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LARGE GEOMETRIC SCALINGAND QCD EVOLUTION�J. Kwiei«skia and A.M. Sta±toa; baH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, PolandbINFN Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (FI), Italy(Reeived June 28, 2002)We study the impat of the QCD DGLAP evolution on the geomet-ri saling of the gluon distributions whih is expeted to hold at smallx within the saturation models. To this aim we solve the DGLAP evo-lution equations with the initial onditions provided along the ritial lineQ2 = Q2s (x) with Q2s (x) � x�� and satisfying geometri saling. Both �xedand running oupling ases are studied. We show that in the �xed ouplingase the geometri saling at low x is stable against the DGLAP evolutionfor su�iently large values of the parameter � and in the double logarith-mi approximation of the DGLAP evolution this happens for � � 4N�s=�.In the running oupling ase geometri saling is found to be approximatelypreserved at very small x. The residual geometri saling violation in thisase an be approximately fatored out and the orresponding form-fatorontrolling this violation is found.PACS numbers: 12.38.CyTheoretial QCD expetations onerning the region of small values ofthe Bjorken parameter x an be brie�y summarised as follows:1. At very small x the linear (DGLAP or BFKL) evolution generatesstrong inrease of the gluon distributions for x ! 0 whih eventuallyviolates unitarity.2. Unitarity is restored by inluding the non-linear sreening orretions[1�5℄.3. Those non-linear e�ets lead to emergene of the saturation saleQ2s (x) (Q2s (x) � x��).� Presented at the X International Workshop on Deep Inelasti Sattering (DIS2002)Craow, Poland, 30 April�4 May, 2002.(3439)



3440 J. Kwiei«ski, A.M. Sta±to4. Non-linear e�ets are small (eventually negligible) for Q2 > Q2s (x).5. Non-linear e�ets are very strong and lead to saturation for Q2<Q2s (x).These theoretial QCD expetations have been implemented phenomeno-logially within the saturation model by Gole-Biernat and Wüstho� [6℄. Inthis model the �p total ross-setion ��p(Q2; x) is driven by the ross-setion �dp(x; r) desribing interation of the olour q�q dipoles, whih thevirtual photon �utuates to, with the proton. Here r denotes the transversesize of the dipole. In the saturation model the ross setion �dp(x; r) is thefuntion of the single variable r2Q2s (x)), where Q2s (x) � x�� is the saturationsale, i.e. �dp(x; r) = f �r2Q2s (x)� : (1)This property of �dp(x; r) is alled geometri saling. The funtionf(r2Q2s (x)) has the following properties:� f(r2Q2s (x)) � r2Q2s (x) for small values of r2Q2s (x) that orresponds toolour transpareny.� f(r2Q2s (x)) � �0 for large values of r2Q2s (x) that orresponds to satu-ration of the dipole-proton ross setion.The dipole-proton ross-setion is related to the gluon distribution:�dp(x; r) � r2�s� 1r2�xg�x; 1r2� : (2)Saturation of �dp(x; r) does, therefore, imply saturation of xg(x; 1=r2).The fat that the dipole ross-setion exhibits geometri saling impliessimilar properties of the ross-setion ��p(Q2; x), i.e.�dp(x; r) = f �r2Q2s (x)�!��p(Q2; x) = h(�) ; (3)where � = Q2Q2s (x) : (4)It has been found that geometri saling is very well on�rmed by theHERA data [7℄. Our aim is to understand possible e�ets of the QCDevolution on geometri saling. We shall summarise results obtained in [8℄where all the details an be found. Let us assume that:� For Q2 < Q2s (x) the linear evolution is strongly perturbed by thenonlinear e�ets whih generate geometri saling for the dipole rosssetion �dp(x; r) and for the related quantities.



Large Geometri Saling and QCD Evolution 3441� Geometri saling for the dipole ross-setion implies geometri sal-ing for �s(Q2)xg(x;Q2)=Q2, where g(x;Q2) denotes the gluon distribu-tion. This follows from the LO relation between the dipole ross setionand the gluon distribution, i.e. �(x; r2) � r2�s(1=r2)xg(x; 1=r2).� Geometri saling for �s(Q2)xg(x;Q2)=Q2 holds at the boundaryQ2 = Q2s (x).� For Q2 > Q2s (x) the non-linear sreening e�ets an be negleted andevolution of parton densities is governed by the DGLAP equations.One should, therefore, analyse solution of the DGLAP equation starting fromthe gluon distribution provided along the xdependent ritial lineQ2=Q2s (x)Q2s (x) = Q20x�� (5)and satisfying geometri saling along this line.�s �Q2�xg(x;Q2)���Q2=Q2s (x) = onst: Q2s (x)Q20 : (6)In order to analyse the solution of the DGLAP equation with the bound-ary onditions provided along the ritial line instead at (x independent)value Q20 it is onvenient to go to the moment spae where the solution ofthe DGLAP equation for the moment funtion g!(Q2) of the gluon distri-bution reads g! �Q2� = g0(!) exp �gg(!)� �Q2�� ; (7)where gg(!) = 1Z0 dz z!Pgg(z) (8)and �(Q2) = Q2ZQ20 dq2q2 �s �q2�2� : (9)Boundary ondition along the x dependent ritial line an be transformedinto integral equation for g0(!) (see [8℄ for the details). The leading sin-gularity of g0(!) generated by this equation ontrols the small x behaviourof the gluon distributions. We have onsidered both the �xed and runningoupling ases and found the following results:



3442 J. Kwiei«ski, A.M. Sta±to(a) Fixed oupling �s:Geometri saling is found to be stable against the DGLAP evolution atsmall x provided � > 4N�s� : (10)(b) Running oupling:Geometri saling is in general violated but this violation an be approxi-mately fatored out in the form of the form fator V F (x)�1V F (x) = 24 ln� Q2Q2s (x)�ln�Q2s (x)�2 � + 1351�bgg(�) : (11)Geometri saling still holds providedln� Q2Q2s (x)�� ln�Q2s (x)�2 � ; (12)where V F (x) � 1. The same ondition has also been found in [9℄.To summarise we would like to point out the following:� Geometri saling is expeted to hold for Q2 < Q2s (x).� For Q2 > Q2s (x) the non-linear e�ets are expeted to be weak and par-ton distributions are expeted to be ontrolled by the linear (BFKLor DGLAP) evolution.� We solved the DGLAP evolution equations with the initial onditionsprovided along the ritial line (Q2 = Q2s (x)).� For �xed oupling geometri saling is found to be stable against QCDDGLAP evolution provided � > 4N�s=�.� For the running oupling geometri saling is found to be violated butthis violation an be approximately fatored out.� In general geometri saling is expeted to hold even for Q2 > Q2s (x)provided ln(Q2=Q2s (x)) << ln(Q2s (x)=�2).This researh was partially supported by the EU Fourth Framework Pro-gramme �Training and Mobility of Researhers�, Network �Quantum Chro-modynamis and the Deep Struture of Elementary Partiles�, ontratFMRX�CT98�0194 and by the Polish State Committee for Sienti� Re-searh (KBN) grants no. 2P03B 05119, 2P03B 12019 and 5P03B 14420.
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