ATOMIC STATES OF Σ HYPERONS AND ΣN INTERACTION*

J. Dąbrowski

Theoretical Division, A. Soltan Institute for Nuclear Studies Hoża 69, 00-681 Warsaw, Poland

(Received December 11, 2001)

Model F of the Nijmegen baryon-baryon interaction is used to determine the strong complex s.p. potential of Σ^- , and to calculate the stronginteraction shifts and widths of the lowest observed levels of Σ^- atoms. The results obtained are in satisfying agreement with the experimental data.

PACS numbers: 13.75.Ev, 36.10.Gv

1. Introduction

Observed properties of Σ^- atoms, *i.e.*, strong-interaction shifts ε and widths Γ of the lowest observed levels, provide us with valuable information on the strong interaction between Σ^- and the nucleons, as well as on the nucleon density distribution in the nucleus of the Σ^- atom. In a recent comprehensive phenomenological analysis of the existing Σ^- data Batty, Friedman, and Gal [1] found the following striking property of the single particle (s.p.) strong-interaction potential of Σ^- : it is repulsive inside the nucleus and attractive outside. The need for the repulsion arose when new data were included into the analysis, namely the results of Powers *at al.* [2], especially their precise data on the Σ^- Pb atom.

This behavior of Σ^- s.p. potential found in the analysis of Σ^- atoms is consistent with the analysis of the pion spectra measured in (K^-, π) reactions, which suggests a Σ s.p. potential repulsive inside nuclei [3, 4] (with a substantial positive Lane potential V_{τ} [5]). This repulsion follows directly from the observed shift of the pion spectra toward higher Σ energies compared to the quasi-free spectrum.

In the paper reported here [6], we consider the Nijmegen models of the baryon-baryon interaction: models D [7], F [8], Soft-Core (SC) model [9],

^{*} Presented at the XXVII Mazurian Lakes School of Physics, Krzyże, Poland, September 2–9, 2001.

and the New Soft-Core (NSC) model [10], and want to find out whether any of them is at the same time consistent with the pion spectra measured in (K^-, π) reactions and leads to the observed properties of Σ^- atoms. In our analysis, we apply the effective $\Sigma^- N$ interaction in nuclear matter, \mathcal{K} , obtained within the Low Order Brueckner (LOB) theory with the above interaction models by Yamamoto, Motoba, Himeno, Ikeda, and Nagata [11], and by Rijken, Stoks, and Yamamoto [10] (the so called YNG interactions).

The single-particle (s.p.) potential V of the Σ^- moving with momentum $\hbar k_{\Sigma}$ in nuclear matter with nucleon density ρ and neutron excess $\alpha = (N - Z)/A$ has the form [5]:

$$V_{\rm NM}(k_{\Sigma},\rho,\alpha) = V_0(k_{\Sigma},\rho) + \frac{1}{2}\alpha V_{\tau}(k_{\Sigma},\rho).$$
(1)

Here, we ignore terms connected with spin excess, considered in [12], which are usually negligibly small.

Expressions for the isoscalar potential V_0 and for the Lane potential V_{τ} in terms of the effective ΣN interaction \mathcal{K} are given in [5]. When we apply the expression for V_0 to the YNG effective ΣN interactions, we see¹ that only model F of the Nijmegen baryon-baryon interaction leads to repulsive V_0 at nucleon densities $\rho \gtrsim 0.05$ fm⁻³ encountered inside nuclei, and to attractive V_0 at lower densities encountered in the nuclear surface. All the remaining models lead to attractive V_0 at all densities. This means that only model F leads to the Σ s.p. potential which is in qualitative agreement with the phenomenological analysis [1] of Σ^- atoms and also with the pion spectra measured in the (K^-, π) reactions.

The important question is whether model F can explain quantitatively the measured properties of Σ^- atoms. It is our purpose to show that this is indeed the case. We do it by calculating with the help of model F the energy shifts ε and widths Γ of the Σ^- atomic levels, and showing that they are reasonably close to experimental data.

