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QCD AND PROTON AND PHOTON STRUCTURESINCE DIS2001�J.J. WhitmoreU.S. National Siene Foundationand University of Pennsylvania, Philadelphia, PA 19104, USA(Reeived August 12, 2002)Results on proton and photon struture that have beome availablesine the DIS2001 meeting are summarized.PACS numbers: 13.85.Qk, 14.20.Dh, 14.70.Bh1. IntrodutionEah of the two HERA ollider experiments, H1 and ZEUS, have nowolleted 16 pb�1 of e�p data with a proton beam energy of 920 GeV andabout 100 pb�1 of e+p data with a proton energy of 820 or 920 GeV. The re-sults presented here are given in terms of the usual Deep Inelasti Sattering(DIS) variables: s, the square of the ep enter of mass energy; Q2 = �q2,the negative square of the four-momentum transfer of the virtual photon(essentially the �size� of the probing photon); x = (Q2=2p)q, the fration ofthe proton's momentum arried by the struk quark; and y, the inelastiityparameter. These variables are related by the expression Q2 = sxy.2. Measurements of the proton struture funtion, F2The kinemati region for DIS at HERA an be onsidered in three gen-eral areas. The transition region from photoprodution (Q2 � 0) to the DISregion ours near Q2 � 1 GeV2; Q2 > 4 GeV2 is the perturbative QCD(pQCD) region; and for Q2 > 104 GeV2, the eletroweak (EW) setor over-laps with the Tevatron data and distanes down to 1/1000 th of the size ofthe proton are probed.� Plenary presentation at the X International Workshop on Deep Inelasti Sattering(DIS2002) Craow, Poland, 30 April�4 May, 2002.(2727)



2728 J.J. Whitmore2.1. Equations for ross setionsThe ross setions for DIS an be expressed asd�e�pdxdQ2 = 2��2xQ4 �Y+F2 � y2FL � Y�xF3� ; (1)with Y� = 1� (1� y)2. The struture funtion FNC2 an be written asFNC2 = x XquarksAf �Q2� �q �x;Q2�+ �q �x;Q2�� : (2)FL is the longitudinal struture funtion and the parity violating term xFNC3is sensitive only to valene quarksxFNC3 = x XquarksBf �Q2� �q �x;Q2�� �q �x;Q2�� : (3)The redued ross setions are de�ned as~�NC = 1Y+ xQ42��2 d2�dxdQ2 ; (4)and ~�CC = 2�xG2F �1 + Q2M2W �2 d2�dxdQ2 : (5)2.2. F2 at HERAThe struture funtion F em2 is shown as a funtion of x at �xed Q2 [1℄and as a funtion of Q2 at �xed x [2℄ in Figs. 1 and 2, respetively.The strong rise at low x is due to gluon radiation. The measurementsfrom HERA now have a preision of about 3% (systematis) and mathniely with the �xed target data. The data exhibit strong saling violationswhih may be seen more learly in Figs. 3 and 4 [3℄.The data an be well desribed by DGLAP QCD. Several groups (inlud-ing H1, ZEUS, CTEQ and MRST) have performed Next-to-Leading-Order(NLO) QCD �ts to the HERA and �xed target data. From these NLO �tsto the measurements, both �s(M2Z) and the proton parton density funtions(PDFs) may be determined. The H1 and ZEUS data and �ts are in goodagreement generally, but show di�erenes at small values of x, see Fig. 2.The statistis are the limitation at large Q2.
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Fig. 3. Measurements of the proton struture funtion by H1 and the NMC exper-iments as a funtion of Q2 at �xed x for x < 0:01. The solid urves are the NLOQCD �t by H1 to the H1 ross setion data. The dashed urves are the results ofthe H1 �t to the H1 and NMC data.
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Fig. 4. As for Fig. 3, for higher x values, x > 0:01.2.3. Proton PDFsThe gluon PDF, as obtained from H1 and ZEUS, is ompared in Fig. 5 [2℄where the evolution of the gluon is displayed. A omparison at the time ofDIS2001 showed that there were some di�erenes observed whih are prob-ably due to the heavy �avor sheme employed and to the parameterizationof the gluon density. These di�erenes will be disussed in talks by Tassi [4℄and Reisert [5℄ at this workshop. The orrelation with �s is learly visible
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2732 J.J. Whitmore2.4. Evaluation of the unertainties in PDFsMuh work has gone into determining the unertainties on the PDFs inorder, for example, to estimate the unertainties on preditions for partonluminosities at the LHC. In partiular, the orrelations between the experi-mental unertainties have been taken into aount by all PDF-�tting groups.The low-Q2 and high-x regions have the largest unertainties, as shown inFig. 7 for the gluon [1℄ from ZEUS.
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QCD and Proton and Photon Struture Sine DIS2001 2733It an be seen that very similar results are obtained, indiating that theHERA data alone an onstrain the PDFs at all x values.
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Fig. 9. The valene quark distributions obtained from the ZEUS NLO QCD �t toZEUS data only. 2.5. Fits to the Tevatron high-ET jet dataThe new PDFs from CTEQ6 now desribe the Tevatron high-ET jet dataquite well. This is shown in Figs. 10 and 11 whih ompare the D0 and CDFmeasurements with the CTEQ6M �ts [6℄. The improvement in the �ts anbe seen in Figs. 12 and 13 that display the ratio of data to theory for bothCTEQ6 and CTEQ5 [6℄, respetively. The main di�erene in the two �ts isa harder gluon distribution. This is in agreement with the ZEUS results, aswas shown in Fig. 6.

