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GENERALIZED PARTON DISTRIBUTIONSAT NEXT-TO-LEADING ORDER�Martin MDermottDivision of Theoretial Physis, Department of Mathematial SienesUniversity of Liverpool, L69 3BX, UKand Andreas FreundInstitut fuer Theoretishe Physik, University of Regensburg93053 Regensburg, Germany(Reeived May 17, 2002)This talk disusses Generalized Parton Distributions (GPDs), whihenode various types of non-perturbative information relevant to the QCDdesription of exlusive proesses. Results on their Next-to-Leading Order(NLO) QCD evolution are presented. We �nd that models for the inputGPDs based on double distributions require some modi�ation in order toreprodue the available data on deeply virtual Compton sattering.PACS numbers: 11.10.Hi, 11.30.Ly, 12.38.BxGeneralized parton distributions are required to alulate a wide vari-ety of hard exlusive proesses (e.g. di�rative eletro-prodution of vetormesons, or dijet photoprodution). The easiest and leanest way to aessGPDs is via the eletro-prodution of a real photon, i.e. Deeply VirtualCompton Sattering (DVCS) [1℄ (see �gure 1, whih also de�nes some kine-mati variables). DVCS amplitudes have been proven to fatorize [2℄, i.e. toinvolve onvolutions of perturbatively alulable oe�ient funtions withGPDs. The ZEUS, H1, HERMES and CLAS experiments all have dataavailable [3℄. On the theoretial side the next-to-leading order leading-twistanalysis of DVCS is now omplete and a great deal has been understoodabout the role of higher twist orretions (see e.g. [4℄ and referenes therein).We have ompleted a NLO numerial analysis of GPDs, DVCS amplitudesand observables [5℄ and present some of our results here. Most of our analysisode is available from the HEPDATA web-site [6℄.� Presented at the X International Workshop on Deep Inelasti Sattering (DIS2002)Craow, Poland, 30 April�4 May, 2002.(3063)
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Fig. 1. DVCS amplitude and skewed kinematis.GPDs are de�ned by Fourier transforms of twist two operators sand-wihed between unequal momentum nuleon states. They enode a varietyof non-perturbative information about the nuleon, inluding onventionalParton Distribution Funtions (PDFs), distributions amplitudes and formfators, and reprodue these in various limits. The essential feature of thetwo parton orrelation funtion shown in �gure 2 is the presene of a �nitemomentum transfer, � = P�P 0, in the t-hannel. Hene the partoni stru-ture of the hadron is tested at distint momentum frations, x1; x2. On thelight one these matrix elements are parameterized by Double Distributions(DDs) whih depend on two plus-momentum frations with respet to twoexternal momenta, on the four momentum transfer squared, t = �2, andon a four-momentum sale �2. The external momenta an be seleted inseveral ways (e.g. either the �symmetri� (�; �P = (P + P 0)=2), or �natu-ral� (�;P ) hoies). Unfortunately this freedom has led to a proliferationof de�nitions and nomenlature in the literature (skewed, o�-diagonal, non-diagonal, o�-forward, : : :) to desribe essentially the same objets, whihhas led to onsiderable onfusion. Hene the olletive name generalized hasbeen introdued to attempt to larify the situation.Radyushkin [7℄ introdued symmetri DDs, with plus momentum fra-tions, x; y of the outgoing and returning partons de�ned as shown in theleft hand plot of �gure 2. They exist on the diamond-shaped domain shown
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Fig. 2. Symmetri double distributions and their physial domain.



Generalized Parton Distributions at . . . 3065to the right. For a given skewedness, � = �=(2 � �), the outgoing partonlines, of ourse, only have a single plus momentum, so that Ji's distributionsH(v; �) [8℄ are related to these DDs, via an integral involving Æ(v � x� �y),along the o�-vertial lines in the diamond (v 2 [�1; 1℄, and the dotted lineorresponds to v = �). For our numerial solution of the renormalizationgroup equations we prefer to work with the natural o�-diagonal PDFs de-�ned by Gole-Biernat and Martin [9℄, whih have a momentum frationX 2 [0; 1℄ of the inoming proton's momentum. Their relationship to Ji'sfuntions is shown in �gure 3. There are two distint regions: the DGLAPregion, X > �, in whih the GPDs obey a generalized form of the DGLAPequations for PDFs, and the ERBL region, X < �, where the GPDs obeya generalized form of the ERBL equations for distributions amplitudes. Inthe ERBL region, due to the fermion symmetry, Fq and F�q are not in-dependent and this leads to an anti-symmetry of the unpolarized quarkdistributions about the point �=2 (the gluon GPD is symmetri). Anotherformal property of the GPDs, whih an be proved on general grounds, isthat the N -moments of H are polynomials of degree �N : this is known aspolynomiality. In addition, any input model for GPDs must reprodue theonventional PDFs for very small skewedness: lim�!0 Fi(X; �) ! fi(X) the�forward limit�.
