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RUNNING COUPLING AND BFKL POMERON�Anna M. Sta±toINFN Sezione di Firenze, Sesto Fiorentino (FI), ItalyandH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Poland(Reeived June 27, 2002)We show that in the ase of the BFKL pomeron with running ouplingthe di�usion pattern is strongly modi�ed and is haraterised by the sud-den tunneling transition to the non-perturbative regime. We suggest thatby using the b-expansion method one an suppress the non-perturbativePomeron and isolate purely perturbative part of the gluon Green's fun-tion.PACS numbers: 12.38. CyOne of the major issues in the high energy limit of QCD is the problemof interplay between the perturbative and non-perturbative regimes. TheBFKL Pomeron in the leading logarithmi approximation [1℄ results in theequation whih exhibits the harateristi di�usion pattern [2℄. In the pro-ess with two, omparable hard sales (for example ���, or forward jet/�0in DIS) the distribution of the transverse sales of the gluons broadens withinreasing rapidity, with the width �t ' p�sY where t = lnk2=�2 with k2being the transverse momentum of the gluon and � being a QCD parameter.Thus, for su�iently high energies the distribution of the gluon momentawill always reah non-perturbative regime. This piture of di�usion is wellrooted in the ase of the �xed �s oupling. The e�et of subleading orre-tions [3℄ is, among other, the running of the QCD oupling. In this ase onewould expet small modi�ation of the di�usion piture, namely that the dis-tribution of the momenta will develop an asymmetry towards lower sales.The exponent of the ross setion gains additional term b2�5sY 3 apart from� Presented at the X International Workshop on Deep Inelasti Sattering (DIS2002)Craow, Poland, 30 April�4 May, 2002.(3039)



3040 A.M. Sta±tothe usual leading �sY term, where Y is the rapidity of the proess. This pi-ture holds however for rapidities whih are not too large. In [4℄ it has beenpointed out that the transition to the non-perturbative regime an our asa sudden tunneling e�et rather than a gradual di�usion proess. Instead ofslow inrease of the width of the distribution of the momenta, one observesa sudden transition from the perturbative sales t0 ' t = lnQ2=�2 into thenon-perturbative regime t0 ' �t � 0, where �t = lnQ20=�2 is the sale set bythe regularisation of the running oupling. The harateristi feature of thise�et is that it ours without any passage through the intermediate sales1.To gain insight into the e�et of the tunneling we shall onsider thesmall x evolution whih is ontrolled by the BFKL equation of the form�G(Y ; t; t0)�Y = K 
G ; (1)where K is the BFKL kernel and G(Y; t; t0) gluon Green's funtion eval-uated at rapidity Y = ln1=x and sales t and t0 with initial onditionG(Y = 0; t; t0) = Æ(t� t0). Kernel K = �sK0 is the usual BFKL kernel inthe leading logarithmi approximation, but we additionally introdue therunning of the oupling �s(t).The detailed mehanism of the tunneling is illustrated in Fig. 1 wherewe show the ontour plots in the t and Y plane of the funtionf(Y; y; t; t0) = G(y; t; t0)G(Y � y; t0; t)G(Y ; t; t) ; (2)whih illustrates the hange of distribution of the transverse momenta duringevolution between two points: from (0; t0) to (Y; t). At the beginning of theevolution Y < 50 the solution exhibits typial di�usion pattern and thebroadening of the distribution. Around Y = 60; 70 the tunneling transitionours in whih emerges seond region onentrated around non-perturbativesale �t. At higher rapidities the evolution is onentrated only in the non-perturbative region. One an estimate the value of rapidity at whih thetunneling transition takes plae. We just have to ompare the ontributionto the Green's funtion whih omes from the tunneling on�guration withthat oming from the perturbative evolution. The tunneling on�gurationan be written as:Gtunnel(Y ; t; t) � e�(t��t)=2e!IPY e�(t��t)=2 ; (3)1 It has to be stressed that the unitarity e�ets an in priniple hange signi�antlythe phenomenon of tunneling. It was notied in [5℄ that in the ase of the non-linearsmall x evolution equation, the generation of the saturation sale Qs(x) leads to thesuppression of di�usion into the low sales k < Qs(x) and the distribution of themomenta is driven towards the perturbative regime.



