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COMPARISON BETWEEN WEISSKOPF ANDTHOMAS�FERMI MODEL FOR PARTICLE EMISSIONWIDTHS FROM HOT DEFORMED NUCLEI� ��Agnieszka Surowie, Krzysztof PomorskiInstitute of Physis, M. Curie-Skªodowska UniversityRadziszewskiego 10, 20-031 Lublin, PolandChristelle Shmitt and Johann BartelIReS, ULP and IN2P3/CNRS, 67037 Strasbourg, Frane(Reeived Deember 28, 2001)The emission widths �n and �p for emission of neutrons and protonsare alulated within the Thomas�Fermi model, whih we have reentlydevelopped, and are ompared with those obtained in the usual Weisskopfapproah for the ase of zero angular momentum. Both methods yieldquite similar results at small deformations, but rather important di�erenesare observed for very deformed shapes, in partiular for harged partiles.A possible generalization of the model for emission of �-partiles is alsodisussed.PACS numbers: 24.60.Dr, 24.60.�k, 24.75.+i1. IntrodutionThe observation of light partiles in partiular neutrons, protons and�-partiles emitted in the ourse of the �ssion proess from an exited androtating nuleus between the ompat initial shape to the sission point anprovide interesting information on the �ssion proess. We shell, in partiular,� Presented at the XXVII Mazurian Lakes Shool of Physis, Krzy»e, Poland,September 2�9, 2001.�� This work has been partly supported by the Polish State Committee for Sienti�Researh (KBN) under ontrat no. 2P03B 011 12, by the Program of Sienti�Exhange between IN2P3, Frane and the Polish Researh Institution no. 99-95 andthe POLONIUM agreement no. 01704UG.(479)



480 A. Surowie et al.study the light-partile emission width �� for a partile of type � from hotand deformed but nonrotating (L = 0) nulei. The emission widths arealulated within the Thomas�Fermi model and the standard Weisskopfapproah [1℄. 2. Weisskopf theoryAording to the Weisskopf evaporation theory [1℄ the partial deaywidth � ��� (E�; L) for emission of a light partile of type � with energy "� andorbital angular momentum `� from a generally deformed ompound nuleuswith exitation energy E� and rotational angular momentum L is given by� ��� (E�; L) = 2S� + 12�~�(E�; L) L+`�XLR=jL�`�j "�+�"�=2Z"���"�=2w�("; `�) �R(E�R; LR) d" ;(1)where the level densities are given by [2℄�(E�; L) = (2L+ 1)� ~22J �3=2pa e2paE�12E�2 : (2)Here J represents the moment of inertia and a the level density parameterof the ompound nuleus at given deformation. E�R, LR and �R are the exi-tation energy, angular momentum and level density of the residual nuleus,and S� is the intrinsi spin of the emitted partile. w� is the transmissionoe�ient evaluated in the semilassial approah for emission of a partileof type �, with energy " and angular momentum `�. This quantity also de-pends on mass and harge number, nulear deformation and on the surfaepoint of the deformed ompound nuleus from whih and the diretion intowhih the partile � is emitted.3. Thomas�Fermi approximationThe Thomas�Fermi Approah (TFA) [4℄ alulates the transition rates� ��� through the probability that a light partile whih inpinges on the nu-lear surfae at the surfae point ~r 00 with a veloity ~v 0 is atually transmitted.The number n� of partiles of type � whih are emitted per time unitthrough the surfae S of the �ssioning nuleus is given byn� = ZS d� Z d3p0 f�(~r 00 ; ~p 0) v0?(~r 00 )w�(v0?(~r 00 )) : (3)



Comparison Between Weisskopf and Thomas�Fermi Model for . . . 481Primed quantities like the momentum ~p 0 and the veloity ~v 0 always referto the body-�xed frame. v0? is the veloity omponent perpendiular to thesurfae at the surfae point ~r 00 and w�(v0?(~r 00 )) is the lassial transmissionoe�ient for emission of a partile of type �.The momentum of the partile of mass m in the laboratory frame isgiven by ~p = m~v 0 +m~!�~r 0, with ~! the angular veloity of the nuleus inthis frame.The quantity f�(~r 0; ~p 0) appearing in Eq. (3) is the lassial phase-spaedistribution funtion (so alled Wigner funtion)f�(~r 0; ~p 0) = 2h3 11 + exp h 1T � p022m + U� � !`0 � ���i ; (4)where �� is the hemial potential and `0 the body-�xed angular momentumin the diretion of the rotation axis.The potential U� felt by the partile of type � is taken asU�(~r 0) = V (�)SW(~r 0) + VCb(~r 0) Æ�;p ; (5)where V (�)SW is a Saxon�Woods mean-�eld potential of standard depth, ra-dius and di�useness and VCb is the Coulomb potential experiened only byprotons.Let us just mention that one an easily show the link of this mirosopilassial expression with the Weisskopf's formulation. Then the expressiond2n�d"�d`��"�`represents the emission probability per unit time of a partile � with given�nal energy "� and given �nal angular momentum `� [5℄ orresponding tothe Weisskopf formula given above:� ��� = d2n�d"�d`��"�` : (6)Emission rates an be then easily determined for neutrons and protons wherethe distribution funtion f�(~r 0; ~p 0) is known.We have shown analytially [5℄ that for spherial, non rotating nuleiboth models lead to pratially the same partial deay rates.



