Vol. 33 (2002) ACTA PHYSICA POLONICA B No 12

THERMAL APPROACH TO RHIC* **

WOoJICIECH BRONIOWSKI, ANNA BARAN
AND WOJCIECH FLORKOWSKI

H. Niewodniczanski Institute of Nuclear Physics
Radzikowskiego 152, 31-342 Krakéw, Poland

(Received September 25, 2002)

Applications of a simple thermal model to ultra-relativistic heavy-ion
collisions are presented. We compute abundances of various hadrons,
including particles with strange quarks, the p, spectra, and the HBT radii
for the pion. Surprising agreement is found, showing that the thermal
approach can be used successfully to understand and describe the RHIC
data.
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1. Introduction

With the wide stream of new high-quality data flowing from RHIC, as
well as with the continued efforts at SPS (for recent results see, e.g. , [1-3]),
there is a growing need for a simple description of the basic underlying
physics. Only then our understanding of the phenomena occurring in ultra-
relativistic heavy-ion collisions can be pushed forward, and space made for
potential new phenomena, hitherto unexplained within the basic picture.
In this lecture we argue that most of the “soft” features of the data from
RHIC (particle ratios, momentum spectra, HBT correlation radii) can be ex-
plained very efficiently within an embarrassingly simple model, which merges
the thermal model [4-22] with expansion, and incorporates in a complete
way the resonances [23-28]. Our description uses hadronic degrees of free-
dom and starts at freeze-out, 7.e. at the point of the space-time evolution
of the system where the hadrons cease to interact. Pertinent theoretical
questions, such as what had been happening before freeze-out, what had
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led to the strong expansion of the system, why is the thermal picture suc-
cessful, what is the nature of hadronization, not to mention the notorious
“was there quark—gluon plasma?”, will not and cannot be addressed in this
lecture. Nevertheless, we believe that our studies prepare ground for such
questions.

2. The thermal model

Historically, the ideas of the thermal description of a hadronic system
go back to the works of Koppe [29], Fermi [30], Landau [31], and Hage-
dorn [32]. More recently, many groups have used these ideas in numerous
papers in an effort to explain the data from various relativistic heavy-ion
experiments, from SIS, through AGS and SPS, to RHIC. Along the way,
the original picture has been occasionally supplied with extra features, such
as the fugacities controlling deviations from chemical equilibrium [33], finite
volume and Van der Waals corrections [4,34], or the use of the canonical
instead of the grand-canonical ensemble [35-37].

The works of Heinz and collaborators [38] put forward the concept of
two freeze-outs. As the system expands and cools, it first passes through
the chemical freeze-out point at temperature Tihem. Later, the particles can
only rescatter elastically, until these processes are switched off at a lower
temperature Tii,. In an appealing way the distinct freeze-outs explained
the need for a higher temperature to reproduce well the particle ratios, and
a much lower temperature to describe the slopes of the momentum spectra.
In our work [14,23,26] we have shown that with the complete treatment
of resonances, the distinction between the two freeze-outs is not needed,
at least for RHIC, and one can achieve very good explanation of all “soft”
features of data assuming one universal freeze-out,

Tchern = Tkin =T. (1)

We have also dropped, with the Ockham razor at hand, all other additions
to the most naive thermal approach. The dropped features may be recon-
sidered later on, provided there is a well-established phenomenological need,
or theoretical argumentation.

The main ingredients of our model are as follows:

e There is one freeze-out, as discussed above, at which all the hadrons
occupy the available phase space according to the statistical distribu-
tion factors. The scenario with a single freeze-out is natural if the
hadronization occurs in such conditions that neither elastic nor inelas-
tic processes are effective. An example here is the picture of the super-
cooled plasma of Ref. [39]. Moreover, the STAR collaboration [40,41]
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has presented an important argument in favor of very weak rescattering
after the chemical freeze-out at RHIC, based on the observation of the
K*(892)° peaks in the pion-kaon correlations. This essentially shows
that the expansion time between the chemical and thermal freeze-out
is shorter than the life-time of the K*(892)%, i.e. ~ 4 fm/c. Addition-
ally, the fact that the measured yields of K*(892)° [40,41] are repro-
duced very well within the thermal model [13,14] hints to the scenario
with a short time between the two possible freeze-outs, as proposed in
Ref. |23]. Thus, approximation (1) is reasonable.

