THE RISE OF THE PROTON STRUCTURE FUNCTION F_2 TOWARDS LOW x^*

JÖRG GAYLER

On behalf of the H1 Collaboration

DESY, Notker Str. 85, 2000 Hamburg 52, Germany

(Received June 24, 2002)

Results on the derivative of $\log(F_2)$ with respect to $\log(x)$ at fixed Q^2 are presented. The measured derivatives are within errors independent of x for $Q^2 \geq 0.85 \text{ GeV}^2$ and increase linearly with $\log(Q^2)$ for $10^{-4} \leq x \leq 0.01$ and $Q^2 \gtrsim 3 \text{ GeV}^2$. The results are based on preliminary and published H1 data which at Q^2 below 2 GeV^2 are combined with NMC and ZEUS data.

PACS numbers: 13.60.Hb

1. Introduction

The rise of the proton structure function F_2 towards small Bjorken x has been discussed since the existence of QCD. In the double asymptotic limit (large energies, *i.e.* small x, and large photon virtualities Q^2) the DGLAP evolution equations [1] can be solved [2] and F_2 is expected to rise approximately like a power of x towards low x. A power like behaviour is also expected in the BFKL approach [3]. However, it soon was discussed [4] that this rise may eventually be limited by gluon self interactions in the nucleon, or more generally due to unitarity constraints.

Experimentally this rise towards small x was first observed in 1993 in the HERA data [5]. Meanwhile the precision of the F_2 data is much improved and the rise can be studied in great detail.

2. Procedure

The low x behaviour of F_2 at fixed Q^2 is studied locally by the measurement of the derivative $\lambda \equiv -(\partial \ln F_2/\partial \ln x)_{Q^2}$ as function of x and Q^2 . The results are based on preliminary H1 F_2 data presented to this conference [6]

^{*} Presented at the X International Workshop on Deep Inelastic Scattering (DIS2002) Cracow, Poland, 30 April-4 May, 2002.

covering the range $0.5 < Q^2 < 3.5 \text{ GeV}^2$ and published H1 data [7,8] which cover the range $1.5 < Q^2 < 150 \text{ GeV}^2$. The low $Q^2 F_2$ data were obtained by shifting the *ep* interaction vertex by 70 cm in proton beam direction [6]. At $Q^2 < 2 \text{ GeV}^2$ the H1 data are also shown combined with data of NMC [9] and ZEUS [10]. The derivative $\lambda(x, Q^2)$ is evaluated using data points at adjacent values of x at fixed Q^2 taking into account error correlations and x spacing corrections. The derivatives are compared with the next to leading order (NLO) QCD fit to the H1 cross section data [7] and a "fractal" fit [11] where self-similar properties of the proton structure are assumed.

3. Results

The x and Q^2 dependence of $\lambda = -(\partial \ln F_2/\partial \ln x)_{Q^2}$ is shown in Fig. 1.

Fig. 1. Derivative λ compared with the QCD analysis of Ref. [7] and a "fractal" fit [11] for $0.5 < Q^2 < 3.5 \text{ GeV}^2$ (upper plot) and for $1.5 < Q^2 < 150 \text{ GeV}^2$ (lower plot).

The new shifted vertex and the published data agree well in the overlap region. The derivative λ is constant within experimental uncertainties for fixed Q^2 in the range x < 0.01, implying that the data are consistent with the power behaviour $F_2 = c(Q^2) x^{-\lambda(Q^2)}$. Fitting this form for each Q^2 bin to the data at x < 0.01, results in the λ and c values presented in Fig. 2.

Fig. 2. $\lambda(Q^2)$ and $c(Q^2)$ from fits of the form $F_2 = c(Q^2) x^{-\lambda(Q^2)}$ to the H1 structure function data [7] and [11].

The results show that the F_2 data at low x for $Q^2 \gtrsim 3.5 \,\text{GeV}^2$ can be well described by the very simple parameterisation

$$F_2 = c x^{-\lambda(Q^2)}$$
, where $\lambda(Q^2) = a \ln\left[\frac{Q^2}{A^2}\right]$ (1)

with $a = 0.0481 \pm 0.0013 \pm 0.0037$ and $A = 292 \pm 20 \pm 51$ MeV and $c \approx 0.18$.

At low Q^2 the deviation of λ from the logarithmic Q^2 dependence and the decrease of $c(Q^2)$ is more significant if the H1 data are combined with NMC [9] and ZEUS [10] data (see Fig. 3).

