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AB INITIO LARGE-BASIS NO-CORE SHELL MODELAND ITS APPLICATION TO LIGHT NUCLEI�Bru
e R. Barretty, Petr NavrátilzDepartment of Physi
s, University of ArizonaP.O. Box 210081, Tu
son, AZ 85721, USAW.E. OrmandLawren
e Livermore National Laboratory, L-414P.O. Box 808, Livermore, CA 94551, USAand James P. VaryDepartment of Physi
s and Astronomy, Iowa State UniversityAmes, IA 50011, USA(Re
eived De
ember 11, 2001)We dis
uss the ab initio No-Core Shell Model (NCSM). In this methodthe e�e
tive Hamiltonians are derived mi
ros
opi
ally from realisti
nu
leon�nu
leon (NN) potentials, su
h as the CD-Bonn and the ArgonneAV18 NN potentials, as a fun
tion of the �nite Harmoni
 Os
illator (HO)basis spa
e. We present 
onverged results, i.e., up to 50~
 and 18~
 HOex
itations, respe
tively, for the A = 3 and 4 nu
leon systems. Our resultsfor these light systems are in agreement with results obtained by other ex-a
t methods. We also 
al
ulate properties of 6Li and 6He in model spa
esup to 10~
 and of 12C up to 6~
. Binding energies, rms radii, ex
ita-tion spe
tra and ele
tromagneti
 properties are dis
ussed. The favorable
omparison with available data is a 
onsequen
e of the underlying NNintera
tion rather than a phenomenologi
al �t.PACS numbers: 21.60.�n, 21.60.Cs, 21.30.Fe, 21.45.+v1. Introdu
tionWhile various methods have been developed to solve the three- and four-nu
leon systems with realisti
 intera
tions [1�4℄, few approa
hes are suitablefor heavier nu
lei at this time. Apart from the 
oupled 
luster method [5℄� Presented at the XXVII Mazurian Lakes S
hool of Physi
s, Krzy»e, Poland,September 2�9, 2001.y e-mail: bbarrett�physi
s.arizona.eduz On leave of absen
e from Nu
lear Physi
s Institute, AS CR, 250 68 �eº near Prague,Cze
h Republi
. (297)