e A crucial feature of our analysis is the complete treatment of the
hadronic states, with all resonances from the Particle Data Table [42]
included in the analysis of both the ratios and the momentum spec-
tra (¢f. Fig. 1). Although the high-lying states are suppressed by
the thermal factors, their number increases according to the Hagedorn
hypothesis [32,44-46], such that their net effect is important. For
instance, only a quarter of the observed pions at RHIC comes from
the “primordial” pions present at freeze-out, and three quarters are
produced via resonance decays. All decays, two and three body, are
implemented in cascades, with the branching ratios taken from the ta-
bles. For the p; spectra the resonances are also very important, since
their decays increase the slope, as if the temperature were effectively
lower [14]. It has also been found that the inclusion of resonances
speeds up the cooling of the system in hydrodynamic calculations [43].

Fig.1. A schematic picture of the hadronic soup, formed in an ultra-relativistic
heavy-ion collision at freeze-out. The resonances decay subsequently into stable
particles. The inclusion of many resonances is crucial for the success of the thermal
approach.
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e Whereas expansion of the system does not alter the particle ratios at
midrapidity (provided the system is boost-invariant, which is a good
approximation at RHIC, see Sec. 4), it becomes absolutely essential
for the p, spectra. We model the expansion (transverse flow) and the
size of the system with two parameters: the proper time at freeze-out,
7, and the transverse size, pmax-

e The model has altogether four adjustable parameters: two thermal
and two geometric, which possess clear physical interpretation. The
two thermal parameters, temperature, 7', and the baryon chemical
potential, pp, are fixed by the analysis of the ratios of the particle
abundances [14]. The two geometric parameters are fixed with help of
the p| spectra. The invariant time 7 controls the overall normalization
of the spectra, while the ratio pmax/7 directly influences their slopes.

All data used in the present study are for Aut+Au collisions at /syy =130GeV.

3. Particle ratios

The density of the i-th hadron species is calculated from the ideal-gas
expression

n; = gi/d3pfi(p),

o) = ﬁ <exp [Ei(P) - ,UBBZ'T_ psSi — Mfi] n 1) - R

where g; is the spin degeneracy, B;, S;, and I; denote the baryon number,

strangeness, and the third component of isospin, and F;(p) = 4/p? + mf

The quantities pup, ps, and puy are the chemical potentials enforcing the
appropriate conservation laws. We recall that Eq. (2) is used to calculate
the “primordial” densities of stable hadrons as well as of all resonances at
the freeze-out, which later on decay. The temperature, T', and the baryonic
chemical potential, g, have been fitted with the x? method to the originally
available experimental ratios of particles, listed in the second group of rows
in Table I. The pug and p; are determined with the conditions that the initial
strangeness of the system is zero, and the ratio of the baryon number to the
electric charge is the same as in the colliding nuclei. It turns out that the
role of ur at RHIC is negligible.

For boost-invariant systems the ratios of hadron multiplicities at midra-
pidity, dN/dy|y=o, are related to the ratios of densities, n;, since

dN;/dy N n

=1 = . 3
dN;/dy =0 Nj nj 3)
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TABLE 1

dN; /dy

Optimal thermal parameters, ratios N, /dy

used for the fit, and further pre-
y=0
dicted ratios. The preliminary experimental numbers for K*(892) [52] have changed
[41], and better agreement with the model followed.

