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LARGE GEOMETRIC SCALINGAND QCD EVOLUTION�J. Kwie
i«skia and A.M. Sta±toa; baH. Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, PolandbINFN Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (FI), Italy(Re
eived June 28, 2002)We study the impa
t of the QCD DGLAP evolution on the geomet-ri
 s
aling of the gluon distributions whi
h is expe
ted to hold at smallx within the saturation models. To this aim we solve the DGLAP evo-lution equations with the initial 
onditions provided along the 
riti
al lineQ2 = Q2s (x) with Q2s (x) � x�� and satisfying geometri
 s
aling. Both �xedand running 
oupling 
ases are studied. We show that in the �xed 
oupling
ase the geometri
 s
aling at low x is stable against the DGLAP evolutionfor su�
iently large values of the parameter � and in the double logarith-mi
 approximation of the DGLAP evolution this happens for � � 4N
�s=�.In the running 
oupling 
ase geometri
 s
aling is found to be approximatelypreserved at very small x. The residual geometri
 s
aling violation in this
ase 
an be approximately fa
tored out and the 
orresponding form-fa
tor
ontrolling this violation is found.PACS numbers: 12.38.CyTheoreti
al QCD expe
tations 
on
erning the region of small values ofthe Bjorken parameter x 
an be brie�y summarised as follows:1. At very small x the linear (DGLAP or BFKL) evolution generatesstrong in
rease of the gluon distributions for x ! 0 whi
h eventuallyviolates unitarity.2. Unitarity is restored by in
luding the non-linear s
reening 
orre
tions[1�5℄.3. Those non-linear e�e
ts lead to emergen
e of the saturation s
aleQ2s (x) (Q2s (x) � x��).� Presented at the X International Workshop on Deep Inelasti
 S
attering (DIS2002)Cra
ow, Poland, 30 April�4 May, 2002.(3439)
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i«ski, A.M. Sta±to4. Non-linear e�e
ts are small (eventually negligible) for Q2 > Q2s (x).5. Non-linear e�e
ts are very strong and lead to saturation for Q2<Q2s (x).These theoreti
al QCD expe
tations have been implemented phenomeno-logi
ally within the saturation model by Gole
-Biernat and Wüstho� [6℄. Inthis model the 
�p total 
ross-se
tion �
�p(Q2; x) is driven by the 
ross-se
tion �dp(x; r) des
ribing intera
tion of the 
olour q�q dipoles, whi
h thevirtual photon �u
tuates to, with the proton. Here r denotes the transversesize of the dipole. In the saturation model the 
ross se
tion �dp(x; r) is thefun
tion of the single variable r2Q2s (x)), where Q2s (x) � x�� is the saturations
ale, i.e. �dp(x; r) = f �r2Q2s (x)� : (1)This property of �dp(x; r) is 
alled geometri
 s
aling. The fun
tionf(r2Q2s (x)) has the following properties:� f(r2Q2s (x)) � r2Q2s (x) for small values of r2Q2s (x) that 
orresponds to
olour transparen
y.� f(r2Q2s (x)) � �0 for large values of r2Q2s (x) that 
orresponds to satu-ration of the dipole-proton 
ross se
tion.The dipole-proton 
ross-se
tion is related to the gluon distribution:�dp(x; r) � r2�s� 1r2�xg�x; 1r2� : (2)Saturation of �dp(x; r) does, therefore, imply saturation of xg(x; 1=r2).The fa
t that the dipole 
ross-se
tion exhibits geometri
 s
aling impliessimilar properties of the 
ross-se
tion �
�p(Q2; x), i.e.�dp(x; r) = f �r2Q2s (x)�!�
�p(Q2; x) = h(�) ; (3)where � = Q2Q2s (x) : (4)It has been found that geometri
 s
aling is very well 
on�rmed by theHERA data [7℄. Our aim is to understand possible e�e
ts of the QCDevolution on geometri
 s
aling. We shall summarise results obtained in [8℄where all the details 
an be found. Let us assume that:� For Q2 < Q2s (x) the linear evolution is strongly perturbed by thenonlinear e�e
ts whi
h generate geometri
 s
aling for the dipole 
rossse
tion �dp(x; r) and for the related quantities.
