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APPLICATION OF NEURAL NETWORK FORTHE ANALYSIS OF TWO-NEUTRON CORRELATIONSAT SMALL RELATIVE MOMENTA�P. Kindziuk, J. Pluta, T. Pawlak, M. Przewªo
kiand K. Wosi«skaFa
ulty of Physi
s, Warsaw University of Te
hnologyKoszykowa 75, 00-662 Warsaw, Poland(Re
eived De
ember 28, 2001)Many of observed phenomena asso
iated to physi
s experiments do nothave a model that allow a good des
ription. If some e�e
ts depend onknown parameters in the way whi
h 
annot be well des
ribed, neural net-work 
an be a useful tool to solve o

urring problems. In this paper neuralnetwork is applied to eliminate the false 
oin
iden
es (
ross-talk) in two-neutron 
orrelation fun
tion analysis.PACS numbers: 25.75.Gz, 87.80.Xa1. Introdu
tionStudy of two-neutron 
orrelation fun
tion at small relative momenta 
anprovide information about me
hanism of heavy ion intera
tions. A di�
ultmethodi
al problem in this analysis is a 
ross-talk e�e
t. It o

urs if the sameneutron is registered in two or more dete
tors and leads to deformation ofthe 
orrelation fun
tion. Known methods of the 
ross-talk elimination [1,2℄using the kinemati
al relations of neutron pair 
annot eliminate the multiple
ross-talks and reje
t a lot of real 
oin
iden
es. In this paper a new methodof 
ross-talk elimination with neural network is presented. It is applied tothe data from the E286 experiment performed in GANIL in whi
h Ar�Ni
ollisions at 77 GeV/n were investigated.� Presented at the XXVII Mazurian Lakes S
hool of Physi
s, Krzy»e, Poland,September 2�9, 2001. (369)



370 P. Kindziuk et al.2. Feed-forward neural network2.1. S
heme of a single neuronFig. 1 presents a s
heme of a single neuron. A neuron has an arbitrarynumber of inputs and a single output. Through every input the neuronre
eives signals (input ve
tor), whi
h are multiplied by appropriate values(weights). The sum of these values is transformed by a spe
ial fun
tion
alled a
tivation fun
tion (') whi
h gives the output of the neuron. The x0signal (polarization) is always 1. Su
h neural network ar
hite
ture is 
om-monly used [3℄.
Fig. 1. S
heme of a single neuron.2.2. Ar
hite
ture of the networkThe multilayer neural network 
ontains a number of neurons forminglayers. In the feed-forward neural network there are every-to-every 
onne
-tions between neurons from neighboring layers and there is no information�ow between 
ells from the same layer. The ar
hite
ture used here 
ontainsthree inputs, two hidden layers and an output layer (Fig. 2).

Fig. 2. S
heme of a three-layer feed-forward neural network.
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ation of Neural Network for the Analysis of . . . 3712.3. LearningThe weights of 
onne
tions between neurons 
ontain information aboutphenomena being analyzed. Learning is a pro
ess of 
hanging weights inorder to minimize error of the network. To solve problem indi
ated in thispaper the ba
k-propagation method was used. In learning step j the outputvalue of neuron m is ym(j) = '0� Xi2M iwi(m)(j)yi(j)1A ; (1)where Mi is a group of neurons that gives the input signal to neuron m. Theweights of the network 
hange a

ording to the formula are�wi(m)(j) = �Æm(j) d'(x)dxm(j) y(j)i ; (2)where � is the learning rate parameter, �w 
hange of weight, y neuron's out-put value, m indexes neurons whi
h re
eive signal, i is the index of a neuronthat signal is 
oming from and j is the learning step. The di�eren
e betweenexpe
ted value z and the output of the network y isÆm(j) = zm(j) � ym(j) : (3)The error 
an by 
al
ulated using this formula only for the output layer. Forhidden layers error is propagated ba
kward a

ording toÆm(j) = Xk2M0wm(k)(j)Æk(j) ; (4)where M0 is a group of neurons whi
h re
eives the signal from neuron m.Changes of values are then des
ribed by the equation�w(m)(j)i = �Æ(j)m �1� y(j)m � yi(j)ym(j) : (5)3. Cross-talk elimination3.1. The 
ross-talk problemThe interferometry type analysis of nu
leus�nu
leus 
ollisions requirestwo-parti
le information from the dete
tor. The question is whether thedete
tor response 
onne
ts the two parti
les originating from intera
tionpoint or it is a false response of one parti
le going through two or moredi�erent dete
tor modules. That 
an be known for sure only in simulated