Fig. 10. Comparison of the CTEQ6M �t to the inlusive jet data from D0. Theboundary values of the �ve rapidity bins are: 0, 0.5, 1.0, 1.5, 2.0 and 3.0.
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Fig. 11. Comparison of the CTEQ6M �t to the inlusive jet data from CDF, entralrapidity � < 0:5.

Fig. 12. A loser omparison between CTEQ6M and the D0 jet data. The plotsshow the ratio of (data-theory)/theory versus PT in GeV.

Fig. 13. As for Fig. 12, but ompared to the CTEQ5M1 �ts.



QCD and Proton and Photon Struture Sine DIS2001 27352.6. Range of validity for DGLAP evolutionThe range of appliability of DGLAP evolution at low Q2 has alsobeen examined. Fig. 14 ompares the ZEUS NLO �t using data withQ2 > 2:5GeV2, evolved bakwards to lower Q2, with the ZEUS data atlow Q2 whih were not used in the �t [1℄. Clearly, the �t does not desribethe data for Q2 below �1.5 GeV2.
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2738 J.J. Whitmoreas a funtion of x at �xed Q2 [2℄. The NLO �ts give a good desription ofthese data. The ZEUS CC data for e�p are shown in Fig. 19 as a funtionof (1 � y)2 [7℄. The interept at (1 � y)2 = 0 for the e�p data yields uv,while the slope of the e+p data yields dv . Again, the measurements are welldesribed by the PDFs from the NLO �ts.
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QCD and Proton and Photon Struture Sine DIS2001 2739

10
-1

1

10

10 2

10 3

10 4

10
-3

10
-2

10
-1

1

HERA
LEP1
LEP2

Q2=Wmin x/(1-x)2

Q2=Wmax x/(1-x)2

ET=ymaxEeexp(ηmax)xγ

LEP : Etag>0.7Ebeam, 3<W<√s/3 GeV, θtag>30 mrad
HERA: y<0.8, Ee=30 GeV, ηmax=η1=η2=2.5

x,xγ

Q
2 ,E

T2  (
G

eV
2 )

Fig. 20. Aessible kinemati plane in (Q2; x) for HERA, LEP1 and LEP2.
γ

p

e

c

c

(a) p

γ
c

c

(b)

p

γ
g

c

() p

γ
c

g

(d)

(a) (b)

(c) (d)Fig. 21. Various diagrams for dijet photoprodution. (a) orresponds to the lead-ing order diret proess (photon-gluon-fusion), (b)�(d) orrespond to LO resolveddiagrams. 3.1. Saling violations in F 2Fig. 22 [9℄ demonstrates positive saling violations as a funtion of Q2for all x. This is in ontrast to the situation observed for the proton wherethe positive saling violations observed at low x turn into negative salingviolations at large x, see Fig. 4. The data are in agreement with the QCDexpetations based on the various photon PDFs. Fig. 23 [9℄ displays F 2 =�as a funtion of x, at �xed Q2. At the present time, the data are inonlusiveonerning a possible rise at low x, as observed for the proton. The photonPDFs desribe the data at the 10�20% level.



2740 J.J. Whitmore

0.0055

0.055

0.15

0.25

0.35

0.50

0.70

0.90

< x >

 0

 1

 2

 3

 4

 5

 6

 7

 N

OPAL
L3
DELPHI (prl)
ALEPH (prl)

JADE
PLUTO
TASSO

AMY
TOPAZ
TPC

Q2 [GeV2]

F
2γ  / 

α 
+ 

N
*0

.6 GRV (LO)
ASYM
SaS1D

0

1

2

3

4

5

6

7

10
-1

1 10 10
2

10
3Fig. 22. Measurements of the hadroni struture funtion F 2 =� from LEP as a fun-tion of Q2 at �xed values of x.

0

0.2

0.4

0.6

10
-3

10
-2

10
-1

1

OPAL(1.9)

(a)

F
γ 2 (

x,
Q

2 ) 
/ α OPAL(3.7)

(b)

x

GRV (HO)

0

0.2

0.4

0.6

10
-3

10
-2

10
-1

1

L3(1.9)(a)

F
γ 2 (

x,
Q

2 ) 
/ α

L3(5.0)(b)

x

GRV (HO)

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.5

1

1.5

0 0.5 1

DELPHI prl.(5.2) (c)

F
γ 2 (

x,
Q

2 ) 
/ α

OPAL(8.9) ALEPH(9.9)

(d)OPAL(9.0)

L3(10.8)

OPAL(10.7) (e)

GRV (HO)

DELPHI(12.0)

DELPHI prl.(12.7)

ALEPH prl.(13.7)

OPAL(14.5) (f)

OPAL(17.5)

L3(15.3)

ALEPH(20.7)

(g)
DELPHI prl.(19.0)

OPAL(17.8) DELPHI prl.(28.5)(h)
OPAL(30.)

