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A macroscopic model for calculating fission barriers (saddle-point ener-
gies) in two versions: with and without accounting for shell effects, is pre-
sented. Results of calculations with shell effects switched off agree very well
with previous purely macroscopic calculations done by A.J. Sierk. Com-
plete calculations of fission barriers (including shell effects) are done for
nuclei in the range 66 < Z < 100, for all isotopes with experimentally
determined barrier heights. With a value of the shell-energy-damping pa-
rameter that fits the ground-state masses of deformed nuclei, shell effects
almost completely disappear at the saddle configuration, thus leading to
a strong manifestation of the ground-state shell effects, in agreement with
experimental data.

PACS numbers: 25.85.—w

1. Introduction

Precise knowledge of fission-barrier heights is essential for quantitative
description of nuclear fission and fusion—fission reactions. In the present
work we give account of our calculations of the saddle-point energies based
on a macroscopic approach of Sierk [1], extended by inclusion of shell effects.
We calculate the total potential energy of the fissioning nucleus as the sum
of the Coulomb energy (assuming a diffuse charge distribution), and the
nuclear energy taken as the Yukawa-plus-exponential potential [2| (replacing
the surface energy in the liquid drop model). For shell-correction energies
we take ground-state “shell effect” energies tabulated in the Thomas—Fermi
model mass predictions of Myers and Swiatecki [3]. Attenuation of the shell
energies with deformation is done according to a phenomenological formula
of Myers and Swiatecki [4].
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2. Parametrization of nuclear shapes

We consider potential energies of fissioning nuclei in configurational space
parametrized the same way as it was done in Ref. [5]. The shapes are
assumed to consist of two spheres connected smoothly by a portion of a
quadratic surface of revolution. There are three variables defining the volume
conserving shapes: distance p = r/(R1 + Ra), neck A = (I1 +12)/(R1 + Ry),
and asymmetry A = (R; — Rz2)/(R1 + R2).

In the above definitions, r is the distance between centers of the spheres
of radii R; and Rs. Distances from the inner tips of two spheres to the
respective junction points with the middle quadratic surface of revolution
are denoted by l; and l. As a parameter determining the transition from
mononuclear to dinuclear regime, we take the window opening parameter
a=[l—(1-Xp]/(1— A?%). A value of this parameter a = 1 corresponds
to the transition between concave and convex shapes. For @ > 1 we have
convex mononuclear shapes, while for o < 1 shapes become dinuclear. They
approach scission line for a = 0.

In our calculations we attempt to determine the fission barrier for a given
nucleus that represents the height of the saddle point with respect to the
equilibrium shape. The search of the saddle point is done in two-dimensional
space (p, A), assuming symmetric fission, i.e., we assume A = 0.

3. Potential energy

The potential energy is calculated as a sum of the nuclear potential
taken in form of the Yukawa-plus-exponential potential of Krappe, Nix and
Sierk [2] and the Coulomb potential taken for realistic charge distribution
with surface diffuseness [6]. In addition to the macroscopic energy, shell
corrections are also included in the total potential energy.

3.1. Nuclear energy

Following prescription of Ref. [2], the nuclear part of the potential energy
is given as a double volume integral of the Yukawa-plus-exponential folding

function
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where o = |7 — 7’|, Cs = as(1 — ksI?) and I = (N — Z)/A. For parame-
ters rg, a, as and ks we have taken values obtained from the fit to nuclear
masses [7]. After applying the Gauss divergence theorem, Eq. (1) can be
transformed into the double surface integral. For axially symmetric shapes,
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Eq. (1) reduces to the following three-dimensional integral:
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Py(z,2") = P(z) P(z)—P(z)cosc;ﬁ—E(z—z) . (3)
Here p = P(z) represents equation of nuclear surface in cylindrical co-

ordinates p, z, ¢. In these coordinates, the distance o is given by o =
[P2(2) + P%(2') — 2P(2)P(2') cos ¢ + (z — 2')?]1/2.

3.2. Coulomb energy

The Coulomb energy is calculated for a diffuse charge distribution sim-
ulated by folding the Yukawa function with a range a. over sharp charge
distribution. We can write the Coulomb energy as F, = ESharp AFE,.. Us-
ing a similar procedure as for nuclear part of the potential energy, the sharp
cut-off component of the Coulomb energy takes the following expression:
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where pg is the charge density.
Similarly, the correction of the Coulomb energy for the diffuseness can
be expressed as:
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where 0. = o/a..
All contributions to the potential energy given by Eqgs. (2), (4) and (5)
are three-dimensional integrals which have to be calculated numerically.

