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PRECISION ELECTROWEAK MEASUREMENTSFROM NuTeV�P. SpentzourisFor the NuTeV CollaborationFermi National Aelerator Laboratory, Batavia, IL 60510, USA(Reeived July 22, 2002)The NuTeV experiment has extrated the eletroweak parameter,sin2 �W , from the high preision measurement of the ratio of neutral-urrentto harged-urrent ross-setions in deep-inelasti neutrino and anti-neut-rino sattering o� a steel target. Our measurement, sin2 �on�shellW = 0:2277�00013(stat)� 0:0009(syst), is 3� above the standard model predition. Wedisuss the plausibility of the hypothesis that this disrepany is due tounaounted QCD e�ets, espeially a strange and anti-strange sea asym-metry. Taking into aount results from NuTeV, CCFR, and harged-leptondeep-inelasti ross-setion measurements, we do not �nd support for thishypothesis.PACS numbers: 12.15.Ji, 12.15.Mm, 13.15.+g1. IntrodutionIn Deep Inelasti Sattering (DIS) of neutrinos o� an isosalar targetonsisting of massless, �rst generation quarks, the ratio of Neutral-Current(NC) to Charged-Current (CC) ross-setions an be written as [1℄R�(��) � ��(��)NC��(��)CC = �g2L + r(�1)g2R� ; (1)where r = ���CC=�� , and g2L = 1=2� sin2 �W + 5=9 sin4 �W , g2R = 5=9 sin4 �Ware the left and right handed isosalar quark ouplings. Expression 1 isat tree level, and needs to be modi�ed for heavy quark ontributions, ra-diative, higher-twist, and longitudinal struture funtion e�ets, W and Z� Presented at the X International Workshop on Deep Inelasti Sattering (DIS2002)Craow, Poland, 30 April�4 May, 2002.(3843)



3844 P. Spentzourispropagators, quark mixing, and non-isosalar target, in order to representneutrino DIS o� a realisti target. In addition, it has to be orreted forexperimental e�ets suh as uts, bakgrounds, and detetor aeptane andsmearing. The largest ontribution to the unertainty on sin2 �W omes fromheavy quark prodution in the �nal state. It modi�es the CC-ross-setiondue to the suppression of the prodution of harm from the target's strangesea. This unertainty has limited the preision of previous measurementsof eletroweak parameters in � DIS. It an be redued by using a di�erentobservable R� � ��NC � ���NC��CC � ���CC = R� � rR��(1� r) = g2L � g2R ; (2)one suggested by Pashos and Wolfenstein [2℄. Under the assumption thatthe momentum distributions of sea quarks and anti-quarks of the same �avorare equal, and sine ����q = ��q and ���q = ���q, the e�et of sattering o� seaquarks anels in the ross-setion di�erene. The only remaining e�et fromharm prodution is the d-valene ontribution, whih is Cabibbo suppressedand at high frational momentum x. For a neutrino DIS experiment to utilizeR�, separate � and �� beams are required, beause unless the initial state ofthe interation is known, there is no distint signature in the �nal state todisriminate � from �� NC events.2. The NuTeV measurementThe NuTeV experiment olleted data with a sign-seleted beamline,whih allowed running with either � or �� beams. The NuTeV detetor [3℄onsists of an iron/sintillator target alorimeter and an iron toroid spe-trometer. Sine CC events are on the average longer than NC events, beauseof the presene of a muon in the �nal state, NC and CC event andidatesare identi�ed based on event length. A Monte Carlo (MC) simulation isused to express the experimental ratios in terms of fundamental eletroweakparameters. This proedure impliitly orrets for details of the neutrinoross-setion, experimental e�ets, and bakgrounds. The details of thismeasurement are desribed elsewhere [4℄.Assuming the Standard Model (SM), NuTeV performs a single parameter�t to sin2 �W , and �nds:sin2 �(on�shell)W = 0:2277 � 0:0013(stat)� 0:0009(syst)�0:00022  M2top � (175GeV)2(50GeV)2 !+0:00032 ln� MHiggs150GeV� :