Model Experiment

Fitted thermal parameters

T [MeV] | 16547
up [MeV] | 4145

s [MeV] 9
w1 [MeV] -1
X2 /n 0.97

Ratios used for the fit

n [xt 1.02 1.00 +0.02 [47], 0.99 = 0.02 [48]

p/n— 0.09 0.08 + 0.01 [49)]
. 0.88+0.05 [50], 0.93+ 0.07 [51]
+ )
KZ/KT 1092 0014 0:09 [47], 0.92 + 0.06 [48]

K= /n~ 0.16 0.15 £ 0.02 [50]

K /h™ 0.046 0.060 + 0.012 [50, 52]
later: 0.042 +0.011 [41]

Ki/h 0.041 0.058 £ 0.012 [50,52]

later: 0.039 £0.011 [41]
0.61+0.07 [49], 0.64=+0.08 [51]

p/p 065 1 0.60+0.07 [47], 0.61 % 0.06 [48]
/4 0.69 0.73 % 0.03 [50]
E/= 0.76 0.82 % 0.08 [50]
Ratios predicted
é/h- 0.019 0.021 + 0.001 [53]
/K- | 015 0.1 - 0.16 [53]
Alp 0.47 0.49 + 0.03 [54, 55]
0= /h= | 0.0010 0.0012 % 0.0005 [56]
=/ | 0.0072 0.0085 % 0.0020 [57]

/0= | 085 0.95 = 0.15 [56]
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The first equality follows trivially from the assumed boost invariance, while

second one reflects the factorization of the volume of the system (see Sec. 4).
dN;/dy

’ de/dy y=0

Hence the midrapidity ratios , may be used to fit the thermal

parameters of the model.

Table I presents the result of the fit. In our procedure the ratios mea-
sured by different groups enter separately in the definition of x?. Thus, the
number of the used data points is n = 16. The obtained optimal value of
T = 165 &= 7 MeV is, most interestingly, consistent with the value of the
critical temperature for the deconfinement phase transition obtained from
the QCD lattice simulations: T, = 154 + 8 MeV for three massless fla-
vors and T = 173 £ 8 MeV for two massless flavors [58]. We note that
our T is 9 MeV lower than 174 MeV of Ref. [13], and 25 MeV lower than
190 MeV obtained in Ref. [59]. Nevertheless, the results of the three calcula-
tions are consistent within errors. We have also computed other character-
istics of the freeze-out: the energy density, ¢ = 0.5 GeV/fm?, the pressure,
P = 0.08 GeV/fm?® and the baryon density, pg = 0.02 fm 3. We note
that the results for the K*(892) mesons, off by 50% when compared to the
early preliminary data [52], came within the error bars of the data corrected
later [40,41]. The lower part of Table I contains our predictions for particles
containing strange quarks. The agreement with the data, released later, is
very good. In particular, the triply-strange {2 is properly reproduced.

To summarize this part, we stress the high quality of the fit in Table I
for all kinds of particles, including those carrying strange quarks.

4. Expansion

Obviously, much richer information on the hadron production is con-
tained in the transverse-momentum spectra. Various collaborations at RHIC
measure, with impressive accuracy, the particle spectra of different hadrons,
dN;/(2mpdp dy), at midrapidity and for various centrality bins (the latter
may be mapped to different impact parameters, [60]). Unlike the case of
the ratios of Sec. 3, modeling of the spectra involves not only setting the
thermal parameters, but also a suitable inclusion of the expansion. Clearly,
hydrodynamic flow modifies the spectra via the Doppler effect. Thus, an im-
portant ingredient of our model is the choice of the freeze-out hypersurface
(i.e. a three-dimensional volume in the four-dimensional space-time) and
the four-velocity field at freeze-out. Many choices are possible here, with
some hinted by the hydrodynamic calculations. Our choice has been made
in the spirit of Refs. [61-68], and is defined by the condition

T:\/t2—r%—7'§—r§:const. (4)
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Later on we denote the constant in Eq. (4) simply by 7. In order to make

the transverse size,
p=1[r2+12, (5)

finite, we impose the condition p < pmax- In addition, we assume that the
four-velocity of the hydrodynamic expansion at freeze-out is proportional to
the coordinate (Hubble-like expansion),

1
uuzx_:;<1j_ﬂ_w_z>_ ©)

t ot t

Such a form of the flow at freeze-out, as well as the fact that ¢ and r,
coordinates are not limited and appear in the boost-invariant combination
in Eq. (4), imply that our model is boost-invariant. We have checked
numerically that this approximation works very well for calculations in the
central-rapidity region.

