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The collective excitations in transuranic nuclei (94 < Z < 102,
146 < N < 158) are studied within the model based on the general Bohr
Hamiltonian modified by including the coupling with the pairing vibrations.
Preliminary results on superdeformed states in 2*4No are also presented.
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1. Introduction

Fast developing spectroscopy of very heavy nuclei provides us with new
data on their excited states [1,2]. On the theoretical side there are several at-
tempts to describe rotational bands of those nuclei (microscopic-macroscopic
methods [3], self-consistent mean field calculations with Skyrme [4, 5] or
Gogny forces [6]). In [7] we have shown the first results on energies and E2
transition probabilities of fermium and nobelium isotopes within the model
based on the generalized Bohr Hamiltonian. The present work covers a wider
region of nuclei with 94 < Z < 102 and 146 < N < 158. We present also
some preliminary results on superdeformed states.

* Presented at the XXVII Mazurian Lakes School of Physics, Krzyze, Poland,
September 2-9, 2001.
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The model that we use to describe quadrupole collective states is an
extension of the generalized Bohr Hamiltonian through including, in an ap-
proximate way, the effects coming from coupling with the pairing vibra-
tions. The collective variables we consider are: Bohr deformation parame-
ters (8,7), Euler angles £2 and A, and A, which are the pairing gaps for
neutrons and protons respectively.

The Hamiltonian of the model can be written as

ﬁCQP - 7:[CQ(/Ba’)/a ‘Qa Apa ATL) + 7:[CP(A]% ATL; /877) . (]‘)

The first term of (1) is the standard generalized Bohr Hamiltonian and
the second term describes collective pairing vibrations of protons and neu-
trons. The dependence of Hcq on A, appears when we calculate inertial
functions (and potential energy) from microscopic theories. Similarly, col-
lective pairing mass parameters depend on deformation of nucleus.

Our approach can be sketched as follows [8]:

1. We determine the Hcp from the nucleon single-particle potential ap-
plying the cranking or generator coordinate method. After solving the
appropriate eigenequation we obtain the ground state of Hep. The
specific feature of this state is that probability density as a function of
A py has its maximum for arguments lower than obtained from the
solution of the BCS equations.

2. In the next step we evaluate the inertial functions entering 7:[cQ taking
the corresponding most probable A, ;). Finally we solve eigenproblem

for 7:lcQ as a matrix equation in a properly constructed basis.

Results presented below have been obtained using Nilsson potential with
the standard set of parameters [9], while strength of the pairing forces was
determined in [10] from the mass differences. The collective potential energy
is calculated using Strutinsky macroscopic-microscopic method.

Important point is that we do not introduce any additional parameters
nor readjust any of existing ones.

2. Energy levels and E2 transition probabilities

The model presented above has been successfully applied in several re-
gions of nuclei with the mass number 100 < A < 160 [8]. It seemed to
be interesting to test its predictions for much heavier systems, especially in
the context of recent experimental successes of in-beam spectroscopy. We
discuss in this section the energy levels and E2 transition probabilities of
nuclei with 94 < Z <102 and 146 < N < 158.
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2.1. Energy levels

In Figs. 1-5 we show theoretical and experimental [11] 2] level (g.s.
band) and bandheads of 5 and < vibrational bands. They are sufficient for
testing theoretical predictions with experiment because most nuclei in this
region are good rotors, with similar values of moment of inertia in g.s., 5 and
v bands (in experiment and in theory, see as e.g. 25°Cf nucleus — Fig. 6).
Note also that in Figs. 1-5 both experimental and theoretical values of the
first 2 state are multiplied by 5.
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Fig.1. Energy levels of Pu isotopes. In Fig. 1-6 open (solid) symbols denote
theoretical (experimental) values
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Fig.2. Energy levels of Cm isotopes

The ground state bands are reproduced quite well, theoretical ZfL level
lies typically 4-5 keV above experimental one. The situation with v bands
is also not bad, but the failure in describing 5 bands indicates that our ap-
proach needs some improvement. One possible cause of this failure could be
the fact that most of considered nuclei have nonzero values of higher defor-
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Fig.3. Energy levels of Cf isotopes, see also caption to Fig. 1
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Fig. 4. Energy levels of Fm isotopes, see also caption to Fig. 1
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Fig.5. No isotopes, see also caption to Fig. 1
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Fig. 6. More detailed picture of 2°°Cf levels

mations (A = 4,6). Such deformations could be partially included into our
model if we would take single particle spectrum from selfconsistent calcula-
tions. In such a case (8,7) will correspond to components of a quadrupole
mass tensor and not to a shape of equipotential surfaces.

