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This talk discusses Generalized Parton Distributions (GPDs), which
encode various types of non-perturbative information relevant to the QCD
description of exclusive processes. Results on their Next-to-Leading Order
(NLO) QCD evolution are presented. We find that models for the input
GPDs based on double distributions require some modification in order to
reproduce the available data on deeply virtual Compton scattering.

PACS numbers: 11.10.Hi, 11.30.Ly, 12.38.Bx

Generalized parton distributions are required to calculate a wide vari-
ety of hard exclusive processes (e.g. diffractive electro-production of vector
mesons, or dijet photoproduction). The easiest and cleanest way to access
GPDs is via the electro-production of a real photon, i.e. Deeply Virtual
Compton Scattering (DVCS) [1] (see figure 1, which also defines some kine-
matic variables). DVCS amplitudes have been proven to factorize [2], i.e. to
involve convolutions of perturbatively calculable coefficient functions with
GPDs. The ZEUS, H1, HERMES and CLAS experiments all have data
available [3]. On the theoretical side the next-to-leading order leading-twist
analysis of DVCS is now complete and a great deal has been understood
about the role of higher twist corrections (see e.g. [4] and references therein).
We have completed a NLO numerical analysis of GPDs, DVCS amplitudes
and observables [5] and present some of our results here. Most of our analysis
code is available from the HEPDATA web-site [6].

* Presented at the X International Workshop on Deep Inelastic Scattering (DIS2002)
Cracow, Poland, 30 April-4 May, 2002.
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Fig.1. DVCS amplitude and skewed kinematics.

GPDs are defined by Fourier transforms of twist two operators sand-
wiched between unequal momentum nucleon states. They encode a variety
of non-perturbative information about the nucleon, including conventional
Parton Distribution Functions (PDFs), distributions amplitudes and form
factors, and reproduce these in various limits. The essential feature of the
two parton correlation function shown in figure 2 is the presence of a finite
momentum transfer, A = P— P’, in the t-channel. Hence the partonic struc-
ture of the hadron is tested at distinct momentum fractions, 1, 2. On the
light cone these matrix elements are parameterized by Double Distributions
(DDs) which depend on two plus-momentum fractions with respect to two
external momenta, on the four momentum transfer squared, t = A?, and
on a four-momentum scale 2. The external momenta can be selected in
several ways (e.g. either the “symmetric” (A, P = (P + P')/2), or “natu-
ral” (A, P) choices). Unfortunately this freedom has led to a proliferation
of definitions and nomenclature in the literature (skewed, off-diagonal, non-
diagonal, off-forward, ...) to describe essentially the same objects, which
has led to considerable confusion. Hence the collective name generalized has
been introduced to attempt to clarify the situation.

Radyushkin [7] introduced symmetric DDs, with plus momentum frac-
tions, z,y of the outgoing and returning partons defined as shown in the
left hand plot of figure 2. They exist on the diamond-shaped domain shown
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Fig.2. Symmetric double distributions and their physical domain.

XP+ (L+y) A2

P+A2




Generalized Parton Distributions at . .. 3065

to the right. For a given skewedness, £ = (/(2 — (), the outgoing parton
lines, of course, only have a single plus momentum, so that Ji’s distributions
H(v,¢) [8] are related to these DDs, via an integral involving §(v — z — £y),
along the off-vertical lines in the diamond (v € [—1,1], and the dotted line
corresponds to v = £). For our numerical solution of the renormalization
group equations we prefer to work with the natural off-diagonal PDFs de-
fined by Golec-Biernat and Martin [9], which have a momentum fraction
X € [0,1] of the incoming proton’s momentum. Their relationship to Ji’s
functions is shown in figure 3. There are two distinct regions: the DGLAP
region, X > (, in which the GPDs obey a generalized form of the DGLAP
equations for PDFs, and the ERBL region, X < (, where the GPDs obey
a generalized form of the ERBL equations for distributions amplitudes. In
the ERBL region, due to the fermion symmetry, F, and F; are not in-
dependent and this leads to an anti-symmetry of the unpolarized quark
distributions about the point (/2 (the gluon GPD is symmetric). Another
formal property of the GPDs, which can be proved on general grounds, is
that the N-moments of H are polynomials of degree ¢/V: this is known as
polynomiality. In addition, any input model for GPDs must reproduce the

conventional PDFs for very small skewedness: <1i_r>n0 Fi(X,() — fi(X) the
“forward limit”.
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Fig. 3. Relation between F and H.

As a model for the GPDs, with the correct features, we use Radyushkin’s
factorized ansatz [7] for the double distributions

FPP(z,y) = m(z,y) f (x) A1), (1)

where A%(t) is a form factor form for the factorized t-dependence, fi(z) is
the forward PDF and
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reb+1)  [(1-|z)? -y’
m(z,y) = 22b+1(F2?—b_2 1) ( (1 _| |B|)2b+y1 ] (2)

is the profile function which introduces the dependence on skewedness (nor-

malized such that fllﬁ‘

by =2,b=o00 corresponds to the forward case. By design this model auto-
matically respects the forward limit. To respect polynomiality an additional
term, the so-called D-term, is required in the ERBL region, for which we use
the model of [10]. Numerical studies indicate that this term is significant
only at large ¢ (its influence drops below 1% in for ¢ < 0.01).

In the DGLAP region integration over y of the DD leads to the follow
type of integral

dy m(z,y) = 1). In the canonical model b, = 1 and
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This leads to a serious problem in this model: when X — ( the PDF is sam-
pled down to zero, where it has not yet been measured. For non-singular
distributions this presents no particular problems (although it does involve
an extrapolation to z' = 0), however, for singular distributions the precise
extrapolation is crucial and in general leads to a large enhancement of the
GPD relative to the PDF in this region (for CTEQ6M the factor can be
as large as five). When we compared this model to the H1 DVCS data it
overshoots by a factor of approximately 4-6 because of this ! To tame this
rather unnatural enhancement we introduce a modification of such integrals,
via a lower cutoff of the form a (. This may be justified by examining the
effect of imposing exact kinematics on the imaginary part of the DVCS am-
plitude which would be required to produce finite mass hadrons in the final
state. Such reasoning indicates that a ~ m?2,,  /Q3 ~ 1/2 is a reasonable
value. Introducing such a cutoff reduces the enhancement factor of the in-
put GPD close to X = ( considerably and allows the H1 data to be well
described at both LO and NLO. Unfortunately, it leads to a mild violation
of the polynomiality condition since it may introduce higher moments, or
slightly alter the highest allowed moments.

Both the continuity of the GPD through the boundary point X = ¢ and
the symmetries about the point X = (/2 are preserved under evolution. The
evolution equations, at NLO accuracy, are solved numerically on a grid for
each value of (. For example figure 4 shows the quark GPD at ¢ = 0.1 at the
input scale and evolved to @ = 5GeV for CTEQ6M (C6M) and MRSTO01
(MO1) [11] input PDFs. This figure demonstrates that the anti-symmetry
about (/2 is preserved under evolution.
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Fig.4. Quark singlet GPD for ¢ = 0.1 at the input scale Qp and @ = 5.

The H1 data is already starting to constrain the allowed input GPDs. At

present input models are based only on the formal mathematical properties
of the GPDs (polynomiality, symmetries and the forward limit). As the
data improves it will become necessary to fit the input distributions via
minimization methods in a similar fashion to the inclusive case. Our analysis
indicates that the cutoff parameter, a, and the profile function power, b, may
be good candidates for fit parameters, since both of them control the level
of skewedness imposed at the input scale.
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