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The emission widths I, and I}, for emission of neutrons and protons
are calculated within the Thomas—Fermi model, which we have recently
developped, and are compared with those obtained in the usual Weisskopf
approach for the case of zero angular momentum. Both methods yield
quite similar results at small deformations, but rather important differences
are observed for very deformed shapes, in particular for charged particles.
A possible generalization of the model for emission of a-particles is also
discussed.

PACS numbers: 24.60.Dr, 24.60.—k, 24.75.+i

1. Introduction

The observation of light particles in particular neutrons, protons and
a-particles emitted in the course of the fission process from an excited and
rotating nucleus between the compact initial shape to the scission point can
provide interesting information on the fission process. We shell, in particular,
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study the light-particle emission width I, for a particle of type v from hot
and deformed but nonrotating (L = 0) nuclei. The emission widths are
calculated within the Thomas—Fermi model and the standard Weisskopf
approach [1].

2. Weisskopf theory

According to the Weisskopf evaporation theory [1] the partial decay
width I'}""(E*, L) for emission of a light particle of type v with energy ¢,, and
orbital angular momentum ¢, from a generally deformed compound nucleus
with excitation energy E* and rotational angular momentum L is given by
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where the level densities are given by [2]
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Here J represents the moment of inertia and a the level density parameter
of the compound nucleus at given deformation. Ey, Lr and pg are the exci-
tation energy, angular momentum and level density of the residual nucleus,
and S, is the intrinsic spin of the emitted particle. w, is the transmission
coefficient evaluated in the semiclassical approach for emission of a particle
of type v, with energy ¢ and angular momentum ¢,. This quantity also de-
pends on mass and charge number, nuclear deformation and on the surface
point of the deformed compound nucleus from which and the direction into
which the particle v is emitted.
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3. Thomas—Fermi approximation

The Thomas—Fermi Approach (TFA) [4] calculates the transition rates
I} through the probability that a light particle which inpinges on the nu-
clear surface at the surface point 7] with a velocity ¢’ is actually transmitted.

The number n, of particles of type v which are emitted per time unit
through the surface S of the fissioning nucleus is given by

Ny = /dO' /dBPI fl/(ﬁ)laﬁl) UIJ_(FE)I) wV(UIJ-(IFE)I)) (3)
S
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Primed quantities like the momentum p”’ and the velocity v’ always refer
to the body-fixed frame. v’, is the velocity component perpendicular to the
surface at the surface point 7 and w, (v' (7)) is the classical transmission
coefficient for emission of a particle of type v.

The momentum of the particle of mass m in the laboratory frame is
given by p'= mv’ + mad x 7', with @ the angular velocity of the nucleus in
this frame.

The quantity f, (7', p”) appearing in Eq. (3) is the classical phase-space
distribution function (so called Wigner function)

o2 1
f”(rl’pl) G 14 exp [% (% + Uy —wll _MV)]

; (4)

where p,, is the chemical potential and ¢’ the body-fixed angular momentum
in the direction of the rotation axis.
The potential U, felt by the particle of type v is taken as

U, (7") = VA (F") + Vo (') 6up (5)

where VS(\',/J is a Saxon-Woods mean-field potential of standard depth, ra-
dius and diffuseness and V(y, is the Coulomb potential experienced only by
protons.

Let us just mention that one can easily show the link of this microscopic
classical expression with the Weisskopf’s formulation. Then the expression

Ae AV

represents the emission probability per unit time of a particle v with given
final energy €, and given final angular momentum ¢, [5] corresponding to
the Weisskopf formula given above:

pk _ d*n,
v de,db,,

Emission rates can be then easily determined for neutrons and protons where
the distribution function f,(7’,p") is known.

We have shown analytically [5] that for spherical, non rotating nuclei
both models lead to practically the same partial decay rates.

Ae AL (6)
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4. Phase-space distribution function for a-particle

The determination of the phase-space distribution function is much more
intricate in the case of a-particles, which are composite particles. We are
at present working on a model in which one assumes that the a-particle is
described by a distribution function f,, built from two correlated proton and
neutron pairs. Following a suggestion by Dietrich we write [6]:

1

folB, P) = —
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where 0, denotes spin coordinate of particle v; and 0 (0,) is the projection
operator on the spin of the a-particle.

Such 4 correlated nucleons (2 protons, 2 neutrons) which create an a-
particle should be close to each other and have almost parallel momenta.
This is the basic Ansatz for the temperature dependent probablhty fa(R P)
to find an a cluster with momentum P at the position R in a nucleus of
temperature T':

fol B P) = s T T Ty (8)
where e.g. for the first neutron function I, is given by the interval:
o (i)
2
1
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with:
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where (31 is the width of the Gaussian coordinate distribution and (o the
corresponding width in momentum space with the overall normalization

factor
1

(2mB1Pah)3

The emission width I, for a-particles is then obtained in our Thomas—
Fermi model through Eq. (8).

Nﬂ1/32 =

5. Results

Figure 1 gives a comparison of the neutron and proton emission rates
obtained in the two approaches for the nucleus ¥ Pt for different values of
the collective (deformation) coordinate ¢ = R12/ Ry (see Ref. [3]).
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Fig.1. Comparison between the emission rates I3, and I}, for neutrons and protons
obtained in the Weisskopf and the distribution-function approach.

As one can notice both approaches yield emission rates that are almost
identical for small deformations. For large nuclear deformations (close to
the scission configuration) this is still the case for the neutron width I},
whereas the proton emission width I}, is much larger in the Thomas-Fermi
approach as compared to the Weisskopf model.

Figure 2 shows the behaviour of the phase-space distribution function
for a-particles for different Gaussian width Sy in momentum space. One
notices that this function is very sensitive to its momentum distribution.
The comparison between the « emission width obtained in the Weisskopf
theory and the Thomas—Fermi approach shown in figure 3 was obtained for
a value of the Gaussian momentum width parameter of S5 = 0.0685 fm~".

In this figure one can see that the a-particle can be only emitted with
very large energy. Here we have made the assumption that the potential
experienced by a-particle is the sum of the four single particle potential of
neutrons and protons.



484 A. SUROWIEC ET AL.

0.016
0.014
0.012 H\}
0.01 |\
0.008 |
0.006 |
0.004 |
0.002 |

0

E':
[32

2

0.0485 —
0.0685 —
0.1085 -eeeeeee-

f, [1/h%]

188Pt

q=0.73

0O 5 10 15 20 25 30 35 40
eq [MeV]

Fig.2. Distribution function for a-particle for different Gaussian width £ in mo-
mentum space.
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Fig.3. Comparison between the emission rate I, for a-particle obtained in the
Weisskopf and the distribution-function approach.

6. Conclusion

Summing up the results obtained in our research one may say that the
phase-space distribution function approach gives results not much different
from the Weisskopf evaporation theory. But the new model describes also
the emission rates for light particles in a given direction of space. We can
say that for neutrons both approches yield very similar results.

The behaviour of the deformation dependence of the proton emission
width I, can be understood if one keeps in mind that the Coulomb barrier
which the charged particles have to overcome depends (for deformed nuclei)
on the direction of the emitted particle. It leads to a large enhancement of
the emission width of protons from very deformed nuclei.
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Investigating the phase-space distribution function approach for a-parti-
cles one can conclude that it depends, in a very sensitive way, on its mo-
mentum distribution and on the parameters of the single particle potential.
These parameters will be worked out in the future. We did not attempt to
do this here also because of the lack of the corresponding experimental data.
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