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CALCULATIONS OF FISSION BARRIERS WITHDEFORMATION-DEPENDENT ATTENUATIONOF SHELL CORRECTIONS�L. Shvedov, J. Bªoki and J. Wilzy«skiThe A. Soªtan Institute for Nulear Studies05-400 Otwok-�wierk, Poland(Reeived Deember 28, 2001)A marosopi model for alulating �ssion barriers (saddle-point ener-gies) in two versions: with and without aounting for shell e�ets, is pre-sented. Results of alulations with shell e�ets swithed o� agree very wellwith previous purely marosopi alulations done by A.J. Sierk. Com-plete alulations of �ssion barriers (inluding shell e�ets) are done fornulei in the range 66 � Z � 100, for all isotopes with experimentallydetermined barrier heights. With a value of the shell-energy-damping pa-rameter that �ts the ground-state masses of deformed nulei, shell e�etsalmost ompletely disappear at the saddle on�guration, thus leading toa strong manifestation of the ground-state shell e�ets, in agreement withexperimental data.PACS numbers: 25.85.�w 1. IntrodutionPreise knowledge of �ssion-barrier heights is essential for quantitativedesription of nulear �ssion and fusion��ssion reations. In the presentwork we give aount of our alulations of the saddle-point energies basedon a marosopi approah of Sierk [1℄, extended by inlusion of shell e�ets.We alulate the total potential energy of the �ssioning nuleus as the sumof the Coulomb energy (assuming a di�use harge distribution), and thenulear energy taken as the Yukawa-plus-exponential potential [2℄ (replaingthe surfae energy in the liquid drop model). For shell-orretion energieswe take ground-state �shell e�et� energies tabulated in the Thomas�Fermimodel mass preditions of Myers and Swiateki [3℄. Attenuation of the shellenergies with deformation is done aording to a phenomenologial formulaof Myers and Swiateki [4℄.� Presented at the XXVII Mazurian Lakes Shool of Physis, Krzy»e, Poland,September 2�9, 2001. (439)



440 L. Shvedov, J. Bªoki, J. Wilzy«ski2. Parametrization of nulear shapesWe onsider potential energies of �ssioning nulei in on�gurational spaeparametrized the same way as it was done in Ref. [5℄. The shapes areassumed to onsist of two spheres onneted smoothly by a portion of aquadrati surfae of revolution. There are three variables de�ning the volumeonserving shapes: distane � = r=(R1 +R2), nek � = (l1 + l2)=(R1 +R2),and asymmetry � = (R1 �R2)=(R1 +R2).In the above de�nitions, r is the distane between enters of the spheresof radii R1 and R2. Distanes from the inner tips of two spheres to therespetive juntion points with the middle quadrati surfae of revolutionare denoted by l1 and l2. As a parameter determining the transition frommononulear to dinulear regime, we take the window opening parameter� = [1 � (1 � �)�℄=(1 ��2). A value of this parameter � = 1 orrespondsto the transition between onave and onvex shapes. For � > 1 we haveonvex mononulear shapes, while for � < 1 shapes beome dinulear. Theyapproah sission line for � = 0.In our alulations we attempt to determine the �ssion barrier for a givennuleus that represents the height of the saddle point with respet to theequilibrium shape. The searh of the saddle point is done in two-dimensionalspae (�; �), assuming symmetri �ssion, i.e., we assume � = 0.3. Potential energyThe potential energy is alulated as a sum of the nulear potentialtaken in form of the Yukawa-plus-exponential potential of Krappe, Nix andSierk [2℄ and the Coulomb potential taken for realisti harge distributionwith surfae di�useness [6℄. In addition to the marosopi energy, shellorretions are also inluded in the total potential energy.3.1. Nulear energyFollowing presription of Ref. [2℄, the nulear part of the potential energyis given as a double volume integral of the Yukawa-plus-exponential foldingfuntion En = � Cs8�2r20a3 ZZ ��a � 2� e��=a� d3~r d3~r 0 ; (1)where � = j~r � ~r 0j, Cs = as(1 � ksI2) and I = (N � Z)=A. For parame-ters r0, a, as and ks we have taken values obtained from the �t to nulearmasses [7℄. After applying the Gauss divergene theorem, Eq. (1) an betransformed into the double surfae integral. For axially symmetri shapes,



Calulations of Fission Barriers with Deformation-Dependent : : : 441Eq. (1) redues to the following three-dimensional integral:En = Cs4�r20 ZZZ�2� ���a�2 + 2�a + 2� e��a� P2(z; z0)P2(z0; z)�4 dz dz0 d� ;(2)where P2(z; z0) = P (z) �P (z)� P (z0) os�� dPdz (z � z0)� : (3)Here � = P (z) represents equation of nulear surfae in ylindrial o-ordinates �, z, �. In these oordinates, the distane � is given by � =[P 2(z) + P 2(z0)� 2P (z)P (z0) os �+ (z � z0)2℄1=2.3.2. Coulomb energyThe Coulomb energy is alulated for a di�use harge distribution sim-ulated by folding the Yukawa funtion with a range a over sharp hargedistribution. We an write the Coulomb energy as E = Esharp +�E. Us-ing a similar proedure as for nulear part of the potential energy, the sharput-o� omponent of the Coulomb energy takes the following expression:Esharp = �6 �20 ZZZ P2(z; z0)P2(z0; z)� dz dz0 d�; (4)where �0 is the harge density.Similarly, the orretion of the Coulomb energy for the di�useness anbe expressed as:�E = � �a�20 ZZZ P2(z; z0)P2(z0; z)�4� �2� � 5 +�5 + 3� + 12�2� e��� dz dz0 d�; (5)where � = �=a.All ontributions to the potential energy given by Eqs. (2), (4) and (5)are three-dimensional integrals whih have to be alulated numerially.3.3. Shell orretionsAs it was mentioned previously, we orret the potential energies atthe equilibrium shape by shell orretions taken from the Thomas�Fermiground-state mass tables of Myers and Swiateki [3℄. We assume that theshell-orretion energies S are attenuated by deformation aording to aphenomenologial formula [4℄:



