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GLUON DISTRIBUTION FUNCTIONSIN THE k?-FACTORIZATION APPROACH�Gabriela MiuDepartment of Theoreti
al Physi
s, Lund University, Sweden(Re
eived July 1, 2002)At small x, the e�e
ts of �nite transverse momenta of partons insidea hadron be
ome in
reasingly important, espe
ially in analyses of jets andheavy-quark produ
tion. These e�e
ts 
an be systemati
ally a

ountedfor in a formalism based on k?-fa
torization and unintegrated distributionfun
tions. We present results for the integrated and unintegrated distribu-tion fun
tions obtained within the framework of the Linked Dipole Chainmodel. Comparisons are made to results obtained within other approa
hes.PACS numbers: 12.38.Bx, 12.38.Cy1. Introdu
tionThe results presented in this talk have been obtained in 
ollaborationwith G. Gustafson and L. Lönnblad and are des
ribed in detail in [1℄.There exist a 
ouple of models whi
h take into a

ount large logarithms ofboth Q2 and 1=x in DIS, reprodu
ing DGLAP and BFKL in the relevant lim-its. These models frequently produ
e very di�erent distribution fun
tions,and an important problem is therefore how to make relevant 
omparisonsbetween the di�erent approa
hes.One example is the CCFM [2℄ model, based on the k?-fa
torization for-malism. When in
luding the suppressed 
ontributions from non-k?-ordered
hains, it is important to spe
ify whi
h partons are to be regarded as initial-state emissions ISB, and whi
h are to be regarded as �nal-state radiationFSB (giving negligible re
oils and being des
ribed by Sudakov form fa
tors).The exa
t ISB-FSB separation, as well as the de�nition and properties of theunintegrated parton distributions (that are not experimental observables),� Presented at the X International Workshop on Deep Inelasti
 S
attering (DIS2002)Cra
ow, Poland, 30 April�4 May, 2002.(2989)



2990 G. Miudepend 
riti
ally on the formalism used. In the CCFM model the ISB areordered in angle (or rapidity) and energy (or q+) with all other kinemati
allyallowed emissions de�ned as FSB. Furthermore, the unintegrated gluon dis-tribution fun
tion1 G(x; k2?; q) depends on two s
ales: k?, i.e. the transversemomentum of the in
oming parton and q, whi
h determines an angle beyondwhi
h there is no (quasi-) real parton in the ISB 
hain.Another example is the Linked Dipole Chain model (LDC) [3℄ whi
his based on the CCFM model, and agrees with this to leading double loga

ura
y. Here the ISB are ordered both in q+ and q� (thus also in angleor rapidity) with q?i satisfying q?i > min(k?i; k?;i�1), where qi and ki referto the ISB and virtual links momenta, respe
tively. Thus, many of the ISBgluons of the CCFM model are treated as FSB in LDC. Therefore typi
alz-values are smaller in the LDC model, and most of the problem of angularordering is postponed to the treatment of the FSB. To leading order inln 1=x the result is determined by the 1=z pole of the gluon splitting fun
tionPgg, and the LDC unintegrated distribution fun
tion G(x; k2?) depends ona single s
ale, k2?. Sub-leading e�e
ts due to the 1=(1 � z) pole or thenon-singular terms in Pgg are in
luded via Sudakov form fa
tors, whi
h dodepend on the angular region allowed for radiation. Thus also the LDCunintegrated distribution fun
tions have a weak dependen
e on the s
ale qde�ned above. In LDC sub-leading 
orre
tions from quarks and non-singularterms in Pgg 
an be in
luded in a rather straight-forward manner. The LDC-based ld
m
 [4℄ reprodu
es F2 data very well, not only the small-x HERAdata but also higher-x data from �xed target experiments.2. ResultsStudies have shown that sub-leading 
orre
tions to the LDC parton den-sities, from quarks and non-singular terms in Pgg, 
an be largely 
ompen-sated by slight modi�
ations of the input distribution fun
tions; in parti
ularthe results with and without quarks are almost identi
al. To fa
ilitate 
om-parison with CCFM-based results, we therefore 
on
entrate on a versionof the LDC model in whi
h quark 
ontributions are negle
ted. The non-perturbative input gluon density is parametrized by: xg(x; k2?0) = A(1�x)b,with b = 4 (
alled gluoni
) or b = 7 (
alled gluoni
-2), whi
h both give good�ts to F2 data.1 In this talk we use F for the unintegrated parton distributions in general, and G forthe unintegrated gluon distribution, both treated as densities in log 1=x, i.e. G(x) =xG(x). For the integrated ones we use the standard notation f and g, respe
tively.



