ATOMIC STATES OF $\boldsymbol{\Sigma}$ HYPERONS AND $\boldsymbol{\Sigma} \boldsymbol{N}$ INTERACTION*

J. DąBrowski
Theoretical Division, A. Sołtan Institute for Nuclear Studies Hoża 69, 00-681 Warsaw, Poland

(Received December 11, 2001)
Model F of the Nijmegen baryon-baryon interaction is used to determine the strong complex s.p. potential of Σ^{-}, and to calculate the stronginteraction shifts and widths of the lowest observed levels of Σ^{-}atoms. The results obtained are in satisfying agreement with the experimental data.

PACS numbers: 13.75.Ev, 36.10.Gv

1. Introduction

Observed properties of Σ^{-}atoms, i.e., strong-interaction shifts ε and widths Γ of the lowest observed levels, provide us with valuable information on the strong interaction between Σ^{-}and the nucleons, as well as on the nucleon density distribution in the nucleus of the Σ^{-}atom. In a recent comprehensive phenomenological analysis of the existing Σ^{-}data Batty, Friedman, and Gal [1] found the following striking property of the single particle (s.p.) strong-interaction potential of Σ^{-}: it is repulsive inside the nucleus and attractive outside. The need for the repulsion arose when new data were included into the analysis, namely the results of Powers at al. [2], especially their precise data on the $\Sigma^{-} \mathrm{Pb}$ atom.

This behavior of Σ^{-}s.p. potential found in the analysis of Σ^{-}atoms is consistent with the analysis of the pion spectra measured in $\left(K^{-}, \pi\right)$ reactions, which suggests a Σ s.p. potential repulsive inside nuclei [3, 4] (with a substantial positive Lane potential $\left.V_{\tau}[5]\right)$. This repulsion follows directly from the observed shift of the pion spectra toward higher Σ energies compared to the quasi-free spectrum.

In the paper reported here [6], we consider the Nijmegen models of the baryon-baryon interaction: models D [7], F [8], Soft-Core (SC) model [9],

[^0]and the New Soft-Core (NSC) model [10], and want to find out whether any of them is at the same time consistent with the pion spectra measured in (K^{-}, π) reactions and leads to the observed properties of Σ^{-}atoms. In our analysis, we apply the effective $\Sigma^{-} N$ interaction in nuclear matter, \mathcal{K}, obtained within the Low Order Brueckner (LOB) theory with the above interaction models by Yamamoto, Motoba, Himeno, Ikeda, and Nagata [11], and by Rijken, Stoks, and Yamamoto [10] (the so called YNG interactions).

The single-particle (s.p.) potential V of the Σ^{-}moving with momentum $\hbar k_{\Sigma}$ in nuclear matter with nucleon density ρ and neutron excess $\alpha=(N-Z) / A$ has the form [5]:

$$
\begin{equation*}
V_{\mathrm{NM}}\left(k_{\Sigma}, \rho, \alpha\right)=V_{0}\left(k_{\Sigma}, \rho\right)+\frac{1}{2} \alpha V_{\tau}\left(k_{\Sigma}, \rho\right) . \tag{1}
\end{equation*}
$$

Here, we ignore terms connected with spin excess, considered in [12], which are usually negligibly small.

Expressions for the isoscalar potential V_{0} and for the Lane potential V_{τ} in terms of the effective ΣN interaction \mathcal{K} are given in [5]. When we apply the expression for V_{0} to the YNG effective ΣN interactions, we see ${ }^{1}$ that only model F of the Nijmegen baryon-baryon interaction leads to repulsive V_{0} at nucleon densities $\rho \geq 0.05 \mathrm{fm}^{-3}$ encountered inside nuclei, and to attractive V_{0} at lower densities encountered in the nuclear surface. All the remaining models lead to attractive V_{0} at all densities. This means that only model F leads to the Σ s.p. potential which is in qualitative agreement with the phenomenological analysis [1] of Σ^{-}atoms and also with the pion spectra measured in the (K^{-}, π) reactions.

The important question is whether model F can explain quantitatively the measured properties of Σ^{-}atoms. It is our purpose to show that this is indeed the case. We do it by calculating with the help of model F the energy shifts ε and widths Γ of the Σ^{-}atomic levels, and showing that they are reasonably close to experimental data.

