RESULTS ON INCLUSIVE DIFFRACTION AT ZEUS*

Marcella Capua

On behalf of the ZEUS Collaboration

INFN Cosenza and Calabria University Arcavacata di Rende (CS), Italy e-mail: capua@cs.infn.it

(Received September 16, 2002)

The diffractive dissociation of virtual photons, $\gamma^* p \to Xp$, has been studied in ep interactions at HERA. The data are presented in terms of the diffractive structure function $F_2^{\rm D}$ and $d\sigma/dM_X$. The Pomeron intercepts, extracted from diffractive and inclusive ep interactions, are compared. The Q^2 variation of the ratio of the diffractive to inclusive cross sections on W, the photon–proton center of mass energy, illuminates the transition from the perturbative, high Q^2 , region to the photoproduction limit. The ranges studied in both W and Q^2 are extended with respect to previously available results.

PACS numbers: 13.60.Hb, 14.70.-e

1. Diffraction at HERA

The diffractive dissociation of real photons, $\gamma p \to Xp$, can be treated in complete analogy with hadron-hadron diffractive interactions and therefore can be described by Regge phenomenology. By contrast, HERA allows the investigation of the partonic nature of diffraction in Deep-Inelastic Scattering (DIS) using virtual photons.

A photon of virtuality Q^2 interacts with a proton at a center of mass energy W to produce two distinct hadronic systems of masses M_X and M_Y , respectively. The system X is usually reconstructed in the central detector and is well separated in rapidity from the proton remnant system Y produced with squared four momentum transfer t. The photon dissociative processes are selected at ZEUS either by a method based on the characteristics of the distribution of M_X ("mass method") or by measuring the scattered proton

^{*} Presented at the X International Workshop on Deep Inelastic Scattering (DIS2002) Cracow, Poland, 30 April-4 May, 2002.

in special downstream detector, the ZEUS Leading Proton Spectrometer (LPS). The first method yields high statistics, but contains a background of double-dissociative events, $ep \rightarrow eXY$.

1.1. Diffractive cross section and structure function

The diffractive cross section $\sigma_{ep}^{\text{diff}}$ for the process $ep \to eXp$ is related to the cross section $\sigma_{\gamma^*p}^{\text{diff}}$ for the diffractive dissociation of virtual photons, $\gamma^*p \to Xp$: $\frac{d\sigma_{\gamma^*p}^{\text{diff}}}{dM_X} = \frac{2\pi Q^2 y}{\alpha(1+(1-y)^2)} \frac{d^3\sigma_{ep}^{\text{diff}}}{dQ^2 dy dM_X}$. The diffractive cross section $\sigma_{ep}^{\text{diff}}$ can also be also be expressed in terms of the diffractive structure function $F_2^{D(4)}(\beta, Q^2, X_{\mathbb{P}}, t)$, where $x_{\mathbb{P}}$ may be interpreted as the fraction of the longitudinal momentum of the proton carried by the Pomeron strike and transferred to the system X, and β as the fraction of the Pomeron momentum carried by the quark that couples to the photon. The structure function $F_2^{D(4)}$ is given by: $F_2^{D(4)}(\beta, Q^2, x\mathbb{P}, t) = \frac{\beta Q^4}{4\pi\alpha^2(1-y+y^2/2)} \frac{d\sigma_{\gamma^*p}^{\text{diff}}}{d\beta dQ^2 dx_{\mathbb{P}} dt}$. Here, α is the electromagnetic coupling constant; the contribution of the longitudinal structure function and the effect of Z^0 exchange have been neglected. With this definition, $F_2^{D(4)}$ has dimension of GeV⁻².

2. Results

2.1. The $x_{\mathbb{P}}$ dependence of the diffractive structure function

Figure 1 shows $F_2^{D(4)}$, measured using the ZEUS LPS [1], as a function of β and Q^2 . The data were fit, assuming Regge factorisation, with a sum of Pomeron and Reggeon contributions. The Pomeron intercept and the values of $F_2^{\mathbb{P}}(\beta, Q^2)$ and $F_2^{\mathbb{R}}(\beta, Q^2)$ in each β and Q^2 bin were treated as free parameters. The resulting values of the Pomeron intercept was found to be $\alpha_{\mathbb{P}}(0) = 1.13 \pm 0.03(\text{stat})_{-0.01}^{+0.03}(\text{syst}) \text{ GeV}^{-2}$.

