AZIMUTHAL CORRELATION IN DIS

Andrea Banfi

Università di Milano-Bicocca and INFN Sezione di Milano, Italy

(Re
eived June 28, 2002)

We introduce a new angular correlation in DIS process and study its differential distribution in the region in which the observable is small. We perform a perturbative resummation at single logarithmic accuracy and estimate leading non-perturbative power corrections.

PACS numbers: $13.60-r$

1. Introduction

Energy–energy correlation $[1,2]$ was one of the first collinear and infrared safe (CIS) observables studied in QCD. It involves the polar angle between two produced hadrons in e^+e^- annihilation.

An analogous observable in a process with incoming hadrons should involve an azimuthal angle. In DIS we then define the azimuthal correlation $|3|$

$$
H(\chi) = \sum_{a,b} \frac{p_{ta} p_{tb}}{Q^2} \delta(\chi - \chi_{ab}), \quad \chi_{ab} = \pi - |\phi_{ab}| \,, \tag{1.1}
$$

being ϕ_{ab} the angle between \vec{p}_{ta} and \vec{p}_{tb} , the transverse momenta of produced hadrons a and b with respect to the photon axis in the Breit frame. The differential distribution in $H(\chi)$ takes its first non-zero contribution at order $\alpha_{\rm s},$ so that its study is better performed in DIS events with two high p_t jets. Su
h events an be sele
ted for instan
e by onstraining the two-jet resolution variable y_2 [4].

Presented at the X International Workshop on Deep Inelasti S
attering (DIS2002) Cracow, Poland, 30 April-4 May, 2002.

3324 **A. BANFI**

2. The observable at parton level

Sin
e the observable is linear in outgoing parti
le momenta, we an repla
e the sum over hadrons in Eq. (1.1) with a sum over partons. The Born process is $qP_1 \rightarrow P_1P_2$, with q the virtual boson, P_1 the struck parton inside the proton, P_2 and P_3 two outgoing hard partons. Since P_2 and P_3 are in the same plane, we have $P_{t2} = P_{t3} = P_t$ and $\chi_{23} = 0$.

Beyond Born level the QCD process is $q p_1 \rightarrow p_2 p_3 k_1 ... k_n$, with k_i secondary partons. Outgoing partons p_a ($a = 2, 3$) are displaced from P_a by soft recoil components, so that χ_{23} no longer vanishes. Furthermore, one has to consider also the correlation of secondary partons k_i with p_2 or p_3 .

For small χ we can consider k_i soft and, to first non-trivial order, $H(\chi)$ an be split into a hard and a soft pie
e:

$$
H_h(\chi) = \frac{2P_t^2}{Q^2} \delta(\chi - |\phi_x|) , \qquad \phi_x = \frac{\sum_i k_i^{\text{out}}}{P_t} , \qquad (2.1)
$$

$$
H_{\rm s}(\chi) = \frac{2P_t^2}{Q^2} \sum_i \frac{k_{ti}}{P_t} \left(\delta(\chi - |\bar{\phi}_i - \phi_x|) - |\cos \bar{\phi}_i| \delta(\chi - |\phi_x|) \right) \ . \tag{2.2}
$$

The hard piece $H_h(\chi)$ depends on the total out-of-plane recoil of p_2 or p_3 , which is proportional to the sum of κ_i , the out-of-event-plane amomenta of emitted particles. The soft piece $H_s(\chi)$ represents the correlation of k_i with p_2 and p_3 . The angle φ_i is φ_{i2} (φ_{i3}) for κ_i hear p_2 (p_3). The subtraction term comes from the in-plane recoil of p_2 and p_3 and ensures that the observable is CIS.

3. Perturbative resummation

The first order PT contribution to the differential $H(\chi)$ distribution $d\Sigma/d\chi$ is given by:

$$
\chi \frac{d\Sigma(\chi)}{d\chi} = \frac{2\alpha_{\rm s}C_T}{\pi} \ln \frac{1}{\chi} + \dots, \qquad C_T = 2C_F + C_A \,. \tag{3.1}
$$

The presence of such a logarithm is due to an incomplete real-virtual cancellation. Moreover, terms of the form $\alpha_s^m \ln^n \chi$ arise at any order in PT theory. For small χ they become large and need to be resummed to give meaning to the perturbative expansion.