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Fig. 3. Relation between F and H .As a model for the GPDs, with the orret features, we use Radyushkin'sfatorized ansatz [7℄ for the double distributionsFDD(x; y) = �(x; y)f i(x)Ai(t) ; (1)where Ai(t) is a form fator form for the fatorized t-dependene, f i(x) isthe forward PDF and



3066 M. MDermott, A. Freund�(x; y) = � (2b+ 1)22b+1� 2(b+ 1) �(1� jxj)2 � y2�b(1� jxj)2b+1 (2)is the pro�le funtion whih introdues the dependene on skewedness (nor-malized suh that R 1�jxj�1+jxj dy �(x; y) = 1). In the anonial model bq = 1 andbg = 2, b =1 orresponds to the forward ase. By design this model auto-matially respets the forward limit. To respet polynomiality an additionalterm, the so-alled D-term, is required in the ERBL region, for whih we usethe model of [10℄. Numerial studies indiate that this term is signi�antonly at large � (its in�uene drops below 1% in for � < 0:01).In the DGLAP region integration over y of the DD leads to the followtype of integralFq;a(X; �) = 2� XZX��1�� dx0�q �x0; v � x0� � qa(x0) : (3)This leads to a serious problem in this model: when X ! � the PDF is sam-pled down to zero, where it has not yet been measured. For non-singulardistributions this presents no partiular problems (although it does involvean extrapolation to x0 = 0), however, for singular distributions the preiseextrapolation is ruial and in general leads to a large enhanement of theGPD relative to the PDF in this region (for CTEQ6M the fator an beas large as �ve). When we ompared this model to the H1 DVCS data itovershoots by a fator of approximately 4�6 beause of this ! To tame thisrather unnatural enhanement we introdue a modi�ation of suh integrals,via a lower uto� of the form a �. This may be justi�ed by examining thee�et of imposing exat kinematis on the imaginary part of the DVCS am-plitude whih would be required to produe �nite mass hadrons in the �nalstate. Suh reasoning indiates that a � m2hadron=Q20 � 1=2 is a reasonablevalue. Introduing suh a uto� redues the enhanement fator of the in-put GPD lose to X = � onsiderably and allows the H1 data to be welldesribed at both LO and NLO. Unfortunately, it leads to a mild violationof the polynomiality ondition sine it may introdue higher moments, orslightly alter the highest allowed moments.Both the ontinuity of the GPD through the boundary point X = � andthe symmetries about the point X = �=2 are preserved under evolution. Theevolution equations, at NLO auray, are solved numerially on a grid foreah value of �. For example �gure 4 shows the quark GPD at � = 0:1 at theinput sale and evolved to Q = 5GeV for CTEQ6M (C6M) and MRST01(M01) [11℄ input PDFs. This �gure demonstrates that the anti-symmetryabout �=2 is preserved under evolution.
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Fig. 4. Quark singlet GPD for � = 0:1 at the input sale Q0 and Q = 5.The H1 data is already starting to onstrain the allowed input GPDs. Atpresent input models are based only on the formal mathematial propertiesof the GPDs (polynomiality, symmetries and the forward limit). As thedata improves it will beome neessary to �t the input distributions viaminimization methods in a similar fashion to the inlusive ase. Our analysisindiates that the uto� parameter, a, and the pro�le funtion power, b, maybe good andidates for �t parameters, sine both of them ontrol the levelof skewedness imposed at the input sale.REFERENCES[1℄ A. Freund, M. MDermott, M. Strikman, Ata Phys. Pol. B33, (2002) nextissue.[2℄ J.C. Collins, A. Freund, Phys. Rev. D59, 074009 (1999).[3℄ P.R. Saull, for ZEUS Collaboration, hep-ex/0003030; C. Adlo� et al.,H1 Collaboration, Phys. Lett.B517, 47 (2001); A. Airapetian et al., HERMESCollaboration, Phys. Rev. Lett. 87, 182001 (2001); S. Stepanyan et al., CLASCollaboration, Phys. Rev. Lett. 87, 182002 (2001).[4℄ A.V. Belitsky, D. Mueller, L. Niedermeier, A. Shafer, Phys. Lett. B474, 163(2000); Nul. Phys. B593, 289 (2001); A.V. Belitsky, D. Mueller, A. Kirhner,Nul. Phys. B629, 323 (2002).[5℄ A. Freund, M. MDermott, Phys. Rev. D65, 056012 (2002); Phys. Rev. D65,074008 (2002); Phys. Rev. D65, 091901(R) (2002); Eur. Phys. J. C23, 651(2002).
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