Gluon Distribution Fun
tions in the k?-Fa
torization Approa
h 2991The LDC integrated and the unintegrated gluon distribution fun
tionsare related by:xg(x;Q2) = Q2Zk2?0 dk2?k2? G(x; k2?; Q) + Q2=xZQ2 dk2?k2? G�xk2?Q2 ; k2?; Q� Q2k2?+xg0(x;Q20)��S :The �rst term 
orresponds to stru
k gluons of transverse momenta below thevirtuality of the probe, k2? < Q2, the se
ond term to k2? > Q2 and the thirdterm to the 
ase when no evolution has taken pla
e. The LDC G(x; k2?; Q)depends only very weakly upon the s
ale Q, via the Sudakov form fa
tor.This 
an essentially be negle
ted in the �rst two terms, but needs to bein
luded in the last term, whi
h dominates for larger x-values.
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MRSTFig. 1. The integrated gluon distribution fun
tions for (a) Q2 = 16GeV2 and(b) Q2 = 100GeV2; LDC gluoni
 (full 
urve), LDC gluoni
-2 (dotted 
urve), JS(dash-dotted 
urve), CTEQ (short-dashed 
urve) and MRST (long-dashed 
urve).In �gure 1 we 
ompare the LDC integrated gluon distribution fun
tionsof gluoni
 and gluoni
-2 to the results of the CCFM formalism obtained byJung and Salam (JS) [5℄. We see that LDC lies signi�
antly below JS forlarge x, but above for smaller x-values. Also shown are the 
orrespondingresults for CTEQ5M1 [6℄ and MRST20011 [7℄. Note that, while LDC andJS have been �tted to F2 data only, CTEQ and MRST have been �tted tomore data. For small x LDC agrees well with these latter 
urves; for largerx LDC gluoni
 lies above, while LDC gluoni
-2 agrees well with them.Many s
hemes are presented in the literature to treat unintegrated partondistributions. Besides with the CCFM formalism (JS), we 
ompare ourresults with the formalisms presented by Kwie
inski, Martin, and Stasto(KMS) [8℄ and by Kimber, Martin, and Ryskin (KMR) [9℄. Both KMSand KMR are based on a uni�ed DGLAP-BFKL evolution equation. In



2992 G. Miuthe KMS formalism the parton distribution is des
ribed by a single s
ale,k?, and is assumed to satisfy the relation xf(x;Q2) = R Q2 dk2?k2? F(x; k2?); inKMR two-s
ale parton distributions are extra
ted. Finally we will 
ompareto a simple derivative, as in KMS, of the integrated gluon density of theGRV98 [10℄ parameterization (dGRV).
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Fig. 2. The unintegrated gluon distribution fun
tions as fun
tions of q=k? for (a)x = 0:01 and k? = 3GeV and (b) x = 0:001 and k? = 7GeV; LDC gluoni
 (full
urve), JS (long-dashed 
urve) and KMR (dotted 
urve).
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GRVFig. 3. The unintegrated gluon distribution fun
tions: (a) k2?-dependen
e for x =0:01, and (b) x-dependen
e for k2? = 10GeV2. Results for LDC gluoni
 (full 
urve),JS (long-dashed 
urve) and KMR (dotted 
urve), with q = 2k?, shown togetherwith the 1-s
aled KMS (short-dashed 
urve) and dGRV (dash-dotted 
urve) results.Figure 2 shows how the LDC, CCFM, and KMR unintegrated gluon dis-tribution fun
tions depend on the s
ale q for �xed k?. We see that while thisdependen
e is rather weak in the LDC model, it is very strong in the CCFMapproa
h, as a 
onsequen
e of the di�erent separation between ISB and FSB.Also in the KMR formalism the q-dependen
e is small. We note, however,that the CCFM result saturates for q above 2k?. In a hard-intera
tion event



Gluon Distribution Fun
tions in the k?-Fa
torization Approa
h 2993the relevant s
ale is q2 � ĵtj or ŝ, whi
h are normally larger than k2?, oftentypi
ally by a fa
tor of this order. For this reason we want to argue thatwhen 
omparing the di�erent formalisms, it is more relevant to study theCCFM distributions for q � 2k?, rather than e.g. for q = k?. This is donein �gure 3, whi
h shows the unintegrated gluon distribution fun
tions forq = 2k?, as fun
tions of k2? for �xed x and as fun
tions x for �xed k?;indeed we see a good agreement between the LDC, JS, and KMR results. Inthese �gures we also show the one-s
aled KMS and dGRV results. Althoughthese earlier parameterizations are somewhat lower for larger x-values, wenote a fair overall agreement between all �ve models.3. SummaryDi�erent formalisms for unintegrated parton distributions have oftengiven very di�erent results. Here we present results for integrated andunintegrated gluon distribution fun
tions obtained within the LDC model.These are 
ompared with those of other formalisms, in parti
ular those ofthe CCFM model, and we demonstrate how to make a relevant 
omparisonbetween the models. Indeed we �nd in this way a fair agreement betweendistributions obtained in di�erent formalisms.REFERENCES[1℄ G. Gustafson, L. Lönnblad, G. Miu, hep-ph/0206195.[2℄ M. Ciafaloni, Nu
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