In practical calculations it is convenient to introduce the following pa-
rameterization [66]

t = Ttcoshajcosha, r,=7sinhaycosha
I ) I ’

ry = Tsinha, cos ¢, ry = Tsinha sing, (7)

where q is the rapidity of the fluid element, v, = ryJt = tanh a, and
« describes the transverse size, p = T7sinh« . The transverse velocity is
v, = tanh a / cosh . The element of the hypersurface is defined as

Ox® 0zP 0z

dZH = Euaﬂ7ﬂ—aaL a—¢

doyda dg, (8)

where 20 = t, ' = r,, 2% = Ty, x> =r, and €uapy is the Levi-Civita tensor.
A straightforward calculation yields

dX*(z) = ut(z) 73 sinh(av | )cosh (o) dog daydg, 9)

such that the four-vectors dX* and u* turn out to be parallel. This feature
is special for our choice (4), (6), and in general does not hold.

A question comes to mind as to what extent the assumptions (4), (6)
are realistic from the point of view of hydrodynamics. As a results of a typ-
ical hydrodynamic calculation, the freeze-out hypersurface contains, in the
p—t plane, a time-like and a space-like parts [62—68]. The latter one is plagued
with conceptual problems [69-72]. Our parameterization neglects the space-
like part altogether, thus avoiding difficulties. The time-like part of the
hypersurface has, in many hydrodynamic calculations, the feature that the
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outer regions in the transverse direction freeze out earlier than the inner
regions. Our choice (4), as well as commonly used versions of the blast-wave
model, where the freeze-out occurs at a constant value of ¢, do not share
this feature. On the contrary, our Eqgs. (4), (6) correspond to the so-called
scaling solution [62, 73,74] of hydrodynamic equations, which is obtained
in the case where the sound velocity in the medium is low. Naturally, the
validity of the assumptions and their relevance for the results should be ex-
amined in a greater detail. In Ref. [23] we have checked that two different
models of the expansion lead to very close predictions for the momentum
spectra at RHIC. Other parameterizations may be also verified with the help
of the formulas given below. The fact that parameterization (4), (6) works
impressively well (¢f. Sec. 6), and at the same time the conventional hydro-
dynamic calculations have serious problems in explaining the RHIC data,
hints, in our opinion, for a revision of the part of the assumptions entering
hydrodynamic calculations and for extensions [75-77] of the picture used
up to now.

5. Decays of resonances

The decays of resonances present a technical complication in the formal-
ism. The resonances are formed on the freeze-out hypersurface with a given
four-velocity. In the local rest frame of the fluid element the momenta of the
resonances have thermal distribution, however, their decay products have,
obviously, a different (non-thermal) distribution, which reflects the distribu-
tion of the resonance and the kinematics. Below, we describe in detail our
method, which is exact and semi-analytic (final expressions involve simple
numerical integration rather than involved Monte Carlo simulations).

Consider a sequence of the resonance decays of Fig. 2. The initial
resonance decouples on the freeze-out hypersurface at the space-time coor-
dinate zn, and decays after time 7y, with an average time proportional

final pion

initial resonance

freeze-out hypersurface

/

Fig.2. The cascade of resonance decays.
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to the life-time 1/I'v!. Let us track a single decay product. It is formed
at the point zny_1, decays again after time 7y_1, and so on. At the end
of the cascade a particle with label 1 is formed, which is being detected.
The Lorentz-invariant phase-space density of the measured particles is

nl(iﬁlapl) =

d3
pQB(p2,p1)/dTQF2e_F2T2/d4x25(4) (m—i—%—xl)

