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Many of observed phenomena associated to physics experiments do not
have a model that allow a good description. If some effects depend on
known parameters in the way which cannot be well described, neural net-
work can be a useful tool to solve occurring problems. In this paper neural
network is applied to eliminate the false coincidences (cross-talk) in two-
neutron correlation function analysis.

PACS numbers: 25.75.Gz, 87.80.Xa

1. Introduction

Study of two-neutron correlation function at small relative momenta can
provide information about mechanism of heavy ion interactions. A difficult
methodical problem in this analysis is a cross-talk effect. It occurs if the same
neutron is registered in two or more detectors and leads to deformation of
the correlation function. Known methods of the cross-talk elimination [1,2]
using the kinematical relations of neutron pair cannot eliminate the multiple
cross-talks and reject a lot of real coincidences. In this paper a new method
of cross-talk elimination with neural network is presented. It is applied to
the data from the E286 experiment performed in GANIL in which Ar—Ni
collisions at 77 GeV /n were investigated.

* Presented at the XXVII Mazurian Lakes School of Physics, Krzyze, Poland,
September 2-9, 2001.
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2. Feed-forward neural network

2.1. Scheme of a single neuron

Fig. 1 presents a scheme of a single neuron. A neuron has an arbitrary
number of inputs and a single output. Through every input the neuron
receives signals (input vector), which are multiplied by appropriate values
(weights). The sum of these values is transformed by a special function
called activation function (¢) which gives the output of the neuron. The z
signal (polarization) is always 1. Such neural network architecture is com-
monly used [3].
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Fig. 1. Scheme of a single neuron.

2.2. Architecture of the network

The multilayer neural network contains a number of neurons forming
layers. In the feed-forward neural network there are every-to-every connec-
tions between neurons from neighboring layers and there is no information
flow between cells from the same layer. The architecture used here contains
three inputs, two hidden layers and an output layer (Fig. 2).

Inputs Hidden layers Output layer

Fig.2. Scheme of a three-layer feed-forward neural network.
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2.8. Learning

The weights of connections between neurons contain information about
phenomena being analyzed. Learning is a process of changing weights in
order to minimize error of the network. To solve problem indicated in this
paper the back-propagation method was used. In learning step j the output
value of neuron m is

i = [ 3 My | | 1)
iEMi

where M; is a group of neurons that gives the input signal to neuron m. The
weights of the network change according to the formula are

' y de(z)
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where 7 is the learning rate parameter, Aw change of weight, y neuron’s out-
put value, m indexes neurons which receive signal, 7 is the index of a neuron
that signal is coming from and j is the learning step. The difference between
expected value z and the output of the network y is

5, 0) = 2, ) gy ) (3)

The error can by calculated using this formula only for the output layer. For
hidden layers error is propagated backward according to

5 = 3 1y P50 (1)
ke My

where My is a group of neurons which receives the signal from neuron m.
Changes of values are then described by the equation

Au™D = o) (1= 4) 5Oy ®)

3. Cross-talk elimination

3.1. The cross-talk problem

The interferometry type analysis of nucleus—nucleus collisions requires
two-particle information from the detector. The question is whether the
detector response connects the two particles originating from interaction
point or it is a false response of one particle going through two or more
different detector modules. That can be known for sure only in simulated
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data. In case of neutron detector the parasite effect of cross-talk is really
significant and can considerably distort the results. The usual way of cross-
talk elimination takes into account the relations between times of flight of
neutrons and the detector geometry. The measured energy deposition can
also be used in criterion definition. The E286 experiment has a detector
geometry specially designed to allow the cross-talk elimination [4]. But
the effective cross-talk elimination procedure is very expensive as far as the
statistics is concerned. So the cross-talk elimination is still an open question,
which may be solved by using neural networks.

3.2. Description of the method

The network has 3 inputs, 10 neurons in two hidden layers and a single
output. It was taught using data simulated according to three moving source
model [5].