2.2. E2 transitions

Theoretical probabilities of transitions 21" — Of are underestimated by
20%—-30% with respect to experimental ones. We show them in Fig. 7 for Cm
isotopes, but the previous statement is true also for other nuclei. The tran-
sitions within the ground state band of 2**Cm (Fig. 8) are not reproduced
perfectly, but one should remember that we do not fit any parameters and
do not use effective charges. There is not much experimental information on
interband transitions, however we give one example from 2*°Cf nucleus:

TABLE 1

B(E?2) probabilities (W.u.) for interband (v — g.s.) transitions in 250Cf

Exp Th

2%(y band) — g.s. 47 0.21 £0.02 0.24
2t 3.7+04 3.2
0t 23+03 1.9
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Fig.7. E2 transition probabilities (2] — 07) in Cm isotopes
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Fig.8. E2 transition probabilities within the ground state band of 28Cm nucleus

3. Superdeformed states

The possibility of a proper description of superdeformed states within
our model is an interesting and less standard question. Such states appear
as a consequence of an existence of the second minimum of potential energy
for large elongation. They have been studied in the framework of general
Bohr Hamiltonian approach for the first time (in A ~ 190) region by Libert
et al. in [12].

Some technical problems appear while investigating superdeformed states,
e.g. the number of basis states should be increased significantly and quite a
lot of work is needed for ensuring desired accuracy and stability of results.
However after solving these problems a set of superdeformed solutions can
be unambiguously identified, e.g. by inspecting their average deformations
B, 7. These quantities are defined through mean values of invariants 32
and (% cos 3y as: = /(B2) and ¥ = arccos((> cos 37)/33)/3, where e.g.
(B%) = fW*BQLP\/ﬁdw, with ¢ and dw denoting the determinant of the met-
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ric tensor and the appropriate volume element respectively (for more details
see [8]). The wave functions ¥ of nuclear states are obtained by solving the
eigenproblem of 7:lCQ as mentioned in Section 1.

We have taken as a test case the nucleus 2°*No, which attracts much
attention recently, but of course the states in the second minimum for this
nucleus are not accessible by present experimental techniques. The interest-
ing question if the spontaneous fission halftime is large enough for the su-
perdeformed states to be observed lies beyond the scope of this paper. Note
however that the experimental value of T}/, for 254No is quite large (about
50 s, [1,2]|) and the main channel of its decay is the « particle emission.

The potential energy has been calculated using the recent liquid drop
model parametrization with a curvature term included proposed by Po-
morski and Dudek [13]|. For small deformations it gives almost the same
results as standard LDM, but for larger 8 the effects of the curvature term
cannot be neglected.

It is probably worthwhile to add a remark on the definition of deforma-
tion parameters /3,7y used in the paper. We apply the same one as in [8,14]
and which can be expressed by giving formulas for the length of semiaxes of
an ellipsoid describing the shape of nucleus:

) 27
Rk :RO(/BafY) <1+\/%/BCOS <7_k?)> 3 k= 172a3 (2)

with Ry (S, y) being determined from the volume conservation. The book [15]
(esp. Chapter 6) contains a very useful compilation of different definitions
used for nuclear shapes and their mutual relationships.

In Fig. 9 we present all levels with J = 0,2,3,4 and E < 3.8 MeV, indi-
cating also their average deformations 3 and 4. One can easily distinguish
the sets of normal and superdeformed solutions. In addition we have plotted
in Fig. 10 the probability densities of the ground state and the lowest SD
state.

Below we give the energies of the lowest SD states in 2**No.
first band

ot Esp,1—3.074 MeV (above the ground state)
2+ Esp1 + 15 keV

4+ Esp1 + 45 keV

[ band

0t Esp g=Fsp,1 + 580 keV

2+ Esp g + 15 keV

It is also interesting to compare our results with cranked HFB calcu-
lations with Gogny forces of Egido and Robledo [6]. They estimated the
energy of the first rotational SD 2% state (relative to SD 07) as 17.3 keV.
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Fig.9. Energy levels below 3.8 MeV in 25*No. Open squares denote “normal” states
i.e. with 0.28<3<0.36 and 10°<5<19° while full squares correspond to superde-
formed states with 0.85<3<0.88 and 3°<y<5°

Fig.10. Contour map of the probability density |#|*,/g as a function of (8,~) for
the ground and the first superdeformed state (2**No). The lines are plotted for the
values of density differing by 2, starting from 0.2 (in units [rad™'])

4. Conclusions

To conclude briefly: the model developed in [8] gives reasonable descrip-
tion of low lying states of the very heavy nuclei however some improvements
are still needed to get better treatment of 5 vibrations. It gives also the
promising perspective of the study of superdeformed states, especially in
the context of recent experimental works [16].
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