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As recent studies have shown, the most popular models for generalized
parton distributions cannot describe the new data from the H1, ZEUS,
HERMES and CLAS experiments on Deeply Virtual Compton Scattering
(DVCS) if a full QCD analysis including evolution is performed. In this
note, we will discuss why this is the case and how the problem can be cured
thereby producing a very good description of the H1 data.

PACS numbers: 11.10.Hi, 11.30.Ly, 12.38.Bx

1. Introduction

Generalized Parton Distributions (GPDs) have enjoyed a tremendous
interest in the last few years [1-3|. This was spurred by the realization
that these distributions are not only the basic, non-perturbative ingredient
in hard processes such as deeply virtual Compton scattering (DVCS) but
that they are generalizations of the well known parton distributions (PDFs)
from inclusive reactions, incorporating both a partonic and distributional
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amplitude behavior. Therefore, they encode within their structure more in-
formation about the hadronic degrees of freedom than PDFs. Unfortunately,
the modeling of GPDs has not yet produced very satisfactory results when
comparing to recent data both from H1 and ZEUS [3] on the DVCS photon
level cross section, o(y*+p — v+p), [4,5] and from HERMES and CLAS [3]
on the DVCS single spin asymmetry (SSA) [4,5] or charge asymmetry (CA)
in both leading (LO) and next-to-leading order (NLO). On the one hand,
the currently most viable models, phenomenologically speaking, rely on an
appealingly simple structure, on the other hand, one of the ingredients of
this simple structure is at the heart of the problem. Thus, the question to
answer is “How can one modify this Ansatz without destroying its simple,
and thus appealing, structure 7”. To do this, let us first discuss GPDs in
more detail.

2. GPDs: definition, models, problems and cure

In general, matrix elements of twist-2, bi-local, renormalized operators
sandwiched between wunequal proton momenta Py, P, appearing in the de-
scription of hard, exclusive reactions can be expressed through a two di-
mensional spectral representation, parameterized through functions called
double distributions (DDs) [1,6]. The GPDs are obtained through a reduc-
tion from the two dimensional to a one dimensional spectral representation
which relates the DDs to the GPDs via

1 1—|a’|
H(z, &) = /dm' / da § (2 + ¢a —z) Fop(', a), (1)
-1 —1+|a'|

where 2’ and « are in general independent of one another, but are now related
in Eq. (1) via a 0 function. The GPD, H, is defined on the interval [—1, 1]
with z a parton momentum fraction defined with respect to the average
of Pi,Py and £ = —(q1 + @2)%/(q1 + ) (P + P) = 2f;jbj, a generalized
Bjorken variable, with ¢1,¢g2 being the momenta of the incoming photon
and the outgoing particle. The GPD has two regions in which its behavior
is qualitatively different: the ERBL region —¢ < z < ¢ where the GPD
behaves like a distribution amplitude and the DGLAP region ¢ < |z| < 1
where the GPD has a partonic interpretation akin to the standard PDFs.
The most popular model used for Fpp has a factorized t-dependence [1]:

FRI( a2, 1) = n9(a!, o) fO9(a! pu?) r@/9(1) (2)

where 799 (2, o) are the profile functions [1] for quarks and gluons. Having
defined the model for the double distribution one may then perform the
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a-integration. This modifies the limits on the z’ integration according to
the region concerned: for the DGLAP region x > |£| one has

w+§

HO(2,6) = = [ da'n® (ac " ) Q"(x'), (3)

1
5 §

~§

with similar expressions for ¢ and for g and ¢ in the ERBL region. Note that
the gluon is formed analogously to the quark and that Q*(z) = ¢%(x)/xz. Let
us now turn to DVCS. The photon level cross section is defined in terms of
DVCS, amplitudes, Tpvcs, as

oz%% i

Q'B

opves(Y'p = yp) = | Toves|?|i=o (4)

where B stems from the t¢-integration. For simplicity, we have assumed
a global t dependence, eP!, with the slope, B, of the ¢ dependence fixed
at an average value of 6.5 GeV? for convenience. How to compute Thvcs
through H can be found in great detail in [4,5]. It was shown in [4] that
at both a high and low input scale one cannot describe the H1 data with
the above DD model. The problem was traced to the imaginary part of
the amplitude and thus, in LO, directly to the quark-singlet GPD at &,
o oc |TmTpyes|? oc |[HSeet (£ €)|2. The reason for the enhancements in
the GPDs using the DD model can be readily understood if one inspects
the lower limit of integration in Eq. (3). There one notices that it probes
the region ' — 0 for the limiting case of x — ¢, analogous statements are
true for the ERBL region. This limit requires to extrapolate any “off-the-
shelf” inclusive distribution beyond the point where it is constrained by data.
Since the relevant forward PDFs, in this case the quark sea, are all strongly
divergent for z' — 0, one is dealing with a DD at the input scale with a
large contribution from a region which should not contribute strongly at all,
leading to a quark GPD which is too large. This problem does not occur for
the gluon due to a much milder divergence in the forward PDF. How can
the problem with the quark GPD be remedied? In the last reference of [2] a
successful description of DVCS, in terms of agreement with both ZEUS and
H1 data, was achieved within QCD by modeling the imaginary part of the
DVCS amplitude at the input scale using the aligned jet model (AJM) [7].
Using the AJM result and perturbative QCD in LO one obtains:

ImTpves  HSMEe (¢,¢)
Im Tp1s - Qsinglet (ij)

~9 = Hsinglet (5’ 5) —9 Qsinglet (xbj) (5)
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for small z1,;. Note that the same relationship between GPD and PDF can
be obtained in a model where the bounds of the integrals in the reduction
formula (3) are modified for 2z ~ ¢ through a constraint on the invariant
mass of the intermediate state in this region [8]. The AJM constraint can
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Fig. 1. Photon level cross section o(y*P), at Q> = 4.5 GeV* in W (upper plot )
and at W = 75 GeV in Q? (lower plot) using the AJM Ansatz.

be theoretically implemented within the DD Ansatz, however, a numerical
implementation is not possible within reasonable computing time. Thus we
assume HSM8t (1 ¢) = Q%"8let () for small ¢, which corresponds to the
profile functions being a d-function in the DD Ansatz. Also we know that
singlet
}gsifgilet(?l’g) ~ 1 for £ ~ 2—3 £ so this model is close the AJM one. We assume
the same for the gluon, giving us a viable input model for the GPD H4singlet
and HY in the DGLAP and the ERBL region. Note that after just a short

evolution step Qg ~ 1 — 2—3 GeV? the AJM constraint (Eq. (5)) is already
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reached and at a value of Q? which is in the region of validity of the AJM
model. Using this model and three different LO and NLO input distributions
we find the following DVCS cross section in very good agreement, at least for
the MRSTO01 input, with the H1 data in LO and NLO, Fig. 1. Computing
DVCS asymmetries at large xy,;, we find the following values for the SSA and
CA for average HERMES kinematics of () = 0.11, (Q?) = 2.56 GeV?, (t) =
—0.265 GeV?: SSA = —0.19 (LO), —0.17 (NLO) with the experimental
value being —0.21 £+ 0.08 [9] and CA = 0.03 (LO), 0.05 (NLO) with the
experimental value being 0.055 &+ 0.04 [9]. For average CLAS kinematics
(z) = 0.19,(Q?) = 1.31 GeV?, (t) = —0.15 GeV? we find: SSA = 0.14 (LO)
and the experimental value is 0.202 + 0.041. This demonstrates that our
model Ansatz works surprisingly well even at large z,; and provides a good
starting point to make fits to the available data.
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