In order to simulate the detectors answer the MENATE code [6] was
applied. The learning set had 1476556 events. Each of the events contained
three values for inputs of the network:

1. angular distance between detectors that detected neutrons;

2. difference of linear distances between these detectors and emitting
source;

3. time of flight difference between neutrons and corresponding desired
value of the output neutron, which was 0.9 if neutron pair was a cross-
talk and 0.1 in case of true coincidence. These values are determined
by the shape of the activation function which gives value from open
range (0,1).

To construct net and perform training the special program was written by
the authors.

The training of the net was performed iteratively. In each of 100 it-
erations whole set of data was proceeded. In the progress of iterations
the learning rate parameter 1 was systematically varied to span the range
0.2-0.002.

To check the generalization ability of the already trained net it was tested
using another set of data which contained 1528328 events simulated by the
same event generator. The next step was testing learnt net using simulated
data.
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3.3. Results

During the presentation of events to the already trained net, the output
neuron accepts the values from the range 0.1-0.9. It was checked that this
choice does not influence the efficiency of the algorithm. In the ideal case
this quantity would be exactly 0.1 or 0.9 for the case of true coincidences
or cross-talks, respectively. In the real case the corresponding spectrum
of outputs is continuous and varies during the learning procedure so, that
true coincidences occupy the region of low output values and cross-talks the
higher ones. In the real application, the net response to the particular event
is classified as acceptable (i.e. as true coincidence), if the output value is
lower, or as rejected from the statistics (i.e. as cross-talk), if it is higher than
some preselected threshold value. Thus, one can obtain relative enrichment
of the accepted data sample into the true coincidence events.

Two parameters can be defined: the “efficiency” i.e. the ratio of the
identified false coincidences to the total number of false coincidences existing
in the data sample and “eliminated statistics” i.e. the relative number of
coincidences which had the neural signal higher than the threshold. Both
quantities are functions of the threshold value and they are plotted in Fig. 3.
The optimum setting of the threshold should be chosen so, that the efficiency
is possibly high and, simultaneously, the eliminated statistics is low.
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Fig. 3. Efficiency of cross-talk elimination.
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3.4. Multiple cross-talks

The neutron can be scattered in two detectors and give three signals
(probability of 4 or more is negligible). The efficiency of elimination for one
and two false detections per event is shown in Fig. 4. The multiple cross-
talks are eliminated with higher efficiency than single cross-talks. Such result
is impossible in case of the kinematical methods of cross-talk elimination.
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Fig. 4. Efficiency of elimination for single and multiple cross-talks.

3.5. Correlation function

Fig. b5 presents comparison of eliminated statistics for simulated and
experimental data. Difference between these values is probably caused by
the fact that simulation program does not take into account all aspects of
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Fig. 5. Eliminated statistics for simulated and experimental data.
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the experiment. The optimum threshold was chosen by observing the ex-
perimental correlation function for different thresholds. Analysis started
at value 0.09 where practically all cross-talks were rejected. The price of
this efficiency is an elimination of about 98% real coincidences. Increasing
acceptable output value (with step of 0.005) does not change correlation
function up to 0.110. In this way the optimum answer of network was deter-
mined as 0.105 what corresponds to 99% cross-talk rejection (according to
simulated data) and 67% eliminated statistics. Fig. 6 presents the experi-
mental correlation functions before and after cross-talk elimination for three
different thresholds and the method based on kinematical dependencies [1].
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Fig.6. Experimental correlation functions before and after cross-talk elimination

with the kinematical method [17] and the network method using different threshold
values.

4. Conclusions

The neural network method can be a useful tool for eliminating parasite
effects in correlation analysis of nucleus—nucleus collisions. In particular
the method is effective eliminating cross-talks in the study of two-neutron
small angle correlations. Contrary to other approaches it takes into account
multiple cross-talks too. In an easy way the neural network can incorporate
other input parameters like energy loss information.

The authors are grateful to Prof. Robert Kosirisgki for fruitful discussion.
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