E,, 2
PE e
pNB(pNale)/dTNFNe v
EpN
.
<[4z o) 0 (e 2l w(aw)] - (10

We have generalized here the formula from Ref. [78] where a single res-
onance decay, without cascades, is taken into account. Note that the inte-
gration over £y _1 ... x9 is unconstrained, while the integration over zy is
constrained to the hypersurface X/. The delta functions impose the condition
that the particle of velocity py/m,, travels the distance from z, to z,_1 in
time 7,. The function B(q, k) is the probability distribution for a resonance
with momentum ¢ to produce a particle with momentum k, namely

b (k- )
Blah) = ot (S0 - ). (1)

where b denotes the branching ratio for the particular decay channel® and
p* (E*) is the momentum (energy) of the emitted particle in the resonance’s
rest frame. We note that B(k,q) satisfies the normalization condition

d3q

—B(q,k)=0. 12

7 B.k) (12
Integration over all space-time positions in Eq. (10) gives the formula for
the momentum distribution

dN d’p
Ep1d3—pll = /d4x1n1 (151,101):/ EP;B(m,pl)---

3
X /C;f]]va(pN,pNﬂ/dEM (IN)pljtffN[PN'U(.’L‘N)] , (13)

which should be used in the general case of any X and u3.

! In this section the indices 7 label the position in the cascade, and not the particle
species, as in Sec. 4.

2 In this notation b includes also the ratio of the spin degeneracies of the two particles.

3 Note that the dependence on the widths I'; has disappeared, reflecting the fact that
for the momentum spectra it is not relevant when or where the resonances decay.
It is important, however, when and where the particles decouple from each other,
which is determined by the choice of ¥'(zx) and u(zn).
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We are now going to prove the second equality in Eq. (3). Starting from
Eq. (10) we find the multiplicity of particles of type 1 coming from the
discussed chain decay,

Py
EPN

Ny =bynosn—1 ... by /dEu (xN)/ phy [nlpn-u(zn)],  (14)
with an obvious notation for the branching ratios. Since the last integral in
Eq. (14) yields an expression proportional to u*(zy), and the distribution
function of the resonance N is thermal, we can rewrite Eq. (14) in the
equivalent form

Ni = bnosnv—1 --. bQ*)I/dE/J, (zn)u(zn)ny [T(zN), uB(zN)]

= byoN-1 --- basiny (T, uB) /dEM (zn) ut(zn) . (15)

Eq. (15) indicates that the volume factor at freeze-out, [dX, (zn)u*(zn),
factorizes if the thermodynamic conditions (temperature and chemical po-
tentials) are constant on the freeze-out hypersurface. This observation leads
directly to the general conclusion that, as long as we integrate (measure) the
spectra in the full phase-space (or, for boost-invariant systems, at a given
rapidity y), the ratios of the particle yields are not affected by the flow and
can be calculated with help of the simple expressions valid for static systems.
This completes the proof of the second equality in Eq. (3).

An important simplification follows if the element of the freeze-out hy-
persurface is proportional to the four-velocity. This is precisely the case
considered in our model where (compare Eq. (9))

dX,(zN) = dX(zN) up(zn) . (16)
Then

dNy d3po
Bt = [azn [ F2B ().

[P B oy o) oo o) f o - (o)
PN
= /dZ (zn)p1-u(zn) filpr-u(zN)] . (17)

where we have introduced

Pi—1 - u(zN) fiz1 [Pim1 - u(zN)]
d*p;

=5 B (pispi-1) pi u(zN) fi[pi-u(zy)] - (18)
Dpi
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The meaning of Eq. (18) is that as we step down along the cascade, the
momentum distribution of the decay product, f;_1, is obtained from the
momentum distribution of the decaying particle, f;, with a simple integral
transform following from the kinematics. In the fluid local-rest-frame, most
convenient in the numerical calculation, we have v*(zy) = (1,0,0,0), and
the transformation (18) reduces to the form [14]

k+(q)
o @) = g [ ki), (19)
k—(t])

where the limits of the integration are ki (q) = mg |E*q £ p*E,| /m?. Equa-
tion (19) is a relativistic generalization of the expression derived in Ref. [79].
The technical advantage of Eq. (17) is that the cascade can be performed
in the rest frame of the original particle, with spherical symmetry and one-
dimensional integrations over momenta, (19), while in the general case of
Eq. (13) only cylindrical symmetry holds and two-dimensional integrations
over momenta must be used.