298 B.R. Barrett et al.applied typi
ally to 
losed shell and near-
losed shell nu
lei, the Green'sfun
tion Monte Carlo method is the only approa
h for whi
h exa
t solutionsof systems with A � 8 have been obtained [4℄.For both few nu
leon systems and p-shell nu
lei, treated as systems ofnu
leons intera
ting by realisti
 NN intera
tions, we apply the no-
ore shellmodel approa
h [6�12℄. Appli
ation of this te
hnique requires that e�e
tiveintera
tions appropriate for a given �nite model spa
e be employed. In thestandard formulation of this approa
h, utilizing a single-parti
le (s.p.) 
o-ordinate HO basis, the e�e
tive intera
tion is determined for a system oftwo nu
leons bound in a HO well and intera
ting by the NN potential. Wenote that the use of a HO basis is 
ru
ial for insuring that the 
enter ofmass (
.m.) motion of the nu
leus does not mix with the internal motionof the nu
leons. This approa
h is limited by the model spa
e as well as bythe fa
t that only a two-body e�e
tive intera
tion is used, despite the fa
tthat higher-body e�e
tive intera
tions might not be negligible. Although thepra
ti
al appli
ations depend on the HO frequen
y and the model spa
e, ourresults are guaranteed to 
onverge to an exa
t solution on
e a su�
ientlylarge model spa
e is rea
hed [8, 9℄.Re
ently, we 
ombined the NCSM approa
h to the three- and four-nu
leon systems with the use of an antisymmetrized, translationally invari-ant HO basis [8,9℄, as an alternative formulation of the shell model problemfor very light nu
lei. Due to the omission of the 
.m. and to the use of a 
ou-pled basis, this method allows us to extend the shell model 
al
ulations tosigni�
antly larger model spa
es, e.g., up to 50~
 for A = 3 and 18~
 forA = 4 systems. In addition, this approa
h makes it possible to develop thethree-body e�e
tive intera
tions for appli
ations to A > 3 systems.In this 
ontribution, we dis
uss both formulations and present results forA = 3; 4 and 6 systems as well as our re
ent results for 12C. For all dis
ussedsystems we 
onsider several realisti
, or semi-realisti
, NN intera
tions.2. No-
ore shell model approa
h2.1. HamiltonianIn the no-
ore shell model approa
h we start with the one- plus two-bodyHamiltonian for the A-nu
leon system, i.e.,HA = AXi=1 ~p 2i2m + AXi<j=1VN (~ri � ~rj) ; (1)
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leon mass and VN(~ri�~rj), the NN intera
tion. In the nextstep we modify the Hamiltonian (1) by adding to it the 
.m. HO potential12Am
2 ~R2, ~R = (1=A)PAi=1 ~ri. This potential will be subtra
ted in the �nalmany-body 
al
ulation. This added and later subtra
ted potential permitsthe use of the 
onvenient HO basis and provides a mean �eld that fa
ilitatesthe 
al
ulation of the e�e
tive intera
tions. The modi�ed Hamiltonian, witha pseudo-dependen
e on the HO frequen
y 
, 
an be 
ast into the formH
A = AXi=1 � ~p 2i2m + 12m
2~r 2i �+ AXi<j=1 �VN (~ri � ~rj)� m
22A (~ri � ~rj)2� : (2)Sin
e we solve the many-body problem in a �nite HO model spa
e, therealisti
 nu
lear intera
tion in Eq. (2) will yield unreasonable results unlesswe employ a model-spa
e dependent e�e
tive Hamiltonian. In general, foran A-nu
leon system, an A-body e�e
tive intera
tion is needed. As we willdis
uss later, the e�e
tive intera
tion is, in the present 
al
ulations, approx-imated by a two-body or a three-body e�e
tive intera
tion. Large modelspa
es are desirable to minimize the role of negle
ted e�e
tive many-bodyterms. In fa
t, large model spa
es are desirable for the evaluation of any ob-servable, i.e., the larger the model spa
e is, the smaller the renormalization
ontributions to any e�e
tive operator.As the Hamiltonian H
A (2) di�ers from the Hamiltonian HA (1) only bya 
.m. dependent term, no dependen
e on 
 should exist for the intrinsi
properties of the nu
leus. However, be
ause of the negle
t of many-bodyterms in the e�e
tive-intera
tion derivation, a dependen
e on 
 appears inour 
al
ulations. This dependen
e de
reases as the size of the model-spa
eis in
reased. 2.2. Unitary transformation of the Hamiltonianand the two-body e�e
tive intera
tionFor the derivation of the e�e
tive intera
tion, we adopted approa
hespresented by Lee, Suzuki [13℄, Da Providen
ia, Shakin [14℄, and Suzuki,Okamoto [15℄, whi
h yield an Hermitian e�e
tive Hamiltonian.In the spirit of the above mentioned papers, we introdu
e a unitary trans-formation of the Hamiltonian, by 
hoosing an anti-Hermitian operator S,su
h that H = e�SH
A eS : (3)In our approa
h, S is determined by the requirements that H and H
A havethe same symmetries and eigenspe
tra over the subspa
e K of the full Hilbertspa
e. In general, both S and the transformed Hamiltonian are A-body oper-ators. Our simplest, non-trivial approximation toH is to develop a two-body
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tive Hamiltonian. The next improvement is to develop a three-bodye�e
tive Hamiltonian. This approa
h 
onsists then of an approximation toa parti
ular level of 
lustering:H = H(1) +H(a) ; (4)where the one-body and a-body (a � A) pie
es are given asH(1) = AXi=1 hi ; (5)H(a) = �A2��Aa��a2� AXi1<i2<:::<ia ~Vi1i2:::ia ; (6)with ~V12:::a = e�S(a)H
a eS(a) � aXi=1 hi ; (7)where S(a) is an a-body operator;H
a = h1 + h2 + h3 + : : : + ha + Va ; (8)and Va = aXi<j Vij : (9)Note that there is no sum over a in Eq. (4). In the above equations, it hasbeen assumed that the basis states are eigenstates of the one-body, in our
ase HO, Hamiltonian PAi=1 hi. We now introdu
e our present appli
ation,in whi
h we take a = 2, so that the intera
tion, ~V12, is given by Eq. (7)~V12 = e�S(2)(h1 + h2 + V12) eS(2) � (h1 + h2) : (10)The full spa
e is divided into a model or P -spa
e, and a Q-spa
e, using theproje
tors P and Q with P + Q = 1. It is then possible to determine thetransformation operator S(2) from the de
oupling 
onditionQ2e�S(2)(h1 + h2 + V12) eS(2)P2 = 0 : (11)The two-nu
leon-state proje
tors (P2; Q2) follow from the de�nitions of theA-nu
leon proje
tors P , Q. The solution for this approa
h [15℄ is given byS(2) = ar
tanh(! � !y) ; (12)



