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A new approach based on a search of analytic solutions for the main
limiting cases and of linking functions describing intermediate region is de-
veloped. In frame of this work, analytical formulas for proton form factors
in the limiting cases (photoproduction, quasielastic scattering and low-z
limit) have been obtained. Connections and transitions between these lim-
iting cases have been studied and linking functions have been found. The
obtained dependencies of proton structure functions for the whole kine-
matic region of variables 2 and z contain practically no free parameters
but they are in a good agreement with experimental data.

PACS numbers: 13.60.—r, 13.60.Hb

In many cases simple and convenient formulas for proton structure func-
tions which describe their behavior in the whole kinematic region are very
useful. At present, for these purposes various fits [1,2] of experimental data
are used. These fits contain many free parameters determined from exper-
iments'. However, when new experimental data appear these parameters
are changed. One of the main reasons is that in these fits the limiting de-
pendencies usually are not regarded. The purpose of this work is to obtain
phenomenological description of F5 in a whole kinematic region, taking into
account structure function behavior in limiting cases.

There are three main limiting cases for inelastic scattering: photopro-
duction, quasielastic limit, low zg? limit (high energies) and for each of
them corresponding model exists: vector dominance [3], standard DGLAP
equations [4], Pomeron conception [5].

* Presented at the X International Workshop on Deep Inelastic Scattering (DIS2002)
Cracow, Poland, 30 April-4 May, 2002.

! Usually only the results of F» investigations are fitted, since another function, Fi, is
related with F> by Callan-Gross relation or on the basis of QCD considerations.

2 rpis a Bjorken variable.
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For the first limiting case (low @? limit) the close connection between
structure functions and photoproduction cross section was used [6]. In the
frame of vector meson dominance model, the cross section of virtual photon
may be written in a following form:

ot [ p(my)
’Yp(Qa ) a6/2(1+Q2/m2)2

my

dm?. (1)

Here p is dynamic density of vector meson states. The lower limit in the
integral has a sense of squared mass of the lightest state in meson spectrum:

I\ 2
mg = <mp — f) = 0.483 GeV2, (2)
Basing on Regge theory and dimensional reasons, the density function is
chosen as 1
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Here « is effective intercept, which provides the transition from reggeon
intercept agr = 0.5 for low energies to Pomeron intercept ap ~ 1 for high
energies with logarithmic dependence on energy:

fW?)
1+ f(W?)’

[ W? - M?
fW? = In Lt = (4b)

Substituting (3) into (1), and taking into account the connection between
F> and 0+, one can obtain the following expression for F» at low Q*:

a(W?) = ar + (ap — ag) (4a)
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The comparison with data [7] is shown in Fig. 1.
In this approach the formula for photoproduction cross section becomes
very simple (in this case W2 = s = M? + 2M E.,):
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Fig. 1. Proton structure function in low Q? region. Experimental points from [7].

It is necessary to make an important remark. While value of ar is
constant, the estimate of ap increases with energy explored in experiments.
To describe this growth, effective Pomeron intercept may be used:

o =1+ koy /In (%) . ®)
In particular, experimental data on photoproduction cross section presented
by ZEUS collaboration [8] can be described with kg = 0.028. More detailed
consideration of low @? limit may be found in [9].

The second limiting case corresponds to quasielastic region with zp close
to unity. In this region the evolution equation for valence quarks distribution
function ¢, is usually used. As it is shown in [10] this equation can be written
in a form analogous to cascade theory equation:

1

2. 02 a 2 T /
“ingr ~ e | [ eon (5) e faro) o
0

x

41+ 22
Pv(z):§ 11—z’

x corresponding to “energy” of particle and logarithm of Q? corresponding
to “depth”. The method of solution of such equations is known from cascade
theory. After choosing initial conditions like ~ z*(1 — 2)™ , exact analytic
solution for F, in quasielastic limit has been obtained?® [10]:

F2 (:Ea Q2) = F2 (Ian) (]' - I)T GO(T)’ (10)
. F (’n/() + ].) (3/47 ),r o ].6 lIl Q2//12
GO = T iane T B, Mgy W

3no=2ns—1= 3; here ns is number of spectators, for proton ns = 2.



3036 A.A. PETRUKHIN, D.A. TIMASHKOV

To use this analytic solution for description of large zg region it is necessary
to take into account mass corrections concerned with target mass. It appears
as modification of scaling variable from zp to another scaling variables:
Feynman’s or Nachtman’s one. For light quarks they coincide:

2rB
1+ 1+ 4M202 Q2

rp=§= (12)

Although mass corrections do not allow to obtain exact solution like (10),
we take them into account by means of direct substitution zg for zg in
analytic solution. Results of calculations using formula (10) are compared
with experimental points at large zp in Fig. 2.
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Fig.2. Structure function for high xp with (solid curves) and without (dashed
curve) mass corrections. Experimental data from BCDMS and SLAC (see [7]).

To connect these two main limiting cases, one can use (5) as initial
condition for (10). But there are two problems: different variables z in
photoproduction limit and quasielastic one, and the absence of the function
Go at low Q2. To solve the first problem, we have supposed that two variables
zr and zT are particular cases of some unified variable which can be written
in the following form:

2.’1}}3 (13)

Irp — .
1+ \/1 +AM23 5P Q2

This expression gives smooth transition from (6) at zg — 0 to (12) at
g — 1.

To solve the second problem we used a linking function. This function
has been chosen in the simplest linear form which is suitable for satisfactory
description of Fh in intermediate region as it is shown below:

G(.’L‘B,T) :G0(7)$B+(1—IB). (14)
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As a result, proton structure function assumed a following form:

7 L—a(u) g
B (7p,Q%) = %G(IB,T) zp(l — wP)nﬁT/ﬁ- (15)

uo

Here 7 is determined in (11), zp is given by (13), G(zg,7) is described
by (14) and v = m2xp /Q?. Before comparing this formula with experimental
data, it is necessary to consider the limit of xg — 0.

Low zg limit, which corresponds to large transferred energies v, may be
divided in two regions: high (or medium) Q? region (perturbative) and low
Q? region (non-perturbative). Usually, the first region, where sea quarks give
the main contribution to structure function and provide significant growth
of Fs, is considered. To describe this region various formulas containing
double-logarithmic terms (as ~ In@Q?In1/z) [11] were proposed. But the
same growth has been observed in high energy limit for photoproduction
in the second (non-perturbative) region, that was described by growth of
Pomeron intercept (8). It is obvious, that transition between perturbative
and non-perturbative regions must be smooth. Therefore, considering ex-
pression (8) as boundary condition and taking into account proposed earlier
formulas [12], effective Pomeron intercept may be written as:

2
a]‘fnﬁzl—i-ko(l—Fln\/l—i-g—Z)\/1n<1+$M2Q7+QQ)' (16)
0

Two remarks about high energy region. 1. The only coefficient kg, which
can be considered as a free parameter is not usual free parameter. Its value
was evaluated from photoproduction data, but it describes the large Q?
region in inelastic structure function very well, too. Therefore we hope that
this parameter will be determined at further development of Pomeron theory.
2. More general question is connected with Regge-like behavior of the cross
section. Power dependence on energy contradicts Froissart bound [13] and
can be used only in a limited interval of energy. But this problem exists not
only for inelastic lepton scattering, and requires further investigations.

Expression (15) with effective Pomeron intercept (16) provides correct
behavior of F5 in the whole kinematic region (Fig. 3). It is important to note
that this result was obtained practically without usual fitting procedures.
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Fig.3. Structure function in the whole kinematic region. Experimental data
from [7].
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