# RESULTS ON INCLUSIVE DIFFRACTION AT ZEUS* 

Marcella Capua<br>On behalf of the ZEUS Collaboration<br>INFN Cosenza and Calabria University<br>Arcavacata di Rende (CS), Italy<br>e-mail: capua@cs.infn.it

(Received September 16, 2002)
The diffractive dissociation of virtual photons, $\gamma^{*} p \rightarrow X p$, has been studied in $e p$ interactions at HERA. The data are presented in terms of the diffractive structure function $F_{2}^{\mathrm{D}}$ and $d \sigma / d M_{X}$. The Pomeron intercepts, extracted from diffractive and inclusive ep interactions, are compared. The $Q^{2}$ variation of the ratio of the diffractive to inclusive cross sections on $W$, the photon-proton center of mass energy, illuminates the transition from the perturbative, high $Q^{2}$, region to the photoproduction limit. The ranges studied in both $W$ and $Q^{2}$ are extended with respect to previously available results.

PACS numbers: $13.60 . \mathrm{Hb}, 14.70 .-\mathrm{e}$

## 1. Diffraction at HERA

The diffractive dissociation of real photons, $\gamma p \rightarrow X p$, can be treated in complete analogy with hadron-hadron diffractive interactions and therefore can be described by Regge phenomenology. By contrast, HERA allows the investigation of the partonic nature of diffraction in Deep-Inelastic Scattering (DIS) using virtual photons.

A photon of virtuality $Q^{2}$ interacts with a proton at a center of mass energy $W$ to produce two distinct hadronic systems of masses $M_{X}$ and $M_{Y}$, respectively. The system $X$ is usually reconstructed in the central detector and is well separated in rapidity from the proton remnant system $Y$ produced with squared four momentum transfer $t$. The photon dissociative processes are selected at ZEUS either by a method based on the characteristics of the distribution of $M_{X}$ ("mass method") or by measuring the scattered proton

[^0]in special downstream detector, the ZEUS Leading Proton Spectrometer (LPS). The first method yields high statistics, but contains a background of double-dissociative events, $e p \rightarrow e X Y$.

### 1.1. Diffractive cross section and structure function

The diffractive cross section $\sigma_{e p}^{\text {diff }}$ for the process $e p \rightarrow e X p$ is related to the cross section $\sigma_{\gamma^{*} p}^{\text {diff }}$ for the diffractive dissociation of virtual photons, $\gamma^{*} p \rightarrow X p: \frac{d \sigma_{\gamma, p}^{\mathrm{diff}}}{d M_{X}}=\frac{2 \pi Q^{2} y}{\alpha\left(1+(1-y)^{2}\right)} \frac{d^{3} \sigma_{e r}^{\mathrm{diff}}}{d Q^{2} d y d M_{X}}$. The diffractive cross section $\sigma_{e p}^{\text {diff }}$ can also be also be expressed in terms of the diffractive structure function $F_{2}^{\mathrm{D}(4)}\left(\beta, Q^{2}, X_{\mathbb{P}}, t\right)$, where $x_{\mathbb{P}}$ may be interpreted as the fraction of the longitudinal momentum of the proton carried by the Pomeron strike and transferred to the system $X$, and $\beta$ as the fraction of the Pomeron momentum carried by the quark that couples to the photon. The structure function $F_{2}^{\mathrm{D}(4)}$ is given by: $F_{2}^{\mathrm{D}(4)}\left(\beta, Q^{2}, x \mathbb{P}, t\right)=\frac{\beta Q^{4}}{4 \pi \alpha^{2}\left(1-y+y^{2} / 2\right)} \frac{d \sigma_{\gamma-p}^{\mathrm{diff}}}{d \beta d Q^{2} d x_{\mathrm{P}} d t}$. Here, $\alpha$ is the electromagnetic coupling constant; the contribution of the longitudinal structure function and the effect of $Z^{0}$ exchange have been neglected. With this definition, $F_{2}^{\mathrm{D}(4)}$ has dimension of $\mathrm{GeV}^{-2}$.

## 2. Results

### 2.1. The $x_{\mathbb{P}}$ dependence of the diffractive structure function

Figure 1 shows $F_{2}^{\mathrm{D}(4)}$, measured using the ZEUS LPS [1], as a function of $\beta$ and $Q^{2}$. The data were fit, assuming Regge factorisation, with a sum of Pomeron and Reggeon contributions. The Pomeron intercept and the values of $F_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)$ and $F_{2}^{\mathbb{R}}\left(\beta, Q^{2}\right)$ in each $\beta$ and $Q^{2}$ bin were treated as free parameters. The resulting values of the Pomeron intercept was found to be $\alpha_{\mathbb{P}}(0)=1.13 \pm 0.03(\text { stat })_{-0.01}^{+0.03}($ syst $) \mathrm{GeV}^{-2}$.