2.2. W dependence of the diffractive cross section

The study of the $x_{\mathbb{P}}$ dependence of F_2^{D} is equivalent to that of the W dependence of $d\sigma^{\mathrm{diff}}/dM_X$. As shown, interpreting the $x_{\mathbb{P}}$ dependence of the data at fixed β and Q^2 in a Regge motivated model, one can extract the value of the effective exchanged trajectory. Equivalently, according to the Regge formalism, the W dependence of the diffractive cross section can be parametrised as $d\sigma^{\mathrm{diff}}/dM_X \propto (W^2)^{2\bar{\alpha}_{\mathbb{P}}-2}$. A compilation of values of the effective Pomeron trajectory extracted from diffractive [2–5] ep measurements are presented in Fig. 2. The line shows $\alpha_{\mathbb{P}}(0)$ as obtained from the ALLM97 parametrisation of the $\gamma^* p$ total cross section, which gives a good representation of the inclusive F_2 data for the entire Q² range.

Fig. 1. The diffractive structure function $x_{\mathbb{P}}F_2^{\mathrm{D}(4)}$ measured with the LPS is plotted as a function of $x_{\mathbb{P}}$ in bins of β and Q^2 . The solid lines are the results of the fit described in the text.

Fig. 2. $\alpha_{\mathbb{P}}(0)$ extracted from the energy dependence of selected inclusive and diffractive HERA data.

At high Q^2 , the curve describing the Pomeron intercept for the inclusive data is higher than the diffractive data, while in photoproduction and low Q^2 electroproduction the effective intercept in the diffractive and inclusive case are compatible [6]. This is illustrated in Fig. 3 which shows the ratio of the diffractive to the total cross section is plotted for Q^2 and M_X bins as a function of W. The energy dependences of the inclusive and diffractive cross sections are rather similar at high Q^2 , in contrast to the expectation from Regge theory. However, the data for $Q^2 < 1$ GeV² show a rise in W, consistent with Regge theory.

Fig. 3. The values of the ratio $d\sigma^{\text{diff}}/dM_X/\sigma^{\text{tot}}_{\gamma^*p}$ for different W and M_X bins as a function of Q^2 .

2.3. Q^2 dependence of the diffractive cross section

Figure 4 shows the diffractive cross section, $d\sigma_{\gamma^* p}^{\text{diff}}/dM_X$, as a function of Q^2 for different M_X and W selections. The recent ZEUS measurement [6] at low Q^2 is shown together with previous ZEUS [5] and H1 [2] measurements.

A change of the Q^2 dependence of $d\sigma^{\text{diff}}/dM_X$ is apparent with decreasing Q^2 , reminiscent of the behaviour of the photon-proton cross section, $\sigma_{\text{tot}}^{\gamma^* p}$, which also exhibits [7] a flattening for $Q^2 \lesssim 1 \text{ GeV}^2$. This is consistent with the expectation, based on the conservation of the electromagnetic current, that $\sigma_{\gamma^* p}^{\text{tot}} \rightarrow \text{constant}$ as $Q^2 \rightarrow 0$, although the Q^2 value of the transition is not predicted. Moreover Fig. 4 shows that the main features of the data are reproduced by a parametrisation based on the model of Bartels *et al.* (BEKW) [8], in which the dominant contributions to the diffractive structure function come from the fluctuations of the photon into either a $q\bar{q}$ pair or a $q\bar{q}g$ pair, with the first component dominant at large β and the second dominant at small β . As Q^2 decreases, for a fixed value of M_X , β also decreases: the data indicate the increasing importance of the $q\bar{q}g$ contribution at low Q^2 .

Fig. 4. The values of $d\sigma_{\gamma^* p}^{\text{diff}}/dM_X$ for different W and M_X bins as a function of Q^2 . The lines are the result of the BEKW parametrisation described in the text.

M. CAPUA

REFERENCES

- ZEUS Collaboration, Abstract 566, Paper submitted to EPS Conf. on HEP, Budapest 2001.
- [2] H1 Collaboration, C. Adloff et al., Z. Phys. C74, 221 (1997).
- [3] ZEUS Collaboration, J. Breitweg et al., Z. Phys. C75, 421 (1997).
- [4] H1 Collaboration, C. Adloff et al., Z. Phys. C76, 613 (1997).
- [5] ZEUS Collaboration, J. Breitweg et al., Eur. Phys. J. C6, 43 (1999).
- [6] ZEUS Collaboration, S. Chekanov et al., DESY-02-029, submitted to Eur. Phys. J. C.
- [7] ZEUS Collaboration, J. Breitweg et al., Phys. Lett. **B487**, 432 (2000).
- [8] J. Bartels et al., Eur. Phys. J. C7, 443 (1999).