2. The theoretical scheme

To determine ε and Γ , we solve the Schrödinger equation, which describes the motion of Σ^- in the Σ^- atom:

$$\left[-\frac{\hbar^2}{2\mu_{\Sigma A}}\Delta + V_{\rm C}(r) + \mathcal{V}(r)\right]\Psi = \mathcal{E}\Psi,\qquad(2)$$

where $\mu_{\Sigma A} = M_{\Sigma} M_A / (M_{\Sigma} + M_A)$ is the Σ^- -nucleus (of mass M_A) reduced mass (M_{Σ} is the mass of Σ^-), and $V_{\rm C}$ is the Coulomb interaction between Σ^- and the nucleus.

¹ Compare Fig. 1 in Ref. [13].

Because of the $\Sigma \Lambda$ conversion process $\Sigma^- p \to \Lambda n$, the strong interaction potential \mathcal{V} is complex, $\mathcal{V} = V + iW$, and consequently the eigenvalue \mathcal{E} is also complex, with its imaginary part connected with the width of the level, $\mathcal{E} = E - i\Gamma/2$. For the strong interaction energy shift ε , we have $\varepsilon = E_{\rm C} - E$, where $E_{\rm C}$ is the pure Coulomb energy, *i.e.*, the eigenvalue of equation (2) without the strong interaction potential \mathcal{V} . Notice that ε is positive for downward shift of the level. The measured energy of γ transition to the level is then increased by ε .

To calculate the real and absorptive strong interaction potentials V and W, we apply the local density approximation: the Σ^- atom is treated at each point as Σ^- moving in nuclear matter with the local nuclear density of the Σ^- atom.

2.1. Expression for V

Let us consider a Σ^- atom with proton and neutron density distributions $\rho_p(r)$ and $\rho_n(r)$ respectively. At any distance r, we treat the system as nuclear matter with total nucleon density $\rho(r) = \rho_p(r) + \rho_n(r)$ and with neutron excess $\alpha(r) = [\rho_n(r) - \rho_p(r)]/\rho(r)$, and with a Σ^- hyperon with momentum $k_{\Sigma} \approx 0$. [The last approximation is justified by the very weak dependence of the Σ s.p. potential in nuclear matter on k_{Σ} found in [5], and by the relatively small magnitude of Σ momenta in Σ^- atoms.] To get the value of the Σ^- s.p. potential in Σ^- atom at a distance r, we calculate $V_{0,\tau}(k_{\Sigma}, \rho(r))$ at $k_{\Sigma} = 0$ by applying the expressions given in [5] with the YNG effective interactions of [11] (and [10]). In this way we obtain the isoscalar and the Lane potentials in Σ^- atom at a distance r,

$$V_0(r) = V_0(k_{\Sigma} = 0, \rho(r)), \quad V_{\tau}(r) = V_{\tau}(k_{\Sigma} = 0, \rho(r)), \quad (3)$$

and the total nuclear s.p. Σ^- potential,

$$V(r) = V_0(r) + \frac{1}{2}\alpha(r)V_{\tau}(r).$$
(4)

2.2. Expression for W

Here we follow the procedure applied in [14] in explaining the early data on Σ atomic widths. A slightly simplified form of our expression (5) for $W_{\rm NM}$ in terms of the $\Sigma \Lambda$ conversion cross section was used before in [15].