Ab initio Large-Basis No-Core Shell Model and . . . 301with the operator ! satisfying ! = Q2!P2. This is the same operator,whi
h we previously employed [7�9℄. It 
an be dire
tly obtained from theeigensolutions jki of h1+h2+V12 as h�Qj!j�P i =Pk2Kh�Qjkih~kj�P i, wherewe denote by tilde the inverted matrix of h�P jki. In the above relation,j�P i and j�Qi are the two-parti
le model-spa
e and Q-spa
e basis states,respe
tively, and K denotes a set of dP eigenstates, whose properties arereprodu
ed in the model spa
e, with dP equal to the model-spa
e dimension.The resulting two-body e�e
tive intera
tion P2 ~V12P2 depends on A, onthe HO frequen
y 
 and on Nmax, the maximum many-body HO ex
itationenergy (above the lowest 
on�guration) de�ning the P -spa
e. It followsthat H(1) +H(2) �H
:m: is translationally invariant and that ~V12 ! V12 forNmax !1. 2.3. Three-body e�e
tive intera
tionThe most signi�
ant approximation used in the present appli
ation is thenegle
t of higher than two-body 
lusters in the unitary transformed Hamil-tonian expansion. Be
ause our method is not a variational approa
h, thenegle
ted 
lusters 
an 
ontribute either positively or negatively to the bind-ing energy. Indeed, we �nd that the 
hara
ter of the 
onvergen
e dependson the 
hoi
e of 
 [6,8,9℄. Our approa
h 
an be readily generalized in orderto in
lude, e.g., three-body 
lusters, and to demand the model-spa
e de
ou-pling on the three-body 
luster level. A method for deriving the three-bodye�e
tive intera
tion was presented in our papers [8,9℄, whi
h 
an be obtainedby setting a = 3 in Eqs. (4)�(9).In this 
ase, our Hamiltonian formally 
onsists only of one-body andthree-body terms. We next 
al
ulate the three-body e�e
tive intera
tionthat 
orresponds to Vij + Vik+ Vjk from the three-nu
leon system 
onditionQ3e�S(3)(h1 + h2 + h3 + V12 + V13 + V23)eS(3)P3 = 0 ; (13)in 
omplete analogy to Eq. (11). The three-body e�e
tive intera
tionP3 ~V123P3 is then obtained utilizing the solutions of the three-nu
leon systemfor the HamiltonianH
3 = h1 + h2 + h3 + V12 + V13 + V23 ; (14)in a manner similar to that dis
ussed after Eq. (12). As the intera
tion de-pends only on the relative positions of nu
leons 1, 2 and 3, the three-nu
leon
.m. 
an be separated, when solving the S
hrödinger equation with H
3 . Asfor the two-nu
leon Hamiltonian, h1 + h2 + V12, the 
.m. term is not 
on-sidered in the e�e
tive-intera
tion 
al
ulation. We obtain the three-nu
leonsolutions 
orresponding to the Hamiltonian (14) by, �rst, introdu
ing Ja
obi
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oordinates, and, se
ond, introdu
ing for the intera
tions V12; V13; V23, thetwo-body e�e
tive intera
tions 
orresponding to a large spa
e, 
hara
terizedby N3max � 30, whi
h de�nes the size of the three-nu
leon model spa
e, andderived a

ording to the pro
edure des
ribed in the previous subse
tion.A spa
e of this size is su�
ient for obtaining exa
t or almost exa
t solutionsof the three-nu
leon problem [8, 9℄.As for two-body e�e
tive intera
tion P2 ~V12P2, P3 ~V123P3 is a fun
tionof the nu
leon number A and depends on the HO frequen
y 
 and on themodel-spa
e de�ning-parameter Nmax. In addition, it also depends on the
hoi
e of N3max. Obviously, N3max must be su�
iently large, in order tomake this dependen
e negligible. The limiting properties of ~V123 are asfollows: P3 ~V123P3 ! P3 3Xi<j=1 ~VijP3 for Nmax ! N3maxand ~V123 ! 3Xi<j=1Vij for Nmax; N3max !1 :We have applied this approa
h su