In the case of three-body decays we follow the same steps as above,
with a modification arising from the fact that now different values of p* are
kinematically possible. This introduces an additional integration in Eq. (19).
The distribution of the allowed values of p* may be obtained from the phase-
space integral

A/dpldmdps
Epl

(i~ By, —Bpa— By, )0 (pr4+py+ps) [P, (20)

where py,p, and p3 are the momenta of the emitted particles, E,, , Ep,
and FE,, are the corresponding energies (all measured in the rest frame of
the decaying particle), M is the matrix element describing the three-body
decay, and A is a normalization factor. For simplicity we assume, similarly
to [80], that M can be approximated by a constant, i.e. only the phase—
space effect is included. Operationally, the final expression for three-body
decays is a folding of two-body decays over p* with a weight following from
elementary considerations based on Eq. (20).

Finally, for the case satisfying condition (16), the spectra are obtained

from the expression analogous to the Cooper—Frye [73,81] formula,
dN

H dx, 21

oo = [ 7S file). (1)

but with the distribution f; which has collected the products of resonance
decays. With parameterization (7) we can rewrite Eq. (21) in the form
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400 pmax/T 2T

dN 3 ' ‘
7d2pLdy =T / d,oz” / sinha | d (sinha ) /dfp‘ufl (p-u), (22)
—00 0 0

where, explicitly,

p - u = m cosha)cosha; —p, cos{sinha; . (23)

We end this section with a pedagogical discussion of the role played by
various effects included. Fig. 3 shows the m | -spectrum of positive pions
obtained with thermal parameters of Table I. The dotted line shows the
spectrum of primordial pions without expansion. The dot—dashed line adds
the resonance decays; they contribute about 75% of the total, with the low
momenta more populated. The dashed line is the result of the model with
no transverse flow, i.e. including only the longitudinal Bjorken expansion.
Finally, the solid line shows the full calculation, with resonance decays and
the longitudinal plus transverse expansion produced by parameterization
(4), (6). The characteristic convex shape is acquired as the result of the
transverse flow.

N
— N thermal+decays+Bjorken
=) 1
S,
= o
= 0.1 T
Q. N
g NN
o oot TN
— ’s\ R
< thermal RN
T 0.001
N N
thermal+decays . '\
0.0001 IS
n* T
0 05 1 15 2
m [GeV]

Fig. 3. Contributions of various effects to the m, spectra of positive pions (normal-
izations arbitrary, the relative norm of dotted and dash—dotted curves preserved).

6. Transverse-momentum spectra

Equipped with all elements of the model, we can now apply it to describe
the p, spectra. The thermal parameters are always those of Table I. In
principle, they could change with the centrality bin (impact parameter),
but since the ratios of particles depend weakly on the centrality [1-3], so do
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the thermal parameters. We begin with presenting in Fig. 4 the fit to the
earliest-available minimum-bias data from the PHENIX collaboration [82].
We observe a very good agreement of our model with the data up to p; ~ 2
or even, amusingly, 3 GeV. In that range the model curves cross virtually
all data points within the error bars. At larger values of p,, where hard
processes are expected to contribute, the model falls below the data for p
and p. Since the values of the strange and isospin chemical potentials are
close to zero, the model predictions for 7+ and 7, as well as for KT and
K~ are virtually the same. The value of the baryon chemical potential of 41
MeV splits the p and p spectra. Note the convex shape of the pion spectra.
The 7+ and p curves in Fig. 4 cross at p; ~ 2 GeV, and the KT and p at
p1 =~ 1 GeV, exactly as in the experiment. The values of the fitted geometric
parameters are shown in second column of Table II.

