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An algorithm is presented in which the Colour—Dipole Cascade Model as
implemented in the ARTADNE program is corrected to match the fixed order
tree-level matrix elements for ete™ — m jets. For the results presented
here, matrix elements were used up to second order in ag, but the scheme
is applicable also for higher orders.

PACS numbers: 12.38.Aw, 13.87.Ce

1. Introduction

Perturbative QCD has been very successful in describing many features
of multi-particle production in high energy collisions. There are, however,
several problems which have not yet been solved, mostly related to the tran-
sition between the perturbative and non-perturbative description of the the-
ory. Observables involving a few widely separated jets are in principle well
described with fixed-order perturbative matrix elements (MEs) for produc-
ing a few partons. But to make precision comparisons with experiments,
it is important to understand the transition of these partons to observable
hadrons. Our best knowledge of this transition comes from hadronization
models which describes how multi-parton states are transformed into multi-
hadron ones. But for these models to work reliably one needs also a de-
scription of the soft and collinear partons describing the internal structure
of widely separated jets and the soft partons between the jets.

To describe soft and collinear partons it is not feasible to use fixed-order
perturbation theory. Not only do the MEs for many-parton states become
extremely complicated but, since the partons are no longer widely separated,
the increase in phase space introduces large logarithms which compensates
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the smallness of g and makes the whole perturbative expansion ill-behaved.
To describe the inner structure of jets, a more practical approach is to use a
parton shower (PS) procedure. Here the large logarithms are resummed to
all orders at the expense of only keeping the leading logarithmic behaviour
of the full matrix elements.

To get a near complete description of multi-particle production it would
be desirable to combine the generation of a few widely separated partons
according to fixed-order MEs with the evolution of these states according
PSs and finally the transition into hadrons using a hadronization model.
To do this is, however, highly non-trivial and so far there exist no general
procedure which is entirely satisfactory. The main problem is that one needs
a resolution scale to separate the ME generation from the PS one. This scale
needs to be small enough to benefit from the full ME description, but if it
becomes too small the final result is spoiled by non-physical large logarithms
involving the separation scale.

In this talk I will briefly describe a new algorithm which combines fixed
order tree-level matrix MEs for eTe™ — n jets with the colour-dipole cascade
model [1,2] as implemented in the ARIADNE [3] event generator. A complete
description of the algorithm can be found in reference [4].

The basic idea is the same as was previously presented by Catani et
al. in [5] where tree-level MEs were combined with the PS of HERWIG [6].
There the n-parton states generated with the AMEGIC [7] matrix element
generator were reweighted with Sudakov form factors, with evolution scales
reconstructed by the k| -algorithm [8,9]. The same scales were used in the
running of g, and the generated states were allowed to shower according to
a special vetoed version of the HERWIG PS. In this way they can show that
the dependence on the resolution scale used in the ME generator is canceled
to next-to-leading logarithmic accuracy.

The algorithm presented here differs not only in that another parton
cascade is used, but also in the way the jet reconstruction is performed
and how the Sudakov form factors are obtained. Rather than using the
k, -algorithm, a modified version of the DicLus [10,11] algorithm is used
to reconstruct, not only the evolution scales, but a complete dipole cascade
history, i.e. a sequence of dipole cascade emissions which would result in the
n-parton state obtained from the ME generator. The Sudakov form factor
is then interpreted strictly as a no-emission probability in exactly the same
way as in the subsequent dipole cascade and are obtained by a special veto
algorithm.
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2. Reconstruction of emissions

The colour-dipole cascade model describes the emission of a gluon in
terms of dipole radiation from a colour dipole between two partons. The
emissions are hence described as two partons going to three, rather than
one going to two as in conventional parton shower models. This means that
colour coherence is automatically taken into account and that the first gluon
emission in eTe” annihilation trivially reproduces the full first order matrix
element. But there are a couple of technical details which are particular
to the dipole cascade. All partons are always on-shell at each step of the
cascade. The conservation of energy and momentum is achieved since both
emitting partons receives a recoil from the emitted gluon. The splitting of
a gluon into a gg-pair is also treated as if emitted from one of the dipoles
connected to the gluon, and the parton in the other end will receive some
recoil in order to conserve anergy and momentum [12]. Furthermore, the
scale of an emission is defined in terms of a Lorentz-invariant p; of the
emitted gluon with respect to the emitting partons. This is defined as

ng _ (512 — (m1 + m2)22§23 — (may + m3)2)’ (1)

where parton 2 is the emitted one and s;; and s;j;, are the squared invariant
masses of the two- and three-parton combinations.