Preision Eletroweak Measurements from NuTeV 3845The residual dependene on MHiggs and Mtop are from leading terms in theone-loop eletroweak radiative orretions to the W and Z self energies [5℄.This result lies three standard deviations above the predition from theglobal eletroweak �t, 0:2227�0:0004 [6℄. In the next setion we will disussthe plausibility of explanations of this disrepany based on unaountedQCD e�ets in our ross-setion model.3. QCD modeling e�etsThe NuTeV Monte Carlo uses a leading order (LO) model for the ross-setion, augmented with longitudinal sattering and higher-twist terms. TheLO parton distribution funtions (PDFs) used in this model are obtainedfrom �ts to data from the same target and using the same model as inNuTeV [7℄. We orret for the asymmetry of d and u quarks due to the� 6% frational exess of neutrons over protons in our iron target. How-ever, we assume isospin symmetry in the nuleon. If this assumption isinorret, it ould a�et the extration of sin2 �W . Similarly, large e�etsould arise if the strange sea is asymmetri. Estimations of suh e�etsappear in the literature [8℄, but do not take into aount the experimen-tal e�ets in the determination of R�. To examine the exat e�et of thesymmetry violations we de�ne a funtional F [sin2 �W ; Æ;x℄ [9℄, suh that�sin2 �W = R 10 F [sin2 �W ; Æ;x℄Æ(x)dx for any symmetry violation Æ(x) inPDFs. Using the analysis of referene [9℄, it an be seen that the level ofisospin asymmetry needed to explain the di�erene of our result to the SMexpetation would be Dp � Un � 0:01 (about � 5% of Dp + Un), and thelevel of strange sea asymmetry S � �S � +0:007 (about � 30% of S + �S).Here QN is the total momentum arried by quark of type Q in nuleon N .The NuTeV data annot provide an independent onstraint on possibleisospin violation e�ets. Suh e�ets, if present, will spoil the agreement ofdata and Monte Carlo hadron energy distributions, but the details depend onthe details of the asymmetry. There are several lasses of non-perturbativemodels whih predit isospin violation. An early bag model alulation [10℄predits large asymmetries whih would produe a shift of �0:0020 to theNuTeV sin2 �W . However, a more reent bag model alulation [11℄, whihinludes e�ets negleted in the previous referene, predits a shift of only�0:0001: Finally, Meson Cloud model preditions for the asymmetry [12℄result in a modest shift of +0:0002. The only way to test the validity ofsuh models is in the ontext of global PDF �ts, sine they might disagreewith existing data.If the strange sea is generated by purely perturbative QCD proesses,then negleting eletromagneti e�ets, we expet the strange and anti-strange momentum distributions to be the same. However, non-perturbative



3846 P. SpentzourisQCD e�ets ould generate a signi�ant momentum asymmetry [13℄. Areent ombined �t to CDHS neutrino and harged-lepton inlusive ross-setions [15℄, reports improvement in the quality of their �t when they allowfor an asymmetri strange sea. This �t, whih does not inlude CCFR in-lusive ross-setions [7℄ or NuTeV dimuon ross-setions [14℄, �nds s > �sat high-x. The analysis of dimuon events from NuTeV and CCFR [14℄ doesnot support this onlusion.Opposite-harged dimuon events are produed when (anti)neutrinos sat-ter o� a strange or down (anti)quark to produe a harm (anti)quark in the�nal state, whih subsequently fragments into a harmed hadron that de-ays semi-muonially, thus providing a very sensitive probe to the strangeontent of the nuleon. We �t the NuTeV and CCFR data within the sameLO model used in the extration of sin2 �W . The �t varies a ommon harmmass m, branhing fration B, and fragmentation parameter � for both �and ��, and two parameters for eah one, (�� ; ��) and (��� ; ���), that desribethe magnitude and shape of the s and �s quark PDFs:s �x;Q2� = �� �u �x;Q2�+ �d �x;Q2�2 (1� x)��and �s �x;Q2� = ��� �u �x;Q2�+ �d �x;Q2�2 (1� x)��� :We then use this LO model to extrat the forward dimuon prodution di�er-ential ross-setion. The dimuon ross-setion ompared to the Monte Carlopredition is shown in �gure 1. The results from the LO �t imply an asymme-try S � �S = �0:0027� 0:0013, within the NuTeV ross-setion model. Suhan asymmetry would shift the value of sin2 �W further from the SM predi-tion ompared to the initial extration whih used a symmetri strange sea.To further hek if there is any indiation of a ross-setion enhanementin the high x region, whih we may be missing due to our hoie of strangesea funtional form, we performed a separate investigation [14℄ for data withx > 0:5. Sine our Monte Carlo desribes the data very well for x < 0:5, weuse its predition for x > 0:5 to set ross-setion ratio upper limits for anyadditional soure of x > 0:5 dimuons. We �nd that in anti-neutrino mode,at 90% CL, our dimuon data does not support any additional soure witha fration larger than 0.0012, 0.007, and 0.009, respetively, in eah one ofthree visible energy (EVIS) bins: 34.8�128.6, 128.6�207.6, and 207.6�388.0(in GeV). For neutrinos, we �nd that for 36:1 < EVIS < 153:9 GeV and214:1 < EVIS < 399:5 GeV, at 90% CL, this fration annot be larger than0.006 and 0.013 of the total, while for 153:9 < EVIS < 214:1 (GeV) there isless than 5% probability that there is an additional soure onsistent withour data.
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Fig. 1. Top: �2�(x) from NuTeV neutrinos, for various E� � y bins in units ofharged-urrent �. The urves show the model predition for di�erent LO models.The solid urve orresponds to the model used in the NuTeV eletroweak analysis.Bottom: Comparison of NuTeV and CDHSW di�erential ross-setions. The urvesorrespond to LO and NLO theoretial preditions .
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