100

10

[GeV?]

|y=0

€L

0.1

d2N/(2rp dpLdy)

0.01

\
PHENIX preliminary “\

0.001 minimum bias

(a) positive hadrons

0 1 2 3 0 1 2 3

Fig.4. The p, spectra of pions (solid line), kaons (dashed line) and protons or
antiprotons (dashed—dotted line), as evaluated from our model, compared to the
PHENIX preliminary data obtained from Fig. 1 of Ref. [82]. Later official PHENIX
data of Ref. [83] agree with the data used here. Feeding from the weak decays is
included.

The next plot, Fig. 5, shows an analogous fit made separately for 3
different centrality bins. The obtained values of the geometric parameters
are compared in Table II. Again, the agreement is satisfactory®.

4 For non-central collisions the shape of the hypersurface and the four-velocity at freeze-
out is expected to be deformed in the z — y plane. In fact, in the hydrodynamic
approaches this is the result of the elliptic flow, causing the azimuthal asymmetry of
the spectra. The effect can be incorporated by properly extending the parameteri-
zation (4), (6). However, the effect of departing from the cylindrical symmetry by
the amount needed to describe the elliptic flow coefficient, vs, is negligible for the p
spectra integrated over the azimuthal angle, considered in this lecture [84].
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Fig.5. Model vs. experiment for PHENIX data [83] at three different centrality bins
for pions, kaons, protons and antiprotons. The thermal parameters are unchanged,
while the geometric parameters following from the fit are given in the figure.

TABLE II

The fitted values of the geometric parameters for various centrality bins, their ratio,
and the maximum and average transverse flow parameters, as give by Egs. (24), (25).

PHENIX PHENIX + STAR
c [%] min. bias 05 1530 6092 0-5/0-6
T [fm] 5.6 8.2 6.3 2.3 7.7
pmax [fm] | 4.5 69 53 20 6.7
Pmax /T 0.81 0.84 0.84 0.87 0.87
prax 0.62 064 0.64 0.66 0.66
(B1) 0.46 047 047 048 0.48
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Finally, in Fig. 6 we show our results for all up-to-now available spectra
at \/snyny = 130 GeV for the most-central collisions, including the particles
involving strangeness. The upper part of Fig. 6 displays the spectra of pions,
kaons, antiprotons, used earlier to determine the geometric parameters (last
column in Table IT), and the predicted spectra of the ¢ and K*(892)° mesons.

STAR + PHENIX @ 130 GeV
most central

100

10

8
% o
o,
_ni 0.01
z
%—1 0.001
Q_—|
=
o
=
zZ 1
N
©
0.1
0.01
0.001

Fig.6. (a) The p, spectra at midrapidity of 7=, K, b, ¢, and K*(892)°, and
(b) of hyperons A, =, and {2. The asterisks represent the data from the STAR,
and other symbols from the PHENIX collaboration. All spectra are for the most
central collisions [40,49,54,55,82,85-88]. The STAR data for the n=, K, ¢, =’s
and (2’s are preliminary. The updated experimental points for the =’s [89] are
lower by about a factor of 2 from those shown, and much better agreement with
the model follows. All theoretical curves and the data are absolutely normalized.
The data and the model calculation include full feeding from the weak decays.

The predicted spectrum of the ¢ mesons agrees well with the reported
measurement [85], with the model curve crossing five out of the nine data
points. The ¢ meson deserves a particular attention in relativistic heavy-
ion collisions, since it serves as a very good “thermometer” of the system.
This is because its interaction with the hadronic environment is negligible.
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Moreover, it does not receive any contribution from resonance decays, hence
its spectrum reflects directly the distribution at freeze-out and the flow.
Thus, the agreement of the model and the data for the case of ¢ supports
the idea of one universal freeze-out.

The upper part of Fig. 6 also shows the averaged spectrum of K*(892)
resonances, with the data from Ref. [40]. Once again we observe a good
agreement between the model curve and the experimental points. As al-
ready mentioned in Sec. 2, the successful description of both the yield
and the spectrum of K*(892)° mesons supports the concept of the thermal
description of hadron production at RHIC, and brings evidence for small
interval between chemical and thermal freeze-outs, in support of Eq. (1).
If the K*(892)° mesons decayed between the chemical and thermal freeze-
out, the emitted pions and kaons would rescatter and the K*(892)° states
could not be seen in the pion—kaon correlations. In addition, if only a frac-
tion of the K*(892)? yield was reconstructed, it would not agree with the
outcome of the thermal analysis which provides the particle yields at the
chemical freeze-out. Thus, the expansion time between chemical and ther-
mal freeze-out must be smaller than the K*(892)° life-time, 7 = 4 fm/c [40].