The pIcLUS algorithm can be thought of as the inverse of the dipole
cascade. In each step the combination of three jets which have the smallest
invariant p, are clustered together into two (massless) jets.

Rather than always selecting the three parton configuration which has
the smallest invariant p| to be reconstructed, as is customary in jet algo-
rithms, it is possible to reconstruct all possible dipole cascade histories. This
is feasible since we are dealing with only a handful partons. The procedure
will then be to choose randomly between these different histories weighted
with the corresponding dipole splitting probabilities in analogy to the strat-
egy in [13]. The splitting probabilities will not include a running ag as in
the normal dipole cascade, since a constant agy was used in the generation
of the parton state. Instead the whole event is reweighted by a factor

1 n—2 )
) H Oés(pJ_i ) (2)
Qg ©

to get the running of ag with the reconstructed scales.
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3. The Sudakov veto algorithm

The reconstructed scales and states are also used to calculate the cor-
rection for the Sudakov form factors. Rather than using the approximate
analytic expression as a weight, we can use the fact that it corresponds to
the no-emission probability in a specific region of phase space.

Consider a three-parton state generated with the O(ag) ME, where the
scale of the gluon emission has been reconstructed to pﬁ_l. The Sudakov form
factor is then the probability of there being no emission from the initial g
state before the gluon was emitted, i.e. at a scale above pil, and that there
is no emission from the ggq state between the scale pil and the cutoff in
the ME. By making two trial emissions with the dipole cascade, one from
the reconstructed ¢g state, starting from the maximum scale, and one from
the ME-generated qqq state starting from pil and rejecting the whole event
if the first was at a scale above pil or the second was inside the ME cutoff,
the probability of accepting the event is exactly equal to the Sudakov form
factor. With this veto procedure the proper phase space region is taken into
account rather than the approximate limits in the analytic form.

4. Results

With these ingredients we can now construct the algorithm described in
detail in [4] which can be used together with basically any N-parton tree-
level ME generator. Although the procedure is to add a dipole cascade to the
2-, 3-, ..., N-parton states from the N-parton matrix element generator, the
result is that all final multi-parton states are distrubuted as if generated by
the dipole cascade, except that if the n — 2 (with n < N) hardest emissions
are inside the resolution scale, yy of the ME generator, their distribution is
described by the exact tree-level ME.

It is clear that there should only be a small dependence on the gy cut
of the ME since the only change when going outside the cut is that the
emissions are governed by the leading logarithmic expressions rather than
the exact ME and these should be very similar for a small enough cut.

Indeed when looking at standard event shapes from LEP, which are
known to be reproduced at a satisfactory level by the standard ARIADNE
program, there is only a small dependence on the y3. An example is given
in figure 1(a) where the result for the oblateness distribution is shown. In
most cases the dependence is much smaller than the uncertainties due to
hadronization parameters and the basic parameters in the dipole cascade,
the cutoff p . and AQCD-

To really see the influence of the ME matching one must look at details
in the correlations between jets. One example is the Bengtsson—Zerwas
angle [14] which is not at all described by the standard ARIADNE program. In
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Fig.1. (a) Ratios of the oblateness event shape on parton level at Ecy = 91 GeV
for the new ME matching algorithm using different values of Qo w.r.t. to the
standard ARIADNE program. The full line is with yo = Q2/Q? = 0.05, long-
dashed: yo = 0.02, dashed: yo = 0.01 and dotted: yo = 0.005. (b) The distribution
in the Bengtsson—Zerwas angle on parton level. The full line is standard ARIADNE,
the dashed line is the new ME matching algorithm with yo = 0.01 and the dotted
line is the tree-level O(a2) ME-only generator in PYTHIA with yo = 0.01.

figure 1(b) it is clear that the new matching procedure is closer than standard
ARIADNE to the result from the pure O(a2) ME generator in PYTHIA. Tt
does not, and should not, exactly reproduce the pure ME approach since
the correlation is smeared by the subsequent soft radiation.
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5. Conclusions

The algorithm presented here works well. So far it only works for
ete™—jets but it should be possible to apply the strategy also for colli-
sions with incoming hadrons. Investigations are underway to try to include
also virtual corrections according to exact fixed-order MEs.
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