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 s
aling for the dipole 
ross-se
tion implies geometri
 s
al-ing for �s(Q2)xg(x;Q2)=Q2, where g(x;Q2) denotes the gluon distribu-tion. This follows from the LO relation between the dipole 
ross se
tionand the gluon distribution, i.e. �(x; r2) � r2�s(1=r2)xg(x; 1=r2).� Geometri
 s
aling for �s(Q2)xg(x;Q2)=Q2 holds at the boundaryQ2 = Q2s (x).� For Q2 > Q2s (x) the non-linear s
reening e�e
ts 
an be negle
ted andevolution of parton densities is governed by the DGLAP equations.One should, therefore, analyse solution of the DGLAP equation starting fromthe gluon distribution provided along the xdependent 
riti
al lineQ2=Q2s (x)Q2s (x) = Q20x�� (5)and satisfying geometri
 s
aling along this line.�s �Q2�xg(x;Q2)���Q2=Q2s (x) = 
onst: Q2s (x)Q20 : (6)In order to analyse the solution of the DGLAP equation with the bound-ary 
onditions provided along the 
riti
al line instead at (x independent)value Q20 it is 
onvenient to go to the moment spa
e where the solution ofthe DGLAP equation for the moment fun
tion g!(Q2) of the gluon distri-bution reads g! �Q2� = g0(!) exp �
gg(!)� �Q2�� ; (7)where 
gg(!) = 1Z0 dz z!Pgg(z) (8)and �(Q2) = Q2ZQ20 dq2q2 �s �q2�2� : (9)Boundary 
ondition along the x dependent 
riti
al line 
an be transformedinto integral equation for g0(!) (see [8℄ for the details). The leading sin-gularity of g0(!) generated by this equation 
ontrols the small x behaviourof the gluon distributions. We have 
onsidered both the �xed and running
oupling 
ases and found the following results:
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i«ski, A.M. Sta±to(a) Fixed 
oupling �s:Geometri
 s
aling is found to be stable against the DGLAP evolution atsmall x provided � > 4N
�s� : (10)(b) Running 
oupling:Geometri
 s
aling is in general violated but this violation 
an be approxi-mately fa
tored out in the form of the form fa
tor V F (x)�1V F (x) = 24 ln� Q2Q2s (x)�ln�Q2s (x)�2 � + 1351�b
gg(�) : (11)Geometri
 s
aling still holds providedln� Q2Q2s (x)�� ln�Q2s (x)�2 � ; (12)where V F (x) � 1. The same 
ondition has also been found in [9℄.To summarise we would like to point out the following:� Geometri
 s
aling is expe
ted to hold for Q2 < Q2s (x).� For Q2 > Q2s (x) the non-linear e�e
ts are expe
ted to be weak and par-ton distributions are expe
ted to be 
ontrolled by the linear (BFKLor DGLAP) evolution.� We solved the DGLAP evolution equations with the initial 
onditionsprovided along the 
riti
al line (Q2 = Q2s (x)).� For �xed 
oupling geometri
 s
aling is found to be stable against QCDDGLAP evolution provided � > 4N
�s=�.� For the running 
oupling geometri
 s
aling is found to be violated butthis violation 
an be approximately fa
tored out.� In general geometri
 s
aling is expe
ted to hold even for Q2 > Q2s (x)provided ln(Q2=Q2s (x)) << ln(Q2s (x)=�2).This resear
h was partially supported by the EU Fourth Framework Pro-gramme �Training and Mobility of Resear
hers�, Network �Quantum Chro-modynami
s and the Deep Stru
ture of Elementary Parti
les�, 
ontra
tFMRX�CT98�0194 and by the Polish State Committee for S
ienti�
 Re-sear
h (KBN) grants no. 2P03B 05119, 2P03B 12019 and 5P03B 14420.
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