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At small z, the effects of finite transverse momenta of partons inside
a hadron become increasingly important, especially in analyses of jets and
heavy-quark production. These effects can be systematically accounted
for in a formalism based on k| -factorization and unintegrated distribution
functions. We present results for the integrated and unintegrated distribu-
tion functions obtained within the framework of the Linked Dipole Chain
model. Comparisons are made to results obtained within other approaches.

PACS numbers: 12.38.Bx, 12.38.Cy

1. Introduction

The results presented in this talk have been obtained in collaboration
with G. Gustafson and L. Lonnblad and are described in detail in [1].

There exist a couple of models which take into account large logarithms of
both Q2 and 1/z in DIS, reproducing DGLAP and BFKL in the relevant lim-
its. These models frequently produce very different distribution functions,
and an important problem is therefore how to make relevant comparisons
between the different approaches.

One example is the CCFM |2] model, based on the k| -factorization for-
malism. When including the suppressed contributions from non-% -ordered
chains, it is important to specify which partons are to be regarded as initial-
state emissions ISB, and which are to be regarded as final-state radiation
FSB (giving negligible recoils and being described by Sudakov form factors).
The exact ISB-FSB separation, as well as the definition and properties of the
unintegrated parton distributions (that are not experimental observables),
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depend critically on the formalism used. In the CCFM model the ISB are
ordered in angle (or rapidity) and energy (or ¢ ) with all other kinematically
allowed emissions defined as FSB. Furthermore, the unintegrated gluon dis-
tribution function! G(z, ki, q) depends on two scales: k| , i.e. the transverse
momentum of the incoming parton and g, which determines an angle beyond
which there is no (quasi-) real parton in the ISB chain.

Another example is the Linked Dipole Chain model (LDC) [3| which
is based on the CCFM model, and agrees with this to leading double log
accuracy. Here the ISB are ordered both in ¢ and g— (thus also in angle
or rapidity) with ¢ ; satisfying ¢ ; > min(k;,k1 ;—1), where ¢; and k; refer
to the ISB and virtual links momenta, respectively. Thus, many of the ISB
gluons of the CCFM model are treated as FSB in LDC. Therefore typical
z-values are smaller in the LDC model, and most of the problem of angular
ordering is postponed to the treatment of the FSB. To leading order in
In 1/ the result is determined by the 1/z pole of the gluon splitting function
P,4, and the LDC unintegrated distribution function G(z,k?) depends on
a single scale, k%. Sub-leading effects due to the 1/(1 — 2) pole or the
non-singular terms in Py, are included via Sudakov form factors, which do
depend on the angular region allowed for radiation. Thus also the LDC
unintegrated distribution functions have a weak dependence on the scale g
defined above. In LDC sub-leading corrections from quarks and non-singular
terms in Py, can be included in a rather straight-forward manner. The LDC-
based LDCMC [4] reproduces F, data very well, not only the small-z HERA
data but also higher-z data from fixed target experiments.

2. Results

Studies have shown that sub-leading corrections to the LDC parton den-
sities, from quarks and non-singular terms in Py, can be largely compen-
sated by slight modifications of the input distribution functions; in particular
the results with and without quarks are almost identical. To facilitate com-
parison with CCFM-based results, we therefore concentrate on a version
of the LDC model in which quark contributions are neglected. The non-
perturbative input gluon density is parametrized by: zg(z,k%,) = A(1 —xz)?,
with b = 4 (called gluonic) or b =7 (called gluonic-2), which both give good
fits to F5 data.

! In this talk we use F for the unintegrated parton distributions in general, and G for
the unintegrated gluon distribution, both treated as densities in log1/z, i.e. G(x) =
zG(x). For the integrated ones we use the standard notation f and g, respectively.
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The LDC integrated and the unintegrated gluon distribution functions
are related by:

2 Q2 T
k> a2 [ K 02
K AN 1

+3g0(7,QF) X As.