First, let us consider a Σ^- hyperon moving with momentum $\hbar k_{\Sigma}$ in nuclear matter with total and proton densities ρ , ρ_p . The width $\Gamma_{\rm NM}$ of this state is connected with the absorptive potential $W_{\rm NM} = -\frac{1}{2}\Gamma_{\rm NM}$. By applying the optical theorem to the Brueckner reaction matrix \mathcal{K} — as was shown in [15] and [14] — one obtains for $W_{\rm NM}$:

$$W_{\rm NM}(k_{\Sigma},\rho,\rho_p) = -\frac{1}{2}\nu\rho_p \frac{\hbar^2}{\mu_{\Sigma N}} \langle k_{\Sigma N} Q\sigma \rangle , \qquad (5)$$

where $\langle \rangle$ denotes the average value in the Fermi sea, $\hbar k_{\Sigma N}$ is the $\Sigma^- N$ relative momentum, $\mu_{\Sigma N}$ is the $\Sigma^- N$ reduced mass, Q is the exclusion principle operator, ν is the ratio of the effective to the real nucleon mass, and σ is the total cross section for the $\Sigma \Lambda$ conversion process.

With the absorptive potential W(r) in a Σ^{-} atom with total and proton densities $\rho(r)$, $\rho_p(r)$, we proceed similarly as with V and write:

$$W(r) = W_{\rm NM}(\bar{k}_{\Sigma}, \rho(r), \rho_p(r)).$$
(6)

Here, we insert for k_{Σ} in (5) the average momentum of Σ^{-} , k_{Σ} .

For the total $\Sigma \Lambda$ conversion cross section σ we shall use the parametrization suggested by Gal, Toker, and Alexander [16].

3. Results and discussion

The proton and neutron density distributions, $\rho_p(r)$ and $\rho_n(r)$ used in our calculation have been obtained from the isomorphic shell model [17, 18] (see also [19] and references therein).

For the Coulomb interaction $V_{\rm C}$ in Schrödinger equation (2), we use the potential produced by a uniform charge distribution with radius R, which leads to the same r.m.s. radius $\langle r^2 \rangle^{1/2}$ of the charge distribution, $R = \sqrt{3/5} \langle r^2 \rangle^{1/2}$. For the r.m.s. radii, we use the empirical values collected in [20].

Our results for ε and Γ are presented in Table I together with the existing experimental data which, however, are relatively inaccurate. Our results appear reasonably close to the experimental data and indicate the consistency of model F with properties of Σ^- atoms. This leads us to the conclusion that among the Nijmegen baryon-baryon interactions, model F and only model F is capable to represent the ΣN interaction both in Σ hypernuclear states and in Σ^- atoms.

Two other aspects of our results worth mentioning are:

- 1. the role of the finite size of the nuclear charge distribution turns out to be negligible, and
- the accuracy of the first order perturbation approximation applied in [13] turns out to be very good.

Nucl.	$n\!+\!1\!\rightarrow\!n$	ε	$\varepsilon_{\mathrm{exp}}$	Г	Γ_{exp}	ε^{u}	Γ^{u}	$\Gamma^u_{ m exp}$
$^{12}\mathrm{C}$	$4 \rightarrow 3$	8.19	_	22.2	_	0.007	0.011	$0.031 \pm 0.012^{\rm a}$
$^{16}\mathrm{O}$	$4 \rightarrow 3$	50.0	$320\pm230^{ m b}$	194.2		0.11	0.20	$1.0\pm0.7^{\mathrm{b}}$
^{24}Mg	$5 \rightarrow 4$	32.6	$25 \pm 40^{ m b}$	50.4	$< 70^{ m b}$	0.08	0.10	$0.11\pm0.09^{ m b}$
$^{27}\mathrm{Al}$	$5 \rightarrow 4$	67.3	$68\pm28^{ m b}$	113.2	$43 \pm 75^{\mathrm{b}}$	0.22	0.28	$0.24\pm0.06^{ m b}$
28 Si	$5 \rightarrow 4$	139.9	$159\pm36^{ m b}$	242.8	$220 \pm 110^{\rm b}$	0.55	0.70	$0.41\pm0.10^{ m b}$
^{32}S	$5 \rightarrow 4$	433.8	$360\pm220^{ m b}$	873.2	$870\pm700^{ m b}$	2.49	3.43	$1.5\pm0.8^{\mathrm{b}}$
40 Ca	$6 \rightarrow 5$	27.0		42.0		0.12	0.15	$0.41\pm0.22^{\mathrm{a}}$
$^{48}\mathrm{Ti}$	$6 \rightarrow 5$	44.9		104.0		0.30	0.48	$0.65 \pm 0.42^{\mathrm{a}}$
138 Ba	$9 \rightarrow 8$	32.6		73.9		0.92	1.34	$2.9 \pm 3.5^{\mathrm{a}}$
^{184}W	$10 \rightarrow 9$	126.7	$214 \pm 60^{\circ}$	180.5	$18 \pm 149^{\circ}$	3.75	4.24	$2 \pm 2^{\circ}$
208 Pb	$10 \rightarrow 9$	457.4	$422\pm56^{\circ}$	773.4	$430 \pm 160^{\circ}$	18.9	23.8	$17\pm3^{ m c}$

