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RUNNING COUPLING AND BFKL POMERON�Anna M. Sta±toINFN Sezione di Firenze, Sesto Fiorentino (FI), ItalyandH. Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Poland(Re
eived June 27, 2002)We show that in the 
ase of the BFKL pomeron with running 
ouplingthe di�usion pattern is strongly modi�ed and is 
hara
terised by the sud-den tunneling transition to the non-perturbative regime. We suggest thatby using the b-expansion method one 
an suppress the non-perturbativePomeron and isolate purely perturbative part of the gluon Green's fun
-tion.PACS numbers: 12.38. CyOne of the major issues in the high energy limit of QCD is the problemof interplay between the perturbative and non-perturbative regimes. TheBFKL Pomeron in the leading logarithmi
 approximation [1℄ results in theequation whi
h exhibits the 
hara
teristi
 di�usion pattern [2℄. In the pro-
ess with two, 
omparable hard s
ales (for example 
��
�, or forward jet/�0in DIS) the distribution of the transverse s
ales of the gluons broadens within
reasing rapidity, with the width �t ' p�sY where t = lnk2=�2 with k2being the transverse momentum of the gluon and � being a QCD parameter.Thus, for su�
iently high energies the distribution of the gluon momentawill always rea
h non-perturbative regime. This pi
ture of di�usion is wellrooted in the 
ase of the �xed �s 
oupling. The e�e
t of subleading 
orre
-tions [3℄ is, among other, the running of the QCD 
oupling. In this 
ase onewould expe
t small modi�
ation of the di�usion pi
ture, namely that the dis-tribution of the momenta will develop an asymmetry towards lower s
ales.The exponent of the 
ross se
tion gains additional term b2�5sY 3 apart from� Presented at the X International Workshop on Deep Inelasti
 S
attering (DIS2002)Cra
ow, Poland, 30 April�4 May, 2002.(3039)



3040 A.M. Sta±tothe usual leading �sY term, where Y is the rapidity of the pro
ess. This pi
-ture holds however for rapidities whi
h are not too large. In [4℄ it has beenpointed out that the transition to the non-perturbative regime 
an o

ur asa sudden tunneling e�e
t rather than a gradual di�usion pro
ess. Instead ofslow in
rease of the width of the distribution of the momenta, one observesa sudden transition from the perturbative s
ales t0 ' t = lnQ2=�2 into thenon-perturbative regime t0 ' �t � 0, where �t = lnQ20=�2 is the s
ale set bythe regularisation of the running 
oupling. The 
hara
teristi
 feature of thise�e
t is that it o

urs without any passage through the intermediate s
ales1.To gain insight into the e�e
t of the tunneling we shall 
onsider thesmall x evolution whi
h is 
ontrolled by the BFKL equation of the form�G(Y ; t; t0)�Y = K 
G ; (1)where K is the BFKL kernel and G(Y; t; t0) gluon Green's fun
tion eval-uated at rapidity Y = ln1=x and s
ales t and t0 with initial 
onditionG(Y = 0; t; t0) = Æ(t� t0). Kernel K = �sK0 is the usual BFKL kernel inthe leading logarithmi
 approximation, but we additionally introdu
e therunning of the 
oupling �s(t).The detailed me
hanism of the tunneling is illustrated in Fig. 1 wherewe show the 
ontour plots in the t and Y plane of the fun
tionf(Y; y; t; t0) = G(y; t; t0)G(Y � y; t0; t)G(Y ; t; t) ; (2)whi
h illustrates the 
hange of distribution of the transverse momenta duringevolution between two points: from (0; t0) to (Y; t). At the beginning of theevolution Y < 50 the solution exhibits typi
al di�usion pattern and thebroadening of the distribution. Around Y = 60; 70 the tunneling transitiono