The first term corresponds to struck gluons of transverse momenta below the
virtuality of the probe, kﬁ_ < @2, the second term to kﬁ_ > @? and the third
term to the case when no evolution has taken place. The LDC G(z,k? , Q)
depends only very weakly upon the scale @), via the Sudakov form factor.
This can essentially be neglected in the first two terms, but needs to be
included in the last term, which dominates for larger z-values.
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Fig.1. The integrated gluon distribution functions for (a) Q> = 16 GeV? and
(b) Q* = 100GeV?; LDC gluonic (full curve), LDC gluonic-2 (dotted curve), JS
(dash-dotted curve), CTEQ (short-dashed curve) and MRST (long-dashed curve).

In figure 1 we compare the LDC integrated gluon distribution functions
of gluonic and gluonic-2 to the results of the CCFM formalism obtained by
Jung and Salam (JS) [5]. We see that LDC lies significantly below JS for
large x, but above for smaller z-values. Also shown are the corresponding
results for CTEQ5M1 [6] and MRST20011 [7]. Note that, while LDC and
JS have been fitted to Fy data only, CTEQ and MRST have been fitted to
more data. For small z LDC agrees well with these latter curves; for larger
z LDC gluonic lies above, while LDC gluonic-2 agrees well with them.

Many schemes are presented in the literature to treat unintegrated parton
distributions. Besides with the CCFM formalism (JS), we compare our
results with the formalisms presented by Kwiecingki, Martin, and Stasto
(KMS) [8] and by Kimber, Martin, and Ryskin (KMR) [9]. Both KMS
and KMR are based on a unified DGLAP-BFKL evolution equation. In
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the KMS formalism the parton distribution is described by a single scale,
k1, and is assumed to satisfy the relation zf(z, Q%) = fQ (z, k2 1); in

KMR two-scale parton distributions are extracted. Finally we w111 compare
to a simple derivative, as in KMS, of the integrated gluon density of the
GRV98 [10] parameterization (dGRV).
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Fig.2. The unintegrated gluon distribution functions as functions of g/k, for (a)
x = 0.01 and k1 = 3GeV and (b) z = 0.001 and k; = 7GeV; LDC gluonic (full
curve), JS (long-dashed curve) and KMR (dotted curve).
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Fig. 3. The unintegrated gluon distribution functions: (a) k2 -dependence for = =
0.01, and (b) z-dependence for k2 = 10 GeV?. Results for LDC gluonic (full curve),
JS (long-dashed curve) and KMR (dotted curve), with § = 2k, , shown together
with the 1-scaled KMS (short-dashed curve) and dGRV (dash-dotted curve) results.

Figure 2 shows how the LDC, CCFM, and KMR unintegrated gluon dis-
tribution functions depend on the scale g for fixed k| . We see that while this
dependence is rather weak in the LDC model, it is very strong in the CCFM
approach, as a consequence of the different separation between ISB and FSB.
Also in the KMR formalism the g-dependence is small. We note, however,
that the CCFM result saturates for g above 2k . In a hard-interaction event



Gluon Distribution Functions in the k| -Factorization Approach 2993

the relevant scale is > ~ |%| or 3, which are normally larger than k2, often
typically by a factor of this order. For this reason we want to argue that
when comparing the different formalisms, it is more relevant to study the
CCFM distributions for g ~ 2k, , rather than e.g. for ¢ = k. This is done
in figure 3, which shows the unintegrated gluon distribution functions for
q = 2k, as functions of kﬁ_ for fixed z and as functions z for fixed k| ;
indeed we see a good agreement between the LDC, JS, and KMR results. In
these figures we also show the one-scaled KMS and dGRYV results. Although
these earlier parameterizations are somewhat lower for larger z-values, we
note a fair overall agreement between all five models.

3. Summary

Different formalisms for unintegrated parton distributions have often
given very different results. Here we present results for integrated and
unintegrated gluon distribution functions obtained within the LDC model.
These are compared with those of other formalisms, in particular those of
the CCFM model, and we demonstrate how to make a relevant comparison
between the models. Indeed we find in this way a fair agreement between
distributions obtained in different formalisms.
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