Energy shifts ε , ε^u and widths Γ , Γ^u calculated with model F of the ΣN interaction, respectively for the lower and upper level of the indicated Σ^- atoms together with the experimental results. All energies are in eV.

^a Data taken from Ref. [21].

^b Data taken from Ref. [22].

^c Data taken from Ref. [2].

REFERENCES

- [1] C.J. Batty, E. Friedman, A. Gal, Phys. Rep. 287, 385 (1997).
- [2] R.J. Powers et al., Phys. Rev. C47, 1263 (1993).
- [3] J. Dąbrowski, J. Rożynek, Acta Phys. Pol. 29B, 2147 (1998).
- [4] Y.Shimizu, Ph.D. thesis, University of Tokyo, 1996 (unpublished).
- [5] J. Dąbrowski, *Phys. Rev.* C60, 025205 (1999).
- [6] J. Dąbrowski, J. Rożynek, G.S. Anagnostatos, Phys. Rev. C, submitted.
- [7] N.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D12, 744 (1975); 15, 2547 (1977).
- [8] N.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D20, 1663 (1979).
- [9] P.M.M. Maessen, T.A. Rijken, J.J. de Swart, Phys. Rev. C40, 2226 (1989); Nucl. Phys. A547, 245c (1992).
- [10] T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C59, 21 (1999).
- [11] Y. Yamamoto, T. Motoba, H. Himeno, K. Ikeda, S. Nagata, Prog. Theor. Phys. Suppl. 117, 361 (1994).
- [12] J. Dąbrowski, Acta Phys. Pol. 30B, 2783 (1999).
- [13] J. Dąbrowski, J. Rożynek, G.S. Anagnostatos, Acta Phys. Pol. 32B, 2179 (2001).
- [14] J. Dąbrowski, J. Rożynek, Acta Phys. Pol. 14B, 439 (1983).
- [15] J. Dąbrowski, J. Rożynek, Phys. Rev. C23, 1706 (1981).

- [16] A. Gal, G. Toker, Y. Alexander, Ann. Phys. 137, 341 (1981).
- [17] G.S. Anagnostatos, Can. J. Phys. 70, 361 (1992).
- [18] G. S. Anagnostatos, Int. J. Theor. Phys. 24, 579 (1985).
- [19] G. S. Anagnostatos, P. Ginis, J. Giapitzakis, Phys. Rev. C58, 3305 (1998).
- [20] C.W. De Jager, H. De Vries, C. De Vries, At. Data Nucl. Data Tables 14, 479 (1974).
- [21] G. Backenstoss, T. Bunacin, J. Egger, H. Koch, A. Schwitter, L. Tauscher, Z. Phys. A273, 137 (1975).
- [22] C.J. Batty, S.F. Biagi, M. Blecher, S.D. Hoath, R.A.J. Riddle, B.L. Roberts, J.D. Davies, G.J. Pyle, G.T.A. Squier, D.M. Asbury, *Phys. Lett.* **74B**, 27 (1978).