essfully to the A = 4 system [8, 9℄.2.4. Standard and translationally-invariant approa
hesAs dis
ussed in the previous subse
tions, by using the e�e
tive intera
-tion theory, we arrive at a Hamiltonian that has the following stru
ture�H
A 	e� = AXi=1 � ~p 2i2m + 12m
2~r 2i �+ 8<: AXi<j=1 �VN(~ri � ~rj)� m
22A (~ri � ~rj)2�9=;e� ; (15)with the intera
tion term depending on relative 
oordinates (and/or relativemomenta) only. The notation { }e� on the right-hand side means that theintera
tion within the 
urly bra
es is utilized in the 
al
ulation of the e�e
-tive intera
tion for a given model-spa
e size. The 
.m. dependen
e appearsonly in the one-body HO term. There are two possibilities for solving themany-body S
hrödinger equation with the Hamiltonian (15).First, we may work with s.p. 
oordinates and the Slater-determinant forthe 
omplete N~
, HO basis. In this 
ase, we employ the m-s
heme Many-Fermion Dynami
s (MFD) shell model 
ode [16℄ to perform the Hamiltonian-matrix evaluation and diagonalization. A signi�
ant 
onsequen
e of preserv-ing translational invarian
e of the intera
tion term is the fa
torization of our
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tion into a produ
t of a 
.m. (3=2)~
 
omponent times an internal
omponent, whi
h allows exa
t 
orre
tion of any observable for 
.m. e�e
ts.This feature distinguishes our approa
h from most phenomenologi
al shellmodel studies that involve multiple HO shells.Se
ond, we may introdu
e Ja
obi 
oordinates and a HO basis that de-pends on these 
oordinates [8, 9℄. Then the 
.m. degrees of freedom 
an be
ompletely removed. This approa
h has the advantage that larger modelspa
es 
an be utilized. In addition, due to the �exibilty of the HO basis de-pending on the Ja
obi 
oordinates, three- or even higher-body intera
tions
an be employed. On the other hand, it is rather demanding to antisym-metrize su
h a basis. This limits appli
ability of this approa
h to very lightnu
lei. Here we present results only for A = 3 and 4 systems solved inthis way. The results given for A = 6 systems and for 12C are obtained inthe standard way using the MFD shell model 
ode. It should be stressed,however, that the two alternative approa
hes are 
ompletely equivalent andlead to the same results. 3. Results3.1. 3H, 3HeWe performed 
al
ulations for the A = 3 systems intera
ting by sev-eral realisti
 and semi-realisti
 NN potentials in model spa
es up to 50~
(Nmax = 50), i.e., in still larger model spa
es than in our previous publishedpapers [8,9℄. We employed the semi-realisti
 Minnesota (MN) [17℄ and MT-VTABLE IResults for the ground-state energies (in MeV) obtained for 3H, 3He and 4He usingthe Minnesota (MN), Mal�iet�Tjon V (MT-V), CD-Bonn, AV18 and AV80 NNpotentials are presented. Shown values are based on the results 
al
ulated in themodel spa
es up to Nmax = 50 for 3H, 3He, and Nmax = 18 for 4He, respe
tively.The errors were estimated from the dependen
es on the HO frequen
y 
 and onthe model-spa
e size 
hara
terized by Nmax.NN potentialMN MT-V CD-Bonn AV18 AV803H �8:385(2) �8:239(4) �8:002(4) �7:61(1) �7:75(2)3He � � �7:249(4) �6:90(1) �4He �29:94(1) �31:28(8) �26:30(15) � �25:80(20)



304 B.R. Barrett et al.[18℄ NN potentials as well as modern, realisti
 CD-Bonn [19℄, AV18 andAV80 [4℄ NN potentials. Our 3H and 3He results are summarized in Table I.The MN and MT-V potentials in
lude no tensor for
e, while the non-lo
alCD-Bonn NN potential has a weaker tensor for
e than the lo
al AV18 andAV80. In general, we observe that the stronger the tensor for
e is, thestronger the HO frequen
y dependen
e and the slower the 
onvergen
e withNmax. In parti
ular, our MN potential results are the fastest to 
onverge.On the other hand, even for the AV18 NN potential, the Nmax = 50 modelsspa
e is su�
ient for obtaining a 
onverged result with an error less than10 keV, as shown in Fig. 1. The AV80 NN potential is more di�
ult andsome HO frequen
y dependen
e remains even at 50~
. Our overall A = 3results, however, are in ex
ellent agreement with other exa
t methods, as
an be judged by 
omparing numbers from Table I with results presented inRefs. [17, 20, 21℄ and referen
es therein.
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Fig. 1. Ground-state energy dependen
e on the model-spa
e size for 3He intera
tingby the AV18 NN potential. 3.2. 4HeIn this paper, we present our 4He results obtained in model spa
es upto 18~
, as also shown in Table I. This extension of the model-spa
e sizefrom earlier work allowed us to redu
e errors on our CD-Bonn 4He resultpublished in Ref. [9℄ and bring our results into even better agreement withthe re
ent Faddeev�Yakubovsky 
al
ulations by Nogga et al. [21℄. As for theA = 3 systems, the MN potential 
al
ulations are the fastest to 
onverge.In Fig. 2 we show the basis-spa
e dependen
e for di�erent HO frequen
ies.The e�e
tive two-body intera
tion determined with this potential is su�
ient
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Fig. 2. Ground-state energy dependen
e on the model-spa
e size for 4He intera
tingby the MN potential.for obtaining 
onvergen
e in the 18~
 model spa
e to an a

