \1* 0
R o J— "
512 0\ ) - ‘. ,0M1
401 == 7 e ~2' 0
L3 0——— ) o N30
2 [
o .
1y
Oo-10— 1t 0

GFMC10hQ 8hQ 6hQ 4nQ 2hQ 0hQ
Fig.4. SLi excitation spectra obtained in the NCSM and in the GFMC.

We also investigated the transitions from the ground states of SHe and
6Li to the negative parity states of 6He [11]. Recently, it was argued that
a soft-dipole mode in ®He has been observed in a charge exchange reaction
on SLi [22]. In Fig. 5, we present our ‘He excitation spectra obtained in
6-9hf2 model spaces. We indicate the strong E1 transitions together with
the B(E1) values, in e? fm?, as well as the strong spin flip and spin non-
flip transitions from the °Li ground state. Our results are in qualitative
agreement with the experimental observation in the sense that the lowest
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Fig.5. Positive and negative-parity excitation spectra of SHe obtained in the
NCSM. Strong E1 transitions as well as the spin flip and spin non-flip transitions
from SLi are indicated.

171 state collects a substantial E1 strength and the transition from 6Li is
spin flip dominated. Also, the spin non-flip transition goes to a higher lying
171 state in agreement with experiment [22].

3.4. 12C

In this subsection we address a vastly more complex system, '2C. There
are several pressing reasons to investigate >C in a way that preserves as
much predictive power as possible. The 2C nucleus plays an important
role [23] in neutrino studies using liquid scintillator detectors. Also, there
has been considerable interest recently in parity-violating electron scattering
from (J™,T) = (0F,0) targets, like 2C, to measure the strangeness content
of the nucleon [24,25].

To solve for the properties of 2C, we employ the m-scheme MFD code
[16]. Here we discuss an extension of our '2C study published in Ref. [10].
In particular, we show our first results obtained in the 6Af2 space, where
the dimensions reach 32 million. We utilize A2 = 15 MeV, which lies in the
range where the largest model-space results are least sensitive to A2 [10].

In Table II and Fig. 6, we present the g.s. energy, excitation spectra as
well as several other observable results calculated with the CD-Bonn NN
potential. While the energy of the g.s. eigenstate increases with increasing
model space, the relative level spacings are less dependent on model-space
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TABLE II

Experimental and calculated g.s. and 3~ 0-state energies, point—proton rms radii,
the 21"—state and the 3~ 0-state quadrupole moments of '2C. Results obtained
in different model spaces, i.e., Npax = 6,4,2,0 for the positive-parity and
Nmax = 5,3,1 for the negative-parity states and using effective interactions de-
rived from the CD-Bonn NN potential are given. The calculated excitation energy
of the 370 state is obtained by comparing its energy in the NA{? space with the
ground state in the (N —1)hf2 space. A HO frequency of hf2 = 15 MeV was
employed. The experimental values are from Refs. [26,27].

12¢ CD-Bonn
Model space - 6h12 4h$? 2h12 0hs2
| Egs(070)] [MeV] 92.162 | 85.630 88.518 92.353 104.947
rp [fm] 2.35(2) | 2.195 2.199 2.228 2.376
Qo+ [efm?] +6(3) | 4.717 4.533 4.430 4.253
Model space - - 5h12 382 1482
|E(370)| [MeV] 82.521 72.952 75.331  83.390
rp [fm] 2.309 2316  2.425
Qs3- [efm?] -7.942 -7.596 —6.936
E(370) — By [MeV] 9.641 15.566 17.022  21.557

size. In particular, the excitation spectrum is remarkably stable when the
model space is changed from 4A(2 to 6hf2. In general, we obtain reasonable
agreement of the states dominated by 042 configurations with experimental
levels. We note that the favorable comparison with available data is a conse-
quence of the underlying N N interaction rather than a phenomenological fit.
Our obtained binding energy of about 85.6 MeV in the 642 space is expected
to decrease with a further model-space enlargement. We estimate, however,
that our result should be within better than 10% of the exact solution for
the two-body CD-Bonn NN potential. In order to reach the experimental
binding energy, likely a true three-body NN interaction is neccessary [4].

The two- or higher-Af2 dominated states, such as the 7.65 MeV 070 state,
are not seen in the low-lying part of our calculated spectra. In general, the
convergence rate of the 2hf2 dominated states is quite different than that of
the ground state. However, we observe a decreasing excitation energy of the
second 070 state. We expect this state eventually to change its structure
and become the cluster state.
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Fig. 6. Experimental and theoretical excitation spectra of '2C.

4. Conclusions

In this contribution, we described the ab initio NCSM approach and
discussed its application to the lightest nuclei, 3H, *He and *He, for which
we obtain well-converged results. Due to the utility of Jacobi coordinates
in these few-nucleon calculations, we are able to reach very large model
spaces, i.e., b0h{2 for A = 3 and 18Af2 for A = 4. Also, we showed our
results for °Li, ®He and ?C. For A=6, we performed calculations in model
spaces up to 10A£2 with dimensions approaching 107. In the case of '2C,
we were limited to model spaces up to 6Af2, where the dimensions reach
32 million. In these far more complex cases, we get close to convergence
for A=6. For '>C we do not reach full convergence, but nonetheless we
obtain a reasonable approximation for the lowest 0Af2-dominated states.
We note that we performed NCSM calculations for the Os- and Op-shell
nuclei in the past [6,7], using a similar approach to that discussed here. In
those calculations, however, an additional adjustable parameter was present,
contrary to the approach reported here. Our current technique allows us to
obtain converged, exact solutions, as shown in our presented results.
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Department of Energy by the University of California, Lawrence Livermore
National Laboratory under contract no. W-7405-Eng-48. P.N. and W.E.O.
received support from LDRD contract no. 00-ERD-028.
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