482 A. Surowie et al.4. Phase-spae distribution funtion for �-partileThe determination of the phase-spae distribution funtion is muh moreintriate in the ase of �-partiles, whih are omposite partiles. We areat present working on a model in whih one assumes that the �-partile isdesribed by a distribution funtion f� built from two orrelated proton andneutron pairs. Following a suggestion by Dietrih we write [6℄:f�(~R; ~P ) = 1h3 Z In1In2Ip1Ip2 d�n1 d�n2 d�p1 d�p2 Æ (��) : (7)where ��i denotes spin oordinate of partile �i and Æ (��) is the projetionoperator on the spin of the �-partile.Suh 4 orrelated nuleons (2 protons, 2 neutrons) whih reate an �-partile should be lose to eah other and have almost parallel momenta.This is the basi Ansatz for the temperature dependent probability f�(~R; ~P )to �nd an � luster with momentum ~P at the position ~R in a nuleus oftemperature T : f�(~R; ~P ) = 1h3 In1In2Ip1Ip2 ; (8)where e.g. for the �rst neutron funtion I� is given by the interval:In1 = N�1�2 Z ~fn1 (~r1; ~p1) e� ( ~r1�~R)22�21 e�� ~p1� ~P4 �22�22~2 d3r1 d3p1 ; (9)with: ~fn(~r; ~p) = 11 + exp h 1T � p22m � Un(~r)� !lx � �n�i ; (10)where �1 is the width of the Gaussian oordinate distribution and �2 theorresponding width in momentum spae with the overall normalizationfator N�1�2 = 1(2��1�2~)3 :The emission width �� for �-partiles is then obtained in our Thomas�Fermi model through Eq. (8). 5. ResultsFigure 1 gives a omparison of the neutron and proton emission ratesobtained in the two approahes for the nuleus 188Pt for di�erent values ofthe olletive (deformation) oordinate q = R12=R0 (see Ref. [3℄).
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Fig. 1. Comparison between the emission rates �n and �p for neutrons and protonsobtained in the Weisskopf and the distribution-funtion approah.As one an notie both approahes yield emission rates that are almostidential for small deformations. For large nulear deformations (lose tothe sission on�guration) this is still the ase for the neutron width �n,whereas the proton emission width �p is muh larger in the Thomas�Fermiapproah as ompared to the Weisskopf model.Figure 2 shows the behaviour of the phase-spae distribution funtionfor �-partiles for di�erent Gaussian width �2 in momentum spae. Onenoties that this funtion is very sensitive to its momentum distribution.The omparison between the � emission width obtained in the Weisskopftheory and the Thomas�Fermi approah shown in �gure 3 was obtained fora value of the Gaussian momentum width parameter of �2 = 0:0685 fm�1.In this �gure one an see that the �-partile an be only emitted withvery large energy. Here we have made the assumption that the potentialexperiened by �-partile is the sum of the four single partile potential ofneutrons and protons.
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Fig. 2. Distribution funtion for �-partile for di�erent Gaussian width �2 in mo-mentum spae.
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Fig. 3. Comparison between the emission rate �� for �-partile obtained in theWeisskopf and the distribution-funtion approah.6. ConlusionSumming up the results obtained in our researh one may say that thephase-spae distribution funtion approah gives results not muh di�erentfrom the Weisskopf evaporation theory. But the new model desribes alsothe emission rates for light partiles in a given diretion of spae. We ansay that for neutrons both approhes yield very similar results.The behaviour of the deformation dependene of the proton emissionwidth �p an be understood if one keeps in mind that the Coulomb barrierwhih the harged partiles have to overome depends (for deformed nulei)on the diretion of the emitted partile. It leads to a large enhanement ofthe emission width of protons from very deformed nulei.



Comparison Between Weisskopf and Thomas�Fermi Model for . . . 485Investigating the phase-spae distribution funtion approah for �-parti-les one an onlude that it depends, in a very sensitive way, on its mo-mentum distribution and on the parameters of the single partile potential.These parameters will be worked out in the future. We did not attempt todo this here also beause of the lak of the orresponding experimental data.REFERENCES[1℄ V. Weisskopf, Phys. Rev. 52, 295 (1937).[2℄ H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937).[3℄ K. Pomorski, J. Bartel, J. Rihert, K. Dietrih, Nul. Phys. A605, 87 (1996).[4℄ K. Dietrih, K. Pomorski, J. Rihert, Z. Phys. A351, 397 (1995).[5℄ K. Pomorski, B. Nerlo-Pomorska, A. Surowie, M. Kowal, J. Bartel, K. Dietrih,J. Rihert, C. Shmitt, B. Benoit, E. de Goes Brennand, L. Donadille, C. Badi-mon, Nul. Phys. A679, 25 (2000).[6℄ K. Dietrih, private ommuniation.