Fig. 3. $\lambda(Q^2)$ and $c(Q^2)$ from fits of the form $F_2 = c(Q^2) x^{-\lambda(Q^2)}$ combining the H1 structure function data of [7] and [11] and the H1 data with data of NMC [9] and ZEUS [10].

The deviations from a simple constant respectively logarithmic behaviour occur at about such Q^2 values below which perturbative QCD fits (*e.g.* [7]) are not supposed to be valid. At small Q^2 the structure function F_2 can be related to the total virtual photon absorption cross section by

$$\sigma_{\rm tot}^{\gamma^* p} = 4\pi \alpha^2 \frac{F_2}{Q^2} \sim \frac{x^{-\lambda}}{Q^2},\tag{2}$$

where the total $\gamma^* p$ energy squared is given by $s = Q^2/x$. For $Q^2 \to 0$ we can expect $c(Q^2) \to 0$ and $\lambda(Q^2) \to \approx 0.08$. The latter value corresponds to the energy dependence of soft hadronic interactions $\sigma_{\text{tot}} \sim s^{\alpha} I\!\!P^{(0)-1}$ with $\alpha_{I\!\!P}(0) - 1 \approx 0.08$ [12] which is approximately reached at $Q^2 = 0.5 \text{ GeV}^2$.

4. Conclusion

No significant deviation from the power behaviour $F_2 \sim x^{-\lambda}$ at fixed Q^2 is visible at present energies and $Q^2 \gtrsim 0.85 \text{ GeV}^2$. More specifically

- For x < 0.01 the derivative $\lambda \equiv -(\partial \ln F_2/\partial \ln x)_{Q^2}$ is independent of x within errors.
- λ is proportional to $\ln(Q^2)$ for $Q^2 \gtrsim 3 \text{ GeV}^2$, *i.e.* in the pQCD region.
- Here the data can be very simply parametrised by $F_2 = cx^{-\lambda(Q^2)}$.
- At $Q^2 \lesssim 3 \text{ GeV}^2$ deviations from the logarithmic Q^2 dependence of λ are observed.
- At low $Q^2 (Q^2 \lesssim 1 \,{\rm GeV^2})$ the energy rise is similar as in soft hadronic interactions.

REFERENCES

- Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)];
 V.N. Gribov, L.N. Lipatov, Yad. Fiz. 15, 1218 (1972) [Sov. J. Nucl. Phys. 15, 675 (1972)];
 Yad. Fiz. 15, 781 (1972) [Sov. J. Nucl. Phys. 15, 438 (1972)];
 G. Altarelli, G. Parisi, Nucl. Phys. B126, 298 (1977).
- [2] A. De Rujula et al., Phys. Rev. D10, 1649 (1974); R.D. Ball, S. Forte, Phys. Lett. 335, 77 (1994).
- [3] E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 44, 443 (1976)
 [Zh. Eksp. Teor. Fiz. 71, 840 (1976)]; Sov. Phys. JETP 45, 199 (1977)
 [Zh. Eksp. Teor. Fiz. 72, 377 (1977)]; I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978) [Yad. Fiz. 28, 1597 (1978)].
- [4] L.V. Gribov, E.M. Levin, M.G. Ryskin, Nucl. Phys. B188, 555 (1981); Phys. Rept. 100, 1 (1983); A.H. Mueller, J.W. Qiu, Nucl. Phys. B268, 427 (1986).
- [5] I. Abt et al., [H1 Collaboration], Nucl. Phys. B407, 515 (1993); M. Derrick et al. . [ZEUS Collaboration], Phys. Lett. B316, 412 (1993).
- [6] T. Lastovicka, Acta Phys. Pol. B33, 2835 (2002).
- [7] C. Adloff et al., [H1 Collaboration], Eur. Phys. J. C21, 33 (2001).
- [8] C. Adloff et al., [H1 Collaboration], Phys. Lett. B520, 183 (2001).
- [9] M. Arneodo et al., [New Muon Collaboration], Phys. Lett. B364, 107 (1995); Nucl. Phys. B483, 3 (1997).
- [10] J. Breitweg et al., [ZEUS Collaboration], Phys. Lett. B487, 53 (2000).
- [11] T. Lastovicka, Acta Phys. Pol. B33, 2867 (2002).
- [12] A. Donnachie, P.V. Landshoff, Phys. Lett. B296, 227 (1992).