ura
y of 10 keV.For the CD-Bonn potential our results are essentially 
onverged, while forthe AV80 or AV18 potentials, 
onvergen
e is slower. For AV80 we used thethree-body e�e
tive intera
tion, whi
h improved the 
onvergen
e. In Fig. 3we present the model-spa
e size dependen
e for the CD-Bonn NN potential.Results obtained using the three-body e�e
tive intera
tion, in model spa
esup to 16~
, are also displayed in Fig. 3.
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Fig. 3. Ground-state energy dependen
e on the model-spa
e size for 4He intera
tingby the CD-Bonn NN potential. The solid lines 
orrespond to 
al
ulations with thethree-body e�e
tive intera
tion.



306 B.R. Barrett et al.3.3. 6Li, 6HeWe performed 
al
ulations for 6Li and 6He [11℄, utilizing the m-s
hemeMFD 
ode [16℄, in model spa
es up to 10~
 for the MN, AV80 and theCD-Bonn NN potentials. For the semi-realisti
 MN potential we a
hieve
onvergen
e and our ground-state energy result, �34:48(26) MeV, is in goodagreement with the result, �34:59 MeV, obtained by the sto
hasti
 varia-tional method [17℄. For the AV80 (without Coulomb) NN potential, 
onver-gen
e is more di�
ult to a
hieve. In the frequen
y dependen
e minimum,we obtain a result of �30:30 MeV in the 10~
 spa
e 
ompared with theGFMC result of �29:47 MeV. We again emphasize that no Coulomb inter-a
tion is in
luded. As our 
al
ulation is not variational, our binding energymay de
rease with the model spa
e enlargement. In Fig. 4, we 
ompare ourenergy levels with those obtained by the GFMC for the AV80. We obtainquite reasonable agreement, and the spe
trum exhibits good stability for thelow-lying states. states are broad resonan
es and, therefore, their movementis not surprising.
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1066Fig. 4. 6Li ex
itation spe
tra obtained in the NCSM and in the GFMC.We also investigated the transitions from the ground states of 6He and6Li to the negative parity states of 6He [11℄. Re
ently, it was argued thata soft-dipole mode in 6He has been observed in a 
harge ex
hange rea
tionon 6Li [22℄. In Fig. 5, we present our 6He ex
itation spe
tra obtained in6�9~
 model spa
es. We indi
ate the strong E1 transitions together withthe B(E1) values, in e2 fm2, as well as the strong spin �ip and spin non-�ip transitions from the 6Li ground state. Our results are in qualitativeagreement with the experimental observation in the sense that the lowest
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Fig. 5. Positive and negative-parity ex
itation spe
tra of 6He obtained in theNCSM. Strong E1 transitions as well as the spin �ip and spin non-�ip transitionsfrom 6Li are indi
ated.1�1 state 
olle
ts a substantial E1 strength and the transition from 6Li isspin �ip dominated. Also, the spin non-�ip transition goes to a higher lying1�1 state in agreement with experiment [22℄.3.4. 12CIn this subse
tion we address a vastly more 
omplex system, 12C. Thereare several pressing reasons to investigate 12C in a way that preserves asmu
h predi
tive power as possible. The 12C nu
leus plays an importantrole [23℄ in neutrino studies using liquid s
intillator dete
tors. Also, therehas been 
onsiderable interest re
ently in parity-violating ele
tron s
atteringfrom (J�; T ) = (0+; 0) targets, like 12C, to measure the strangeness 
ontentof the nu
leon [24, 25℄.To solve for the properties of 12C, we employ the m-s
heme MFD 
ode[16℄. Here we dis
uss an extension of our 12C study published in Ref. [10℄.In parti
ular, we show our �rst results obtained in the 6~
 spa
e, wherethe dimensions rea
h 32 million. We utilize ~
 = 15 MeV, whi
h lies in therange where the largest model-spa
e results are least sensitive to ~
 [10℄.In Table II and Fig. 6, we present the g.s. energy, ex
itation spe
tra aswell as several other observable results 
al
ulated with the CD-Bonn NNpotential. While the energy of the g.s. eigenstate in
reases with in
reasingmodel spa
e, the relative level spa
ings are less dependent on model-spa
e