372 P. Kindziuk et al.data. In 
ase of neutron dete
tor the parasite e�e
t of 
ross-talk is reallysigni�
ant and 
an 
onsiderably distort the results. The usual way of 
ross-talk elimination takes into a

ount the relations between times of �ight ofneutrons and the dete
tor geometry. The measured energy deposition 
analso be used in 
riterion de�nition. The E286 experiment has a dete
torgeometry spe
ially designed to allow the 
ross-talk elimination [4℄. Butthe e�e
tive 
ross-talk elimination pro
edure is very expensive as far as thestatisti
s is 
on
erned. So the 
ross-talk elimination is still an open question,whi
h may be solved by using neural networks.3.2. Des
ription of the methodThe network has 3 inputs, 10 neurons in two hidden layers and a singleoutput. It was taught using data simulated a

ording to three moving sour
emodel [5℄.In order to simulate the dete
tors answer the MENATE 
ode [6℄ wasapplied. The learning set had 1476556 events. Ea
h of the events 
ontainedthree values for inputs of the network:1. angular distan
e between dete
tors that dete
ted neutrons;2. di�eren
e of linear distan
es between these dete
tors and emittingsour
e;3. time of �ight di�eren
e between neutrons and 
orresponding desiredvalue of the output neutron, whi
h was 0.9 if neutron pair was a 
ross-talk and 0.1 in 
ase of true 
oin
iden
e. These values are determinedby the shape of the a
tivation fun
tion whi
h gives value from openrange (0,1).To 
onstru
t net and perform training the spe
ial program was written bythe authors.The training of the net was performed iteratively. In ea
h of 100 it-erations whole set of data was pro
eeded. In the progress of iterationsthe learning rate parameter � was systemati
ally varied to span the range0.2�0.002.To 
he
k the generalization ability of the already trained net it was testedusing another set of data whi
h 
ontained 1528328 events simulated by thesame event generator. The next step was testing learnt net using simulateddata.



Appli
ation of Neural Network for the Analysis of . . . 3733.3. ResultsDuring the presentation of events to the already trained net, the outputneuron a

epts the values from the range 0.1�0.9. It was 
he
ked that this
hoi
e does not in�uen
e the e�
ien
y of the algorithm. In the ideal 
asethis quantity would be exa
tly 0.1 or 0.9 for the 
ase of true 
oin
iden
esor 
ross-talks, respe
tively. In the real 
ase the 
orresponding spe
trumof outputs is 
ontinuous and varies during the learning pro
edure so, thattrue 
oin
iden
es o

upy the region of low output values and 
ross-talks thehigher ones. In the real appli
ation, the net response to the parti
ular eventis 
lassi�ed as a

eptable (i.e. as true 
oin
iden
e), if the output value islower, or as reje
ted from the statisti
s (i.e. as 
ross-talk), if it is higher thansome presele
ted threshold value. Thus, one 
an obtain relative enri
hmentof the a

epted data sample into the true 
oin
iden
e events.Two parameters 
an be de�ned: the �e�
ien
y� i.e. the ratio of theidenti�ed false 
oin
iden
es to the total number of false 
oin
iden
es existingin the data sample and �eliminated statisti
s� i.e. the relative number of
oin
iden
es whi
h had the neural signal higher than the threshold. Bothquantities are fun
tions of the threshold value and they are plotted in Fig. 3.The optimum setting of the threshold should be 
hosen so, that the e�
ien
yis possibly high and, simultaneously, the eliminated statisti
s is low.

Fig. 3. E�
ien
y of 
ross-talk elimination.



374 P. Kindziuk et al.3.4. Multiple 
ross-talksThe neutron 
an be s
attered in two dete
tors and give three signals(probability of 4 or more is negligible). The e�
ien
y of elimination for oneand two false dete
tions per event is shown in Fig. 4. The multiple 
ross-talks are eliminated with higher e�
ien
y than single 
ross-talks. Su
h resultis impossible in 
ase of the kinemati
al methods of 
ross-talk elimination.

Fig. 4. E�
ien
y of elimination for single and multiple 
ross-talks.3.5. Correlation fun
tionFig. 5 presents 
omparison of eliminated statisti
s for simulated andexperimental data. Di�eren
e between these values is probably 
aused bythe fa
t that simulation program does not take into a

ount all aspe
ts of

Fig. 5. Eliminated statisti
s for simulated and experimental data.



Appli
ation of Neural Network for the Analysis of . . . 375the experiment. The optimum threshold was 
hosen by observing the ex-perimental 
orrelation fun
tion for di�erent thresholds. Analysis startedat value 0.09 where pra
ti
ally all 
ross-talks were reje
ted. The pri
e ofthis e�
ien
y is an elimination of about 98% real 
oin
iden
es. In
reasinga

eptable output value (with step of 0.005) does not 
hange 
orrelationfun
tion up to 0.110. In this way the optimum answer of network was deter-mined as 0.105 what 
orresponds to 99% 
ross-talk reje
tion (a

ording tosimulated data) and 67% eliminated statisti
s. Fig. 6 presents the experi-mental 
orrelation fun
tions before and after 
ross-talk elimination for threedi�erent thresholds and the method based on kinemati
al dependen
ies [1℄.
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orrelation fun
tions before and after 
ross-talk eliminationwith the kinemati
al method [17℄ and the network method using di�erent thresholdvalues. 4. Con
lusionsThe neural network method 
an be a useful tool for eliminating parasitee�e
ts in 
orrelation analysis of nu
leus�nu
leus 
ollisions. In parti
ularthe method is e�e
tive eliminating 
ross-talks in the study of two-neutronsmall angle 
orrelations. Contrary to other approa
hes it takes into a

ountmultiple 
ross-talks too. In an easy way the neural network 
an in
orporateother input parameters like energy loss information.The authors are grateful to Prof. Robert Kosi«ski for fruitful dis
ussion.
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