## 2.2. $W$ dependence of the diffractive cross section

The study of the $x_{\mathbb{P}}$ dependence of $F_{2}^{\mathrm{D}}$ is equivalent to that of the $W$ dependence of $d \sigma^{\text {diff }} / d M_{X}$. As shown, interpreting the $x_{\mathbb{P}}$ dependence of the data at fixed $\beta$ and $Q^{2}$ in a Regge motivated model, one can extract the value of the effective exchanged trajectory. Equivalently, according to the Regge formalism, the $W$ dependence of the diffractive cross section can be parametrised as $d \sigma^{\text {diff }} / d M_{X} \propto\left(W^{2}\right)^{2 \bar{\alpha}_{P}-2}$. A compilation of values of the effective Pomeron trajectory extracted from diffractive [2-5] ep measurements are presented in Fig. 2. The line shows $\alpha_{\mathbb{P}}(0)$ as obtained from the ALLM97 parametrisation of the $\gamma^{*} p$ total cross section, which gives a good representation of the inclusive $F_{2}$ data for the entire $\mathrm{Q}^{2}$ range.


Fig. 1. The diffractive structure function $x_{\mathbb{P}} F_{2}^{\mathrm{D}(4)}$ measured with the LPS is plotted as a function of $x_{\mathbb{P}}$ in bins of $\beta$ and $Q^{2}$. The solid lines are the results of the fit described in the text.


Fig. 2. $\alpha_{\mathbb{P}}(0)$ extracted from the energy dependence of selected inclusive and diffractive HERA data.

At high $Q^{2}$, the curve describing the Pomeron intercept for the inclusive data is higher than the diffractive data, while in photoproduction and low $Q^{2}$ electroproduction the effective intercept in the diffractive and inclusive case are compatible [6]. This is illustrated in Fig. 3 which shows the ratio of the diffractive to the total cross section is plotted for $Q^{2}$ and $M_{X}$ bins as a function of $W$. The energy dependences of the inclusive and diffractive cross sections are rather similar at high $Q^{2}$, in contrast to the expectation from Regge theory. However, the data for $Q^{2}<1 \mathrm{GeV}^{2}$ show a rise in $W$, consistent with Regge theory.


Fig. 3. The values of the ratio $d \sigma^{\text {diff }} / d M_{X} / \sigma_{\gamma^{*} p}^{\text {tot }}$ for different $W$ and $M_{X}$ bins as a function of $Q^{2}$.

## 2.3. $Q^{2}$ dependence of the diffractive cross section

Figure 4 shows the diffractive cross section, $d \sigma_{\gamma^{*} p}^{\mathrm{diff}} / d M_{X}$, as a function of $Q^{2}$ for different $M_{X}$ and $W$ selections. The recent ZEUS measurement [6] at low $Q^{2}$ is shown together with previous ZEUS [5] and H1 [2] measurements.

A change of the $Q^{2}$ dependence of $d \sigma^{\text {diff }} / d M_{X}$ is apparent with decreasing $Q^{2}$, reminiscent of the behaviour of the photon-proton cross section, $\sigma_{\text {tot }}^{\gamma^{*} p}$, which also exhibits [7] a flattening for $Q^{2} \lesssim 1 \mathrm{GeV}^{2}$. This is consistent with the expectation, based on the conservation of the electromagnetic current, that $\sigma_{\gamma^{*} p}^{\text {tot }} \rightarrow$ constant as $Q^{2} \rightarrow 0$, although the $Q^{2}$ value of the transition is not predicted. Moreover Fig. 4 shows that the main features of the data are reproduced by a parametrisation based on the model of Bartels et al. (BEKW) [8], in which the dominant contributions to the diffractive structure function come from the fluctuations of the photon into either a $q \bar{q}$ pair or a $q \bar{q} g$ pair, with the first component dominant at large $\beta$ and the second dominant at small $\beta$. As $Q^{2}$ decreases, for a fixed value of $M_{X}, \beta$ also decreases: the data indicate the increasing importance of the $q \bar{q} g$ contribution at low $Q^{2}$.


Fig. 4. The values of $d \sigma_{\gamma^{*} p}^{\text {diff }} / d M_{X}$ for different $W$ and $M_{X}$ bins as a function of $Q^{2}$. The lines are the result of the BEKW parametrisation described in the text.

## REFERENCES

[1] ZEUS Collaboration, Abstract 566, Paper submitted to EPS Conf. on HEP, Budapest 2001.
[2] H1 Collaboration, C. Adloff et al., Z. Phys. C74, 221 (1997).
[3] ZEUS Collaboration, J. Breitweg et al., Z. Phys. C75, 421 (1997).
[4] H1 Collaboration, C. Adloff et al., Z. Phys. C76, 613 (1997).
[5] ZEUS Collaboration, J. Breitweg et al., Eur. Phys. J. C6, 43 (1999).
[6] ZEUS Collaboration, S. Chekanov et al., DESY-02-029, submitted to Eur. Phys. J. C.
[7] ZEUS Collaboration, J. Breitweg et al., Phys. Lett. B487, 432 (2000).
[8] J. Bartels et al., Eur. Phys. J. C7, 443 (1999).


[^0]:    * Presented at the X International Workshop on Deep Inelastic Scattering (DIS2002) Cracow, Poland, 30 April-4 May, 2002.