2. The theoretical scheme

To determine ε and Γ, we solve the Schrödinger equation, which describes the motion of Σ^{-}in the Σ^{-}atom:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu_{\Sigma A}} \Delta+V_{\mathrm{C}}(r)+\mathcal{V}(r)\right] \Psi=\mathcal{E} \Psi \tag{2}
\end{equation*}
$$

where $\mu_{\Sigma A}=M_{\Sigma} M_{A} /\left(M_{\Sigma}+M_{A}\right)$ is the Σ^{-}-nucleus (of mass M_{A}) reduced mass $\left(M_{\Sigma}\right.$ is the mass of $\left.\Sigma^{-}\right)$, and V_{C} is the Coulomb interaction between Σ^{-}and the nucleus.

[^1]Because of the $\Sigma \Lambda$ conversion process $\Sigma^{-} p \rightarrow \Lambda n$, the strong interaction potential \mathcal{V} is complex, $\mathcal{V}=V+i W$, and consequently the eigenvalue \mathcal{E} is also complex, with its imaginary part connected with the width of the level, $\mathcal{E}=E-i \Gamma / 2$. For the strong interaction energy shift ε, we have $\varepsilon=E_{\mathrm{C}}-E$, where E_{C} is the pure Coulomb energy, i.e., the eigenvalue of equation (2) without the strong interaction potential \mathcal{V}. Notice that ε is positive for downward shift of the level. The measured energy of γ transition to the level is then increased by ε.

To calculate the real and absorptive strong interaction potentials V and W, we apply the local density approximation: the Σ^{-}atom is treated at each point as Σ^{-}moving in nuclear matter with the local nuclear density of the Σ^{-}atom.

2.1. Expression for V

Let us consider a Σ^{-}atom with proton and neutron density distributions $\rho_{p}(r)$ and $\rho_{n}(r)$ respectively. At any distance r, we treat the system as nuclear matter with total nucleon density $\rho(r)=\rho_{p}(r)+\rho_{n}(r)$ and with neutron excess $\alpha(r)=\left[\rho_{n}(r)-\rho_{p}(r)\right] / \rho(r)$, and with a Σ^{-}hyperon with momentum $k_{\Sigma} \approx 0$. [The last approximation is justified by the very weak dependence of the Σ s.p. potential in nuclear matter on k_{Σ} found in [5], and by the relatively small magnitude of Σ momenta in Σ^{-}atoms.] To get the value of the Σ^{-}s.p. potential in Σ^{-}atom at a distance r, we calculate $V_{0, \tau}\left(k_{\Sigma}, \rho(r)\right)$ at $k_{\Sigma}=0$ by applying the expressions given in [5] with the YNG effective interactions of [11] (and [10]). In this way we obtain the isoscalar and the Lane potentials in Σ^{-}atom at a distance r,

$$
\begin{equation*}
V_{0}(r)=V_{0}\left(k_{\Sigma}=0, \rho(r)\right), \quad V_{\tau}(r)=V_{\tau}\left(k_{\Sigma}=0, \rho(r)\right), \tag{3}
\end{equation*}
$$

and the total nuclear s.p. Σ^{-}potential,

$$
\begin{equation*}
V(r)=V_{0}(r)+\frac{1}{2} \alpha(r) V_{\tau}(r) . \tag{4}
\end{equation*}
$$

2.2. Expression for W

Here we follow the procedure applied in [14] in explaining the early data on Σ atomic widths. A slightly simplified form of our expression (5) for W_{NM} in terms of the $\Sigma \Lambda$ conversion cross section was used before in [15].

First, let us consider a Σ^{-}hyperon moving with momentum $\hbar k_{\Sigma}$ in nuclear matter with total and proton densities ρ, ρ_{p}. The width Γ_{NM} of this state is connected with the absorptive potential $W_{\mathrm{NM}}=-\frac{1}{2} \Gamma_{\mathrm{NM}}$. By applying the optical theorem to the Brueckner reaction matrix \mathcal{K} - as was
shown in [15] and [14] - one obtains for W_{NM} :

$$
\begin{equation*}
W_{\mathrm{NM}}\left(k_{\Sigma}, \rho, \rho_{p}\right)=-\frac{1}{2} \nu \rho_{p} \frac{\hbar^{2}}{\mu_{\Sigma N}}\left\langle k_{\Sigma N} Q \sigma\right\rangle \tag{5}
\end{equation*}
$$

where 〈〉 denotes the average value in the Fermi sea, $\hbar k_{\Sigma N}$ is the $\Sigma^{-} N$ relative momentum, $\mu_{\Sigma N}$ is the $\Sigma^{-} N$ reduced mass, Q is the exclusion principle operator, ν is the ratio of the effective to the real nucleon mass, and σ is the total cross section for the $\Sigma \Lambda$ conversion process.