442 L. Shvedov, J. Bªoki, J. Wilzy«ski~S(shape) = S(1� 2�2)e��2 ; (6)where �2 = 14�a2 Z [r(�; �)�R0℄2 d
 (7)is a measure of departure from spherial shape. The onstant a2 = 0:265 fm2has been determined in Ref. [4℄ by �tting ground-state masses of deformednulei.An e�etive shell orretion at the saddle on�guration is intermediatebetween mononulear and dinulear regimes, dominated by the shell stru-ture of the ompound nuleus and �ssion fragments, respetively. To makea smooth transition between both regimes we alulate the shell orretionfor a given shape as~S(shape) = ~S:s: sin�+ ( ~S1 + ~S2)(1 � sin�) ; (8)where � is de�ned in Se. 2, ~S:s: is the shell energy of the deformed ompositesystem treated as a mononuleus, while ~S1 and ~S2 are shell energies of thetwo fragments viewed as omponents of a dinulear system. All three shellenergies, ~S:s:, ~S1 and ~S2, are alulated aording to Eqs. (6) and (7).4. ResultsWe alulate �ssion barriers for di�erent nulei by determining the extre-mum (saddle point) of two-dimensional potential-energy funtion Epot(�; �),taken relative to the ground-state energy.In Fig. 1 we show the �ssion-barrier heights alulated with our model intwo versions: with and without shell e�ets. It is seen that the alulationswithout shell e�ets agree very well with purely marosopi preditions ofSierk [1℄. This result shows that heights of the �marosopi� �ssion barriersare not sensitive to partiular hoie of shape parametrization, the onlyfator the two shemes of alulations di�er.Very di�erent preditions of the �ssion barriers are obtained, however,in alulations with inlusion of shell orretions (see triangles in Fig. 1).Obviously, the most spetaular inrease of the �ssion barrier is preditedfor a losed-shell nuleus 208Pb. As a onsequene of the inlusion of shelle�ets, a kind of stabilization of the �ssion barriers for the heaviest nulei ata level of 5�6 MeV is observed, whereas results of the alulations withoutshell orretions show steady derease, and �nally disappearane of �ssionbarriers for the heaviest nulei.
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Fig. 1. Fission barriers for di�erent atomi numbers of �ssioning nulei alulatedin the present model, and ompared with preditions of the marosopi model ofSierk [1℄. Calulations have been done for one isotope of eah element.It should be noted that the observed distint dependene of �ssion barri-ers on shell e�ets is a onsequene of a strong damping of shell e�ets withdeformation, as presribed by Eqs. (6)�(8). Our alulations show that at-tenuation of shell e�ets due to deformation of the �ssioning nuleus is quitestrong. With a value of the damping parameter a2 = 0:265 fm2 that �ts [4℄ground-state masses of deformed nulei, shell e�ets get almost ompletelywashed out at the saddle on�guration. Myers and �wi¡teki omparingin Ref. [8℄ their predited Thomas�Fermi �ssion barriers with experimentaldata also pointed out that shell e�ets almost ompletely vanish at deforma-tions orresponding to the saddle point. Consequently, the �ssion barriers,alulated as the energy at the saddle point (with damped shell e�ets) rel-ative to the ground-state energy, diretly depend on the magnitude of theshell-orretion energy at the ground state.In Fig. 2 we present omplete set of �ssion barriers alulated with inlu-sion of shell e�ets. These results are ompared with experimental �ssion-barrier heights ompiled in Refs. [9,10℄. One an see a very good agreementbetween theoretial and experimental results throughout the entire range ofnulei with known barriers, for elements from Dysprosium to Fermium. Veryirregular behaviour in the viinity of losed-shell nulei is satisfatorily repro-dued. Espeially good agreement is observed for heavy nulei. The overallaverage disrepany between theoretial and experimental �ssion barriers isabout 1 MeV.
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Fig. 2. Fission barriers dedued from experimental data [10,11℄ for over 120 isotopesof di�erent elements of 66 � Z � 100; ompared with preditions of the presentmodel.This work was supported by the Poland�USA Maria Skªodowska-CurieJoint Fund II, under Projet no. PAA/DOE-98-34, and by the Polish StateCommittee of Sienti� Researh (KBN), Grant no. 2P03B05419.REFERENCES[1℄ A.J. Sierk, Phys. Rev. C33, 2039 (1986).[2℄ H.J. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C20, 992 (1979).[3℄ W.D. Myers, W.J. Swiateki, Report LBL-36803, Berkeley 1994.[4℄ W.D. Myers, W.J. Swiateki, Ark. Fys. 36, 343 (1966).[5℄ J. Bªoki, W.J. �wi�ateki, Report LBL-12811, Berkeley 1982.[6℄ K.T.R. Davies, J.R. Nix, Phys. Rev. C14, 1977 (1976).[7℄ P. Möller, J.R. Nix, Nul. Phys. A361, 117 (1981).[8℄ W.D. Myers, W.J. �wi¡teki, Phys. Rev. C60, 014606 (1999).[9℄ L.G. Moretto et al., Phys. Lett. B38, 471 (1972).[10℄ A. Mamdouh et al., Nul. Phys. A644, 389 (1998), and referenes therein.