Resummation of logarithmic enhanced terms can be achieved by introducing the impact parameter b, the Fourier variable conjugate to ϕ_x . We

The event plane can be identified for instance by the Breit axis and the thrust-major axis $[5]$.

aim at single logarithmic (SL) accuracy, i.e. having under control all double $(\alpha_s^n \ln^{n+1} \chi)$ and single $(\alpha_s^n \ln^n \chi)$ logarithms in $\ln \Sigma$. We find that only Hh() ontributes to SL level, while the ee
t of Hs() is subleading.

The PT answer can then be written as a convolution of the Born matrix element m_0 with a function which resums an double and single logs.

$$
\frac{d\Sigma^{\rm PT}(\chi)}{d\chi} \sim M_0^2 \otimes \frac{2}{\pi} \int_0^\infty P_t db \cos(bP_t \chi) \mathcal{P}(b^{-1}) e^{-R(b)} . \tag{3.2}
$$

In the above expression, due to coherence of QCD radiation, (virtual) gluons with frequencies below θ - reconstruct the proper hard scale for the parton α ensity μ of the incoming parton. Gluons with frequencies above θ build up the Sudakov exponent $R(b)$, the 'so-called' radiator. This function, the same occurring in three-jet event shapes $[5,6]$, depends on the colour charges of the three hard emitters and on the geometry of the hard underlying event.

The behaviour of $d\Sigma/d\chi$ near $\chi = 0$ can be understood by considering the physical effects which can keep the angle χ small. One mechanism is radiation suppression. This is the only one relevant in most event shapes and gives rise to a Sudakov form factor with a characteristic peak $[7]$. However, sin
e our observable measures radiation only through hard parton re
oil, it may happen that χ is kept small by successive cancellation of larger out-ofplane momenta. It is this effect which prevails at small χ , so that $d\Sigma/d\chi$. unlike event shapes, has no Sudakov peak, but rather approa
hes a onstant for $\chi \to 0$ [2].

4. Non-perturbative power orre
tions

The soft term H_s , although subleading at PT level, gives rise to the leading NP power corrections:

$$
\frac{d\varSigma^{\rm NP}(\chi)}{d\chi} \sim M_0^2 \otimes \frac{2}{\pi} \int_0^\infty P_t db \cos(bP_t \chi) P_1(b^{-1}) e^{-R(b)} B(b) ,\qquad (4.1)
$$

Extracting the term of $B(b)$ linear in b we find:

$$
B(b) = -b\left(C_2 + C_3\right) \int\limits_0^{Q^2} \frac{d\kappa^2}{\kappa^2} \kappa \frac{\alpha_s(\kappa)}{\pi} \,. \tag{4.2}
$$

In this expression C_2 and C_3 are the colour charges of the two outgoing partons P_2 and P_3 , and κ is the (invariant) transverse momentum of the emitted gluon with respect to each outgoing parton.

3326 A. BANFI

 \mathbf{u} involves the integral of the integral of the integral of the integral of the infrared. Giving sense to that integral requires a genuine NP input which can be provided for instance by the dispersive approach [8]. This includes the following steps:

- extension of the coupling in the infrared via a dispersion relation;
- promoting the gluon to be massive: this allows the gluon to decay in
lusively;
- taking into account non-inclusiveness of the observable by multiplying the result by the Milan factor \mathcal{M} [9].

The final result thus becomes:

$$
B(b) = -b (C_2 + C_3) \lambda^{\rm NP} , \qquad \lambda^{\rm NP} = \mathcal{M} \frac{4}{\pi^2} \mu_I (\alpha_0(\mu_I) + \mathcal{O} \alpha_{\rm s}) . \qquad (4.3)
$$

The quantity α_0 is the average of the dispersive coupling below the (arbitrary) infrared scale μ_I . This NP parameter has been measured through the analysis of mean values and distributions of two-jet event shapes both in e+e - annimiation [10] and Dis [11].