Running Coupling and BFKL Pomeron 3041

Fig. 1. Contour plots for f(Y; y; t; t0), illustrating di�erent stages of the evolution:Y = 30 and 50 illustrates standard `igar' type plots, Y = 60�70 show the pointwhere tunneling begins to play a role, while for Y � 80 the momentum on�gura-tion is only in the non-perturbative regime.where the �rst term orresponds to branhing from t to �t, seond to theevolution at �t with a non-perturbative Pomeron interept !IP and the lastterm orresponds to branhing from �t bak to t. Instead the on�gurationwhih omes from the normal perturbative evolution is justGpert(Y ; t; t) � e!s(t)Y ; (4)where !s(t) is the e�etive perturbative saddle point exponent.



3042 A.M. Sta±toTunneling transition will take plae when Gtunnel ' Gpert and this oursat rapidity Ytunnel(t) = t� �t!IP � !s(t) ; (5)whih shows the linear dependene on t and the slope governed by the valueof the interept of the non-perturbative Pomeron !IP.From this analysis it is lear that in the ase of the small x evolution withrunning oupling one has always ontamination from the non-perturbativeontribution. The real problem lies then in the de�nition of the perturbativehard Pomeron. A way of solving this problem is to onsider the b-expansion[6℄ i.e. take the limit in whih b! 0 where b is the beta funtion oe�ientof the QCD oupling. It has been shown [6℄ that the gluon Green's funtionan be deomposed into the perturbative and non-perturbative terms andthat the ratio of these two omponents is roughly of the formGIP(Y ; t; t0)Gpert(Y ; t; t0) � exp �(!IP � !s(t))Y � 1b�s(t)g(�s(t))� ; (6)where g(�s(t)) is some funtion whih an depend on the details of the modelfor small x evolution (for example Airy, ollinear, full BFKL). We see, thatthe non-perturbative Pomeron is asymptotially leading sine we always have!IP > !s(t) but is suppressed by the universal exponential fator. By takingthe limit b ! 0 we an eliminate the non-perturbative Pomeron and areable to isolate purely perturbative ontribution whih is independent of thegiven regularisation proedure for the running oupling. The b ! 0 limitorresponds to the assumption of the very slowly varying QCD oupling(expansion around the �xed oupling limit). Using the b-expansion, see [6℄,one is able to identify systematially various types of di�usion orretions� b2�5sY 3; b2�4sY 2 and speify the radius of onvergene for this series givenby the parameter � = b�m ��s2(t0) ' 0:264, where �m = 4 ln 2 being theminimum of the BFKL kernel eigenvalue. We have also heked numeriallythat the perturbative behaviour indeed breaks down at rapidities Y � t2whih an be seen from the above quoted form of the parameter �. InFig. 2 we show the maximum rapidity for whih the perturbative part anbe de�ned using two methods. In the �rst one, we alulate the solutionto the equation (1) with two di�erent regularisations for �s(t) and de�neYmax as the limiting rapidity at whih the two solutions start to diverge �dashed line. In the seond method we apply the b-expansion method, andalulate the perturbative gluon Green's funtion from the following serieslnGpert(Y ; t; t) =Pi bili(�s(t); Y ). We then trunate this series at di�erentorders and de�ne again Ymax as the divergene point. We learly see fromFig. 2 that the �rst method yields linear dependene on t whih is onsistent



Running Coupling and BFKL Pomeron 3043with formula (5) and suggest the tunneling as the relevant mehanism forthe breakdown of perturbative evaluation. In the seond ase, we observe� t2 behaviour whih is onsistent with the predition based on the ritialvalue �. Thus the perturbative predition an be in priniple made up tothe values Ymax � t2.
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Fig. 2. The maximum perturbatively aessible value of Y , as a funtion of 1=�s(t0),determined by omparing di�erent non-perturbative regularisations of �s, or dif-ferent trunations of the b-expansion.The results presented in this talk have been obtained in ollaborationwith M. Ciafaloni, D. Colferai and G.P. Salam. Work supported in partby the E.U. QCDNET ontrat FMRX-CT98-0194 and by the Polish StateCommittee for Sienti� Researh (KBN) grants no. 2P03B 05119, 2P03B12019, 5P03B 14420. REFERENCES[1℄ L.N. Lipatov, Sov. J. Nul. Phys. 23, 338 (1976); E.A. Kuraev, L.N. Lipatov,V.S. Fadin, Sov. Phys. JETP 45, 199 (1977); I.I. Balitsky, L.N. Lipatov, Sov.J. Nul. Phys. 28, 338 (1978).[2℄ J. Bartels, H. Lotter, Phys. Lett. B309, 400 (1993).
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