With the absorptive potential $\mathrm{W}(\mathrm{r})$ in a Σ^{-}atom with total and proton densities $\rho(r), \rho_{p}(r)$, we proceed similarly as with V and write:

$$
\begin{equation*}
W(r)=W_{\mathrm{NM}}\left(\bar{k}_{\Sigma}, \rho(r), \rho_{p}(r)\right) \tag{6}
\end{equation*}
$$

Here, we insert for k_{Σ} in (5) the average momentum of $\Sigma^{-}, \bar{k}_{\Sigma}$.
For the total $\Sigma \Lambda$ conversion cross section σ we shall use the parametrization suggested by Gal, Toker, and Alexander [16].

3. Results and discussion

The proton and neutron density distributions, $\rho_{p}(r)$ and $\rho_{n}(r)$ used in our calculation have been obtained from the isomorphic shell model $[17,18]$ (see also [19] and references therein).

For the Coulomb interaction V_{C} in Schrödinger equation (2), we use the potential produced by a uniform charge distribution with radius R, which leads to the same r.m.s. radius $\left\langle r^{2}\right\rangle^{1 / 2}$ of the charge distribution, $R=$ $\sqrt{3 / 5}\left\langle r^{2}\right\rangle^{1 / 2}$. For the r.m.s. radii, we use the empirical values collected in [20].

Our results for ε and Γ are presented in Table I together with the existing experimental data which, however, are relatively inaccurate. Our results appear reasonably close to the experimental data and indicate the consistency of model F with properties of Σ^{-}atoms. This leads us to the conclusion that among the Nijmegen baryon-baryon interactions, model F and only model F is capable to represent the ΣN interaction both in Σ hypernuclear states and in Σ^{-}atoms.

Two other aspects of our results worth mentioning are:

1. the role of the finite size of the nuclear charge distribution turns out to be negligible, and
2. the accuracy of the first order perturbation approximation applied in [13] turns out to be very good.

TABLE I
Energy shifts $\varepsilon, \varepsilon^{u}$ and widths Γ, Γ^{u} calculated with model F of the ΣN interaction, respectively for the lower and upper level of the indicated Σ^{-}atoms together with the experimental results. All energies are in eV .

Nucl.	$n+1 \rightarrow n$	ε	$\varepsilon_{\exp }$	Γ	$\Gamma_{\exp }$	ε^{u}	Γ^{u}	$\Gamma_{\exp }^{u}$
${ }^{12} \mathrm{C}$	$4 \rightarrow 3$	8.19	-	22.2	-	0.007	0.011	$0.031 \pm 0.012^{\mathrm{a}}$
${ }^{16} \mathrm{O}$	$4 \rightarrow 3$	50.0	$320 \pm 230^{\mathrm{b}}$	194.2	-	0.11	0.20	$1.0 \pm 0.7^{\mathrm{b}}$
${ }^{24} \mathrm{Mg}$	$5 \rightarrow 4$	32.6	$25 \pm 40^{\mathrm{b}}$	50.4	$<70^{\mathrm{b}}$	0.08	0.10	$0.11 \pm 0.09^{\mathrm{b}}$
${ }^{27} \mathrm{Al}$	$5 \rightarrow 4$	67.3	$68 \pm 28^{\mathrm{b}}$	113.2	$43 \pm 75^{\mathrm{b}}$	0.22	0.28	$0.24 \pm 0.06^{\mathrm{b}}$
${ }^{28} \mathrm{Si}$	$5 \rightarrow 4$	139.9	$159 \pm 36^{\mathrm{b}}$	242.8	$220 \pm 110^{\mathrm{b}}$	0.55	0.70	$0.41 \pm 0.10^{\mathrm{b}}$
${ }^{32} \mathrm{~S}$	$5 \rightarrow 4$	433.8	$360 \pm 220^{\mathrm{b}}$	873.2	$870 \pm 700^{\mathrm{b}}$	2.49	3.43	$1.5 \pm 0.8^{\mathrm{b}}$
${ }^{40} \mathrm{Ca}$	$6 \rightarrow 5$	27.0	-	42.0	-	0.12	0.15	$0.41 \pm 0.22^{\mathrm{a}}$
${ }^{48} \mathrm{Ti}$	$6 \rightarrow 5$	44.9	-	104.0	-	0.30	0.48	$0.65 \pm 0.42^{\mathrm{a}}$
${ }^{138} \mathrm{Ba}$	$9 \rightarrow 8$	32.6	-	73.9	-	0.92	1.34	$2.9 \pm 3.5^{\mathrm{a}}$
${ }^{184} \mathrm{~W}$	$10 \rightarrow 9$	126.7	$214 \pm 60^{\mathrm{c}}$	180.5	$18 \pm 149^{\mathrm{c}}$	3.75	4.24	$2 \pm 2^{\mathrm{c}}$
${ }^{208} \mathrm{~Pb}$	$10 \rightarrow 9$	457.4	$422 \pm 56^{\mathrm{c}}$	773.4	$430 \pm 160^{\mathrm{c}}$	18.9	23.8	$17 \pm 3^{\mathrm{c}}$