The NP ontribution to the azimuthal orrelation distribution is then:

$$
\frac{d\Sigma^{\rm NP}(\chi)}{d\chi} = -\lambda^{\rm NP}(C_2 + C_3)\langle b \rangle \,, \qquad \langle b \rangle_{\chi=0} \sim \frac{1}{\text{LQCD}} \left(\frac{\text{LQCD}}{Q}\right)^{\gamma} \,. \tag{4.4}
$$

Here b is averaged over the PT distribution in Eq. (3.2) . From Eq. (4.4) we see that power corrections scale like a non integer power of $1/Q$ ($\gamma \simeq 0.62$).

In figure $1(a)$ we show the behaviour of azimuthal correlation at HERA energies for $Q_{\parallel}=$ 900 GeV , x_B = 0.1 and 1.0 $<$ y_2 $<$ 2.5. We see that the distribution goes to constant for $\chi \ll 1$. The effect of power corrections is to further deplete the distribution by an amount proportional to $\langle b \rangle$. In \max_{α} if α is the α of α are assumed to the α and α are α is the α of α data $[12]$. We observe that also in this case the distribution flattens to a constant value thus suggesting the mechanism of cancellation of out-ofplane momenta dis
ussed in Se
tion 3. In on
lusion, we have now a new observable that an be used not only to provide a further measurement of α_s and to constrain the parton densities, but also to investigate the nature of hadronisation effects in hard QCD processes.

 $\mathbf r$ ig. 1. Qualitative comparison between azimuthal correlation in DIS (a) and π/π azimuthal orrelation in hadron-hadron ollisions (b).

This work has been done in collaboration with Giuseppe Marchesini and Graham Smye. I am also grateful to Yuri Dokshitzer for helpful dis
ussions and to Gavin Salam and Giulia Zanderighi for useful omments and support in the numeri
al analysis.

- $[1]$ C.L. Basham, L.S. Brown, S.D. Ellis, S.T. Love, *Phys. Rev. Lett.* 41, 1585 (1978); Phys. Rev. D19, 2018 (1979); J.C. Collins, D.E. Soper, Nu
l. Phys. B284, 253 (1987); Yu.L. Dokshitzer, G. Marchesini, B.R. Webber, J. High Energy Phys. 9907, 012 (1999).
- [2] G. Parisi, R. Petronzio, Nucl. Phys. B154, 427 (1979).
- [3] A. Banfi, G. Marchesini, G. Smye, *J. High Energy Phys.* 0204 , 024 (2002).
- [4] S. Catani, Yu.L. Dokshitzer, B.R. Webber, Phys. Lett. B322, 263 (1994).
- [5] A. Banfi, G. Marchesini, G. Smye, G. Zanderighi, J. High Energy Phys. 0111 , $066(2001)$. 066 (2001).
- [6] A. Banfi, Yu.L. Dokshitzer, G. Marchesini, G. Zanderighi, *Phys. Lett.* **B508**, 269 (2001); *J. High Energy Phys.* 0007, 002 (2000); *J. High Energy Phys.* **0103**, 007 (2001); A. Banfi, G. Marchesini, G. Smye, G. Zanderighi, *J. High Energy Phys.* $0108, 047 (2001)$.
- [7] S. Catani, L. Trentadue, G. Turnock, B.R. Webber, Nucl. Phys. B407, $\mathbf{1}\qquad \mathbf{1}\qquad \mathbf{$ Yu.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam, J. High Energy *Phys.* 9801, 011 (1998).
- [8] Yu.L. Dokshitzer, G. Marchesini, B.R. Webber, *Nucl. Phys.* $\bf{B469}$, 93 (1996).
- [9] Yu.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam, Nucl. Phys. B511, 396 (1998); Erratum Nu
l. Phys. B593, 729 (2001); J. High Energy Phys. 9805, 003 (1998).
- [10] For a review see S. Bethke, *Eur. Phys. J.* $D1$, 1 (2002).
- [11] C. Adloff *et al.* [H1 Collaboration], *Eur. Phys. J.* C14, 255 (2000); Erratum Eur. Phys. J. C18, 417 (2000); G.J. McCance [H1 Collaboration], hep-ex/0008009.
- [12] J.F. Owens, *Phys. Rev.* **D65**, 034011 (2002).