3.3. Shell corrections

As it was mentioned previously, we correct the potential energies at
the equilibrium shape by shell corrections taken from the Thomas—Fermi
ground-state mass tables of Myers and Swiatecki [3]. We assume that the
shell-correction energies S are attenuated by deformation according to a
phenomenological formula [4]:
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S(shape) = S(1 — 262)e®”, (6)
where

6> = s [1r0.9) ~ BoP a2 (7)

is a measure of departure from spherical shape. The constant a? = 0.265 fm?
has been determined in Ref. [4] by fitting ground-state masses of deformed
nuclei.

An effective shell correction at the saddle configuration is intermediate
between mononuclear and dinuclear regimes, dominated by the shell struc-
ture of the compound nucleus and fission fragments, respectively. To make
a smooth transition between both regimes we calculate the shell correction
for a given shape as

S(shape) = Se sina + (51 4+ S5)(1 —sina) , (8)

where « is defined in Sec. 2, S g, is the shell energy of the deformed composite
system treated as a mononucleus, while S; and S, are shell energies of the
two fragments viewed as components of a dinuclear system. All three shell
energies, Ses., S1 and So, are calculated according to Eqs. (6) and (7).

4. Results

We calculate fission barriers for different nuclei by determining the extre-
mum (saddle point) of two-dimensional potential-energy function Ey(p, M),
taken relative to the ground-state energy.

In Fig. 1 we show the fission-barrier heights calculated with our model in
two versions: with and without shell effects. It is seen that the calculations
without shell effects agree very well with purely macroscopic predictions of
Sierk [1]. This result shows that heights of the “macroscopic” fission barriers
are not sensitive to particular choice of shape parametrization, the only
factor the two schemes of calculations differ.

Very different predictions of the fission barriers are obtained, however,
in calculations with inclusion of shell corrections (see triangles in Fig. 1).
Obviously, the most spectacular increase of the fission barrier is predicted
for a closed-shell nucleus 2°®Pb. As a consequence of the inclusion of shell
effects, a kind of stabilization of the fission barriers for the heaviest nuclei at
a level of 5-6 MeV is observed, whereas results of the calculations without
shell corrections show steady decrease, and finally disappearance of fission
barriers for the heaviest nuclei.
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Fig. 1. Fission barriers for different atomic numbers of fissioning nuclei calculated
in the present model, and compared with predictions of the macroscopic model of
Sierk [1]. Calculations have been done for one isotope of each element.

It should be noted that the observed distinct dependence of fission barri-
ers on shell effects is a consequence of a strong damping of shell effects with
deformation, as prescribed by Egs. (6)—(8). Our calculations show that at-
tenuation of shell effects due to deformation of the fissioning nucleus is quite
strong. With a value of the damping parameter a? = 0.265 fm? that fits [4]
ground-state masses of deformed nuclei, shell effects get almost completely
washed out at the saddle configuration. Myers and Swiatecki comparing
in Ref. [8] their predicted Thomas—Fermi fission barriers with experimental
data also pointed out that shell effects almost completely vanish at deforma-
tions corresponding to the saddle point. Consequently, the fission barriers,
calculated as the energy at the saddle point (with damped shell effects) rel-
ative to the ground-state energy, directly depend on the magnitude of the
shell-correction energy at the ground state.

In Fig. 2 we present complete set of fission barriers calculated with inclu-
sion of shell effects. These results are compared with experimental fission-
barrier heights compiled in Refs. [9,10]. One can see a very good agreement
between theoretical and experimental results throughout the entire range of
nuclei with known barriers, for elements from Dysprosium to Fermium. Very
irregular behaviour in the vicinity of closed-shell nuclei is satisfactorily repro-
duced. Especially good agreement is observed for heavy nuclei. The overall
average discrepancy between theoretical and experimental fission barriers is
about 1 MeV.
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Fig. 2. Fission barriers deduced from experimental data [10,11] for over 120 isotopes
of different elements of 66 < Z < 100, compared with predictions of the present
model.
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