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APPLICATION OF NEURAL NETWORK FORTHE ANALYSIS OF TWO-NEUTRON CORRELATIONSAT SMALL RELATIVE MOMENTA�P. Kindziuk, J. Pluta, T. Pawlak, M. Przewªokiand K. Wosi«skaFaulty of Physis, Warsaw University of TehnologyKoszykowa 75, 00-662 Warsaw, Poland(Reeived Deember 28, 2001)Many of observed phenomena assoiated to physis experiments do nothave a model that allow a good desription. If some e�ets depend onknown parameters in the way whih annot be well desribed, neural net-work an be a useful tool to solve ourring problems. In this paper neuralnetwork is applied to eliminate the false oinidenes (ross-talk) in two-neutron orrelation funtion analysis.PACS numbers: 25.75.Gz, 87.80.Xa1. IntrodutionStudy of two-neutron orrelation funtion at small relative momenta anprovide information about mehanism of heavy ion interations. A di�ultmethodial problem in this analysis is a ross-talk e�et. It ours if the sameneutron is registered in two or more detetors and leads to deformation ofthe orrelation funtion. Known methods of the ross-talk elimination [1,2℄using the kinematial relations of neutron pair annot eliminate the multipleross-talks and rejet a lot of real oinidenes. In this paper a new methodof ross-talk elimination with neural network is presented. It is applied tothe data from the E286 experiment performed in GANIL in whih Ar�Niollisions at 77 GeV/n were investigated.� Presented at the XXVII Mazurian Lakes Shool of Physis, Krzy»e, Poland,September 2�9, 2001. (369)



370 P. Kindziuk et al.2. Feed-forward neural network2.1. Sheme of a single neuronFig. 1 presents a sheme of a single neuron. A neuron has an arbitrarynumber of inputs and a single output. Through every input the neuronreeives signals (input vetor), whih are multiplied by appropriate values(weights). The sum of these values is transformed by a speial funtionalled ativation funtion (') whih gives the output of the neuron. The x0signal (polarization) is always 1. Suh neural network arhiteture is om-monly used [3℄.
Fig. 1. Sheme of a single neuron.2.2. Arhiteture of the networkThe multilayer neural network ontains a number of neurons forminglayers. In the feed-forward neural network there are every-to-every onne-tions between neurons from neighboring layers and there is no information�ow between ells from the same layer. The arhiteture used here ontainsthree inputs, two hidden layers and an output layer (Fig. 2).

Fig. 2. Sheme of a three-layer feed-forward neural network.



Appliation of Neural Network for the Analysis of . . . 3712.3. LearningThe weights of onnetions between neurons ontain information aboutphenomena being analyzed. Learning is a proess of hanging weights inorder to minimize error of the network. To solve problem indiated in thispaper the bak-propagation method was used. In learning step j the outputvalue of neuron m is ym(j) = '0� Xi2M iwi(m)(j)yi(j)1A ; (1)where Mi is a group of neurons that gives the input signal to neuron m. Theweights of the network hange aording to the formula are�wi(m)(j) = �Æm(j) d'(x)dxm(j) y(j)i ; (2)where � is the learning rate parameter, �w hange of weight, y neuron's out-put value, m indexes neurons whih reeive signal, i is the index of a neuronthat signal is oming from and j is the learning step. The di�erene betweenexpeted value z and the output of the network y isÆm(j) = zm(j) � ym(j) : (3)The error an by alulated using this formula only for the output layer. Forhidden layers error is propagated bakward aording toÆm(j) = Xk2M0wm(k)(j)Æk(j) ; (4)where M0 is a group of neurons whih reeives the signal from neuron m.Changes of values are then desribed by the equation�w(m)(j)i = �Æ(j)m �1� y(j)m � yi(j)ym(j) : (5)3. Cross-talk elimination3.1. The ross-talk problemThe interferometry type analysis of nuleus�nuleus ollisions requirestwo-partile information from the detetor. The question is whether thedetetor response onnets the two partiles originating from interationpoint or it is a false response of one partile going through two or moredi�erent detetor modules. That an be known for sure only in simulated