308 B.R. Barrett et al. TABLE IIExperimental and 
al
ulated g.s. and 3�0-state energies, point�proton rms radii,the 2+1 -state and the 3�0-state quadrupole moments of 12C. Results obtainedin di�erent model spa
es, i.e., Nmax = 6; 4; 2; 0 for the positive-parity andNmax = 5; 3; 1 for the negative-parity states and using e�e
tive intera
tions de-rived from the CD-Bonn NN potential are given. The 
al
ulated ex
itation energyof the 3�0 state is obtained by 
omparing its energy in the N~
 spa
e with theground state in the (N � 1)~
 spa
e. A HO frequen
y of ~
 = 15 MeV wasemployed. The experimental values are from Refs. [26, 27℄.12C CD-BonnModel spa
e � 6~
 4~
 2~
 0~
jEgs(0+0)j [MeV℄ 92.162 85.630 88.518 92.353 104.947rp [fm℄ 2.35(2) 2.195 2.199 2.228 2.376Q2+ [e fm2℄ +6(3) 4.717 4.533 4.430 4.253Model spa
e � � 5~
 3~
 1~
jE(3�0)j [MeV℄ 82.521 72.952 75.331 83.390rp [fm℄ 2.309 2.316 2.425Q3� [e fm2℄ �7.942 �7.596 �6.936E(3�0)�Egs [MeV℄ 9.641 15.566 17.022 21.557size. In parti
ular, the ex
itation spe
trum is remarkably stable when themodel spa
e is 
hanged from 4~
 to 6~
. In general, we obtain reasonableagreement of the states dominated by 0~
 
on�gurations with experimentallevels. We note that the favorable 
omparison with available data is a 
onse-quen
e of the underlying NN intera
tion rather than a phenomenologi
al �t.Our obtained binding energy of about 85.6 MeV in the 6~
 spa
e is expe
tedto de
rease with a further model-spa
e enlargement. We estimate, however,that our result should be within better than 10% of the exa
t solution forthe two-body CD-Bonn NN potential. In order to rea
h the experimentalbinding energy, likely a true three-body NN intera
tion is ne

essary [4℄.The two- or higher-~
 dominated states, su
h as the 7.65 MeV 0+0 state,are not seen in the low-lying part of our 
al
ulated spe
tra. In general, the
onvergen
e rate of the 2~
 dominated states is quite di�erent than that ofthe ground state. However, we observe a de
reasing ex
itation energy of these
ond 0+0 state. We expe
t this state eventually to 
hange its stru
tureand be
ome the 
luster state.
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Fig. 6. Experimental and theoreti
al ex
itation spe
tra of 12C.4. Con
lusionsIn this 
ontribution, we des
ribed the ab initio NCSM approa
h anddis
ussed its appli
ation to the lightest nu
lei, 3H, 3He and 4He, for whi
hwe obtain well-
onverged results. Due to the utility of Ja
obi 
oordinatesin these few-nu
leon 
al
ulations, we are able to rea
h very large modelspa
es, i.e., 50~
 for A = 3 and 18~
 for A = 4. Also, we showed ourresults for 6Li, 6He and 12C. For A=6, we performed 
al
ulations in modelspa
es up to 10~
 with dimensions approa
hing 107. In the 
ase of 12C,we were limited to model spa
es up to 6~
, where the dimensions rea
h32 million. In these far more 
omplex 
ases, we get 
lose to 
onvergen
efor A = 6. For 12C we do not rea
h full 
onvergen
e, but nonetheless weobtain a reasonable approximation for the lowest 0~
-dominated states.We note that we performed NCSM 
al
ulations for the 0s- and 0p-shellnu
lei in the past [6, 7℄, using a similar approa
h to that dis
ussed here. Inthose 
al
ulations, however, an additional adjustable parameter was present,
ontrary to the approa
h reported here. Our 
urrent te
hnique allows us toobtain 
onverged, exa
t solutions, as shown in our presented results.B.R.B. and J.P.V. a
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