urs in whi
h emerges se
ond region 
on
entrated around non-perturbatives
ale �t. At higher rapidities the evolution is 
on
entrated only in the non-perturbative region. One 
an estimate the value of rapidity at whi
h thetunneling transition takes pla
e. We just have to 
ompare the 
ontributionto the Green's fun
tion whi
h 
omes from the tunneling 
on�guration withthat 
oming from the perturbative evolution. The tunneling 
on�guration
an be written as:Gtunnel(Y ; t; t) � e�(t��t)=2e!IPY e�(t��t)=2 ; (3)1 It has to be stressed that the unitarity e�e
ts 
an in prin
iple 
hange signi�
antlythe phenomenon of tunneling. It was noti
ed in [5℄ that in the 
ase of the non-linearsmall x evolution equation, the generation of the saturation s
ale Qs(x) leads to thesuppression of di�usion into the low s
ales k < Qs(x) and the distribution of themomenta is driven towards the perturbative regime.
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Fig. 1. Contour plots for f(Y; y; t; t0), illustrating di�erent stages of the evolution:Y = 30 and 50 illustrates standard `
igar' type plots, Y = 60�70 show the pointwhere tunneling begins to play a role, while for Y � 80 the momentum 
on�gura-tion is only in the non-perturbative regime.where the �rst term 
orresponds to bran
hing from t to �t, se
ond to theevolution at �t with a non-perturbative Pomeron inter
ept !IP and the lastterm 
orresponds to bran
hing from �t ba
k to t. Instead the 
on�gurationwhi
h 
omes from the normal perturbative evolution is justGpert(Y ; t; t) � e!s(t)Y ; (4)where !s(t) is the e�e
tive perturbative saddle point exponent.



3042 A.M. Sta±toTunneling transition will take pla
e when Gtunnel ' Gpert and this o

ursat rapidity Ytunnel(t) = t� �t!IP � !s(t) ; (5)whi
h shows the linear dependen
e on t and the slope governed by the valueof the inter
ept of the non-perturbative Pomeron !IP.From this analysis it is 
lear that in the 
ase of the small x evolution withrunning 
oupling one has always 
ontamination from the non-perturbative
ontribution. The real problem lies then in the de�nition of the perturbativehard Pomeron. A way of solving this problem is to 
onsider the b-expansion[6℄ i.e. take the limit in whi
h b! 0 where b is the beta fun
tion 
oe�
ientof the QCD 
oupling. It has been shown [6℄ that the gluon Green's fun
tion
an be de
omposed into the perturbative and non-perturbative terms andthat the ratio of these two 
omponents is roughly of the formGIP(Y ; t; t0)Gpert(Y ; t; t0) � exp �(!IP � !s(t))Y � 1b�s(t)g(�s(t))� ; (6)where g(�s(t)) is some fun
tion whi
h 
an depend on the details of the modelfor small x evolution (for example Airy, 
ollinear, full BFKL). We see, thatthe non-perturbative Pomeron is asymptoti
ally leading sin
e we always have!IP > !s(t) but is suppressed by the universal exponential fa
tor. By takingthe limit b ! 0 we 
an eliminate the non-perturbative Pomeron and areable to isolate purely perturbative 
ontribution whi
h is independent of thegiven regularisation pro
edure for the running 
oupling. The b ! 0 limit
orresponds to the assumption of the very slowly varying QCD 
oupling(expansion around the �xed 
oupling limit). Using the b-expansion, see [6℄,one is able to identify systemati
ally various types of di�usion 
orre
tions� b2�5sY 3; b2�4sY 2 and spe
ify the radius of 
onvergen
e for this series givenby the parameter �
 = b�m ��s2(t0) ' 0:264, where �m = 4 ln 2 being theminimum of the BFKL kernel eigenvalue. We have also 
he
ked numeri
allythat the perturbative behaviour indeed breaks down at rapidities Y � t2whi
h 
an be seen from the above quoted form of the parameter �
. InFig. 2 we show the maximum rapidity for whi
h the perturbative part 
anbe de�ned using two methods. In the �rst one, we 
al
ulate the solutionto the equation (1) with two di�erent regularisations for �s(t) and de�neYmax as the limiting rapidity at whi
h the two solutions start to diverge �dashed line. In the se
ond method we apply the b-expansion method, and
al
ulate the perturbative gluon Green's fun
tion from the following serieslnGpert(Y ; t; t) =Pi bili(�s(t); Y ). We then trun
ate this series at di�erentorders and de�ne again Ymax as the divergen
e point. We 
learly see fromFig. 2 that the �rst method yields linear dependen
e on t whi
h is 
onsistent



Running Coupling and BFKL Pomeron 3043with formula (5) and suggest the tunneling as the relevant me
hanism forthe breakdown of perturbative evaluation. In the se
ond 
ase, we observe� t2 behaviour whi
h is 
onsistent with the predi
tion based on the 
riti
alvalue �
. Thus the perturbative predi
tion 
an be in prin
iple made up tothe values Ymax � t2.
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Fig. 2. The maximum perturbatively a

essible value of Y , as a fun
tion of 1=�s(t0),determined by 
omparing di�erent non-perturbative regularisations of �s, or dif-ferent trun
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