372 P. Kindziuk et al.data. In ase of neutron detetor the parasite e�et of ross-talk is reallysigni�ant and an onsiderably distort the results. The usual way of ross-talk elimination takes into aount the relations between times of �ight ofneutrons and the detetor geometry. The measured energy deposition analso be used in riterion de�nition. The E286 experiment has a detetorgeometry speially designed to allow the ross-talk elimination [4℄. Butthe e�etive ross-talk elimination proedure is very expensive as far as thestatistis is onerned. So the ross-talk elimination is still an open question,whih may be solved by using neural networks.3.2. Desription of the methodThe network has 3 inputs, 10 neurons in two hidden layers and a singleoutput. It was taught using data simulated aording to three moving souremodel [5℄.In order to simulate the detetors answer the MENATE ode [6℄ wasapplied. The learning set had 1476556 events. Eah of the events ontainedthree values for inputs of the network:1. angular distane between detetors that deteted neutrons;2. di�erene of linear distanes between these detetors and emittingsoure;3. time of �ight di�erene between neutrons and orresponding desiredvalue of the output neutron, whih was 0.9 if neutron pair was a ross-talk and 0.1 in ase of true oinidene. These values are determinedby the shape of the ativation funtion whih gives value from openrange (0,1).To onstrut net and perform training the speial program was written bythe authors.The training of the net was performed iteratively. In eah of 100 it-erations whole set of data was proeeded. In the progress of iterationsthe learning rate parameter � was systematially varied to span the range0.2�0.002.To hek the generalization ability of the already trained net it was testedusing another set of data whih ontained 1528328 events simulated by thesame event generator. The next step was testing learnt net using simulateddata.



Appliation of Neural Network for the Analysis of . . . 3733.3. ResultsDuring the presentation of events to the already trained net, the outputneuron aepts the values from the range 0.1�0.9. It was heked that thishoie does not in�uene the e�ieny of the algorithm. In the ideal asethis quantity would be exatly 0.1 or 0.9 for the ase of true oinidenesor ross-talks, respetively. In the real ase the orresponding spetrumof outputs is ontinuous and varies during the learning proedure so, thattrue oinidenes oupy the region of low output values and ross-talks thehigher ones. In the real appliation, the net response to the partiular eventis lassi�ed as aeptable (i.e. as true oinidene), if the output value islower, or as rejeted from the statistis (i.e. as ross-talk), if it is higher thansome preseleted threshold value. Thus, one an obtain relative enrihmentof the aepted data sample into the true oinidene events.Two parameters an be de�ned: the �e�ieny� i.e. the ratio of theidenti�ed false oinidenes to the total number of false oinidenes existingin the data sample and �eliminated statistis� i.e. the relative number ofoinidenes whih had the neural signal higher than the threshold. Bothquantities are funtions of the threshold value and they are plotted in Fig. 3.The optimum setting of the threshold should be hosen so, that the e�ienyis possibly high and, simultaneously, the eliminated statistis is low.

Fig. 3. E�ieny of ross-talk elimination.



374 P. Kindziuk et al.3.4. Multiple ross-talksThe neutron an be sattered in two detetors and give three signals(probability of 4 or more is negligible). The e�ieny of elimination for oneand two false detetions per event is shown in Fig. 4. The multiple ross-talks are eliminated with higher e�ieny than single ross-talks. Suh resultis impossible in ase of the kinematial methods of ross-talk elimination.

Fig. 4. E�ieny of elimination for single and multiple ross-talks.3.5. Correlation funtionFig. 5 presents omparison of eliminated statistis for simulated andexperimental data. Di�erene between these values is probably aused bythe fat that simulation program does not take into aount all aspets of

Fig. 5. Eliminated statistis for simulated and experimental data.



Appliation of Neural Network for the Analysis of . . . 375the experiment. The optimum threshold was hosen by observing the ex-perimental orrelation funtion for di�erent thresholds. Analysis startedat value 0.09 where pratially all ross-talks were rejeted. The prie ofthis e�ieny is an elimination of about 98% real oinidenes. Inreasingaeptable output value (with step of 0.005) does not hange orrelationfuntion up to 0.110. In this way the optimum answer of network was deter-mined as 0.105 what orresponds to 99% ross-talk rejetion (aording tosimulated data) and 67% eliminated statistis. Fig. 6 presents the experi-mental orrelation funtions before and after ross-talk elimination for threedi�erent thresholds and the method based on kinematial dependenies [1℄.
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08Fig. 6. Experimental orrelation funtions before and after ross-talk eliminationwith the kinematial method [17℄ and the network method using di�erent thresholdvalues. 4. ConlusionsThe neural network method an be a useful tool for eliminating parasitee�ets in orrelation analysis of nuleus�nuleus ollisions. In partiularthe method is e�etive eliminating ross-talks in the study of two-neutronsmall angle orrelations. Contrary to other approahes it takes into aountmultiple ross-talks too. In an easy way the neural network an inorporateother input parameters like energy loss information.The authors are grateful to Prof. Robert Kosi«ski for fruitful disussion.
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