${ }^{\text {a }}$ Data taken from Ref. [21].
${ }^{\mathrm{b}}$ Data taken from Ref. [22].
${ }^{c}$ Data taken from Ref. [2].

REFERENCES

[1] C.J. Batty, E. Friedman, A. Gal, Phys. Rep. 287, 385 (1997).
[2] R.J. Powers et al., Phys. Rev. C47, 1263 (1993).
[3] J. Da̧browski, J. Rożynek, Acta Phys. Pol. 29B, 2147 (1998).
[4] Y.Shimizu, Ph.D. thesis, University of Tokyo, 1996 (unpublished).
[5] J. Dąbrowski, Phys. Rev. C60, 025205 (1999).
[6] J. Da̧browski, J. Rożynek, G.S. Anagnostatos, Phys. Rev. C, submitted.
[7] N.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D12, 744 (1975); 15, 2547 (1977).
[8] N.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D20, 1663 (1979).
[9] P.M.M. Maessen, T.A. Rijken, J.J. de Swart, Phys. Rev. C40, 2226 (1989); Nucl. Phys. A547, 245c (1992).
[10] T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C59, 21 (1999).
[11] Y. Yamamoto, T. Motoba, H. Himeno, K. Ikeda, S. Nagata, Prog. Theor. Phys. Suppl. 117, 361 (1994).
[12] J. Da̧browski, Acta Phys. Pol. 30B, 2783 (1999).
[13] J. Da̧browski, J. Rożynek, G.S. Anagnostatos, Acta Phys. Pol. 32B, 2179 (2001).
[14] J. Dąbrowski, J. Rożynek, Acta Phys. Pol. 14B, 439 (1983).
[15] J. Da̧browski, J. Rożynek, Phys. Rev. C23, 1706 (1981).
[16] A. Gal, G. Toker, Y. Alexander, Ann. Phys. 137, 341 (1981).
[17] G.S. Anagnostatos, Can. J. Phys. 70, 361 (1992).
[18] G. S. Anagnostatos, Int. J. Theor. Phys. 24, 579 (1985).
[19] G. S. Anagnostatos, P. Ginis, J. Giapitzakis, Phys. Rev. C58, 3305 (1998).
[20] C.W. De Jager, H. De Vries, C. De Vries, At. Data Nucl. Data Tables 14, 479 (1974).
[21] G. Backenstoss, T. Bunacin, J. Egger, H. Koch, A. Schwitter, L. Tauscher, Z. Phys. A273, 137 (1975).
[22] C.J. Batty, S.F. Biagi, M. Blecher, S.D. Hoath, R.A.J. Riddle, B.L. Roberts, J.D. Davies, G.J. Pyle, G.T.A. Squier, D.M. Asbury, Phys. Lett. 74B, 27 (1978).

[^0]: * Presented at the XXVII Mazurian Lakes School of Physics, Krzyże, Poland, September 2-9, 2001.

[^1]: ${ }^{1}$ Compare Fig. 1 in Ref. [13].