L3(23.1)

DELPHI prl.(40.) (i)
OPAL(59.)
ALEPH prl.(56.5)

DELPHI prl.(101.) (j)

L3(120.)

OPAL(135.) ALEPH(284.)
(k)

x

DELPHI prl.(700.)

OPAL prl.(767.)

Fig. 23. Measurements of the hadroni struture funtion F 2 =� from LEP as a fun-tion of x at �xed values of Q2.



QCD and Proton and Photon Struture Sine DIS2001 27413.2. Photon struture from HERAThe dijet ross setion as a funtion of the dijet sattering angle, j os ��j,is shown in Fig. 24 [10℄. The angle, ��, is de�ned as the angle between thejet�jet axis and the beam in the dijet rest frameos �� = tanh �(�1 � �2)2 � ; (9)where �1;2 are the pseudorapidities of the two jets. The data are shownseparately for xobs < 0:75, Fig 24(a), and for xobs > 0:75, Fig 24(b).The variable xobs is de�ned asxobs = Ejet1T e��1 +Ejet2T e��22yEe : (10)
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2742 J.J. Whitmoreof Fig. 21(d) yields a (1�j os ��j)�2 dependene. The data are in agreementwith the expeted dominane of the resolved ontribution for xobs < 0:75in Fig. 24(a). The agreement in shape of these distributions, whih aresensitive to the matrix elements, demonstrates that the dynamis of theshort-distane parton-parton sattering proess is well understood.3.3. H1 and ZEUS omparisonThe H1 and ZEUS data are ompared [11℄ as a funtion of the ET of thejet in Fig. 25 and are seen to be in exellent agreement. Similarly, the dataare ompared in Fig. 26 as a funtion of the pseudorapidity of the jet, �jet, fortwo di�erent minimum values of EjetT [11℄. Again the data are in agreement.
H1 Data

H1 preliminary

Fig. 25. A omparison of the di�erential e+p ross setion for inlusive jet produ-tion from H1 and ZEUS in the same kinemati region.
H1 preliminary

H1 DataFig. 26. A omparison of the di�erential e+p ross setion for inlusive jet produ-tion from H1 and ZEUS in the same kinemati region for two di�erent thresholdsin EjetT .



QCD and Proton and Photon Struture Sine DIS2001 2743These data an be ompared to NLO alulations. This has been per-formed by both ZEUS and H1. In Figs. 27 and 28, the ZEUS data [10℄ forlow xobs lie above the NLO alulations, and more so at higher EjetT . Thissuggests that the photon PDFs are not quite orret.
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2744 J.J. WhitmoreHowever, Figs. 29 and 30 show the H1 data [12℄ and indiate that theNLO desription is in good agreement. This suggests that the photon PDFsare orret. A possible explanation for this apparent disagreement may beseen in Fig. 31 whih shows [10℄ the dijet ross setion for di�erent regionsin xobs and for 25 < Ejet1T < 35 GeV as a funtion of the minimum uton the ET of the seond jet. For the kinemati uts of the ZEUS data,Ejet2T > 11 GeV, the data lie above the NLO, while for the uts on theH1 data, Ejet2T > 15 GeV, the NLO and data agree. Thus it seems thatthe apparent disagreement is due to the di�erent kinemati regions beingstudied and not to any disagreement in the data themselves.
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HERA       αs Measurements

Fig. 34. Summary of �s measurements at HERA.REFERENCES[1℄ ZEUS Collab., Paper No. 628 submitted to the EPS2001 Conferene.[2℄ H1 and ZEUS Collaborations, private ommuniation. The plots may be obtai-ned from: http://www-zeus.desy.de/physis/sfew/PUBLIC/publi.html.[3℄ C. Adlo� et al., (H1 Collab.), Eur. Phys. J. C21, 33 (2001).[4℄ E. Tassi, not submitted to the Proeedings.[5℄ B. Reisert, not submitted to the Proeedings.[6℄ CTEQ6, J. Pumplin et al., JHEP 0207:012 (2002); hep-ph/0201195.[7℄ ZEUS Collab., Paper No. 631 submitted to the EPS2001 Conferene.[8℄ http://opal.web.ern.h/Opal/phys/twophoton/plots.html.[9℄ http://www.mppmu.mpg.de/ñisius/.[10℄ S. Chekanov et al., (ZEUS Collab.), Eur. Phys. J. C23, 6 (2002).[11℄ S. Caron, (H1 Collab.), talk at EPS2001; H1prelim-01-132.
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