The bottom part of Fig. 6 shows the predictions of the model for the
spectra of hyperons. Again, in view of the fact that no extra parameters have
been introduced here and no refitting has been performed, the agreement is
impressive. We note that the preliminary [87] data for the =’s used in the
figure were subsequently updated [89]. The following reduction of the data
by about a factor of 2 results in a much better agreement with the model.
The data accumulated at lower energies at SPS showed that the slope of the
2 hyperon was much steeper than for other particles [90]. On the contrary,
in the case of RHIC the model predictions for the {2 are as good as for
the other hadrons. Since the {2 contains three strange quarks, it is most
sensitive for modifications of the simple thermal model used here, e.g. the
use of canonical instead of the grand-canonical ensemble. The agreement of
Fig. 6 does not support the need for inclusion of these effects.

The various values of the geometric parameter sets are collected in
Table II. We also show their ratio, as well as the maximum and average
transverse-flow parameter, 3, given in our model by the equations

Pmax
pre = — L (24)
VT2 + P
and
Prjax d o
pap—r——
+
()= (25)

[ pdp
0
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We note that the ratio pmax/7, and consequently, S''** and (5, ), practically
do not depend on centrality.

To summarize this section, we conclude that the successful and economic
description of the spectra, as seen from Figs. 4, 5 and 6, provides a strong
support for the thermal approach with universal freeze-out in the description
of the ultra-relativistic heavy-ion collisions at RHIC.

7. Excluded-volume effects

In the presented model the fitted values for the geometric parameters, 7
and pmax, are low, of the order of the size of the colliding nuclei. This leads
to two problems: (1) the values of the HBT radii, as shown in Sec. 8 would
be too small compared to the experiment, and (2) there would be little time
left for the system to develop large transverse flow. Both problems can be
solved with the inclusion of the excluded-volume (van der Waals) corrections.
Such effects were realized to be important already in the previous studies of
the particle multiplicities in ultra-relativistic heavy-ion collisions [4,34,91],
where they led to a significant dilution of system. In the case of the classical
Boltzmann statistics, which is a very good approximation for our system [15],
the excluded volume corrections bring in a factor [91]

P,
e T

(26)

Pu; ’

143 ve” T n;

into the phase—space integrals, where P denotes the pressure, v; = 4%%7‘;3
is the excluded volume for the particle of species i°, and n; is the density of
particles of species 7. The pressure must be calculated self-consistently from
the equation

P Pu;
p=>"p <T,ui UZ) ZPO (T, pi)e” T, (27)
7

where PZ-0 is the partial pressure of the ideal gas of hadrons of species 1.
For the simplest case where the excluded volumes for all particles are equal,
r; =1, v; = v, the excluded-volume correction (26) produces a scale factor
common to all particles, which we can denote by S~3. The formula (22)
becomes

pmax/T 2T
dN;
=7 /da| / smhou_d(smhou_)/dfp uS 3 fi(p-u) . (28)
d?pidy
0

5 The excluded volume per pair of particles is 4 (21"1) , hence the factor of 4 in the
definition of v;.
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The presence of the factor S~3 in Eq. (28) may be compensated by rescaling
p and 7 by the factor S. That way, we retain all the previously obtained
results for the particle abundances and the momentum spectra. However,
now the system is more dilute and larger in size.

Next, we present an estimate of S. With our values of the thermo-
dynamic parameters we have >, P)(T, u;) = 80MeV /fm3, which leads to
S = 1.3 with r = 0.6 fm. Values of this order have been typically obtained
in other works. Thus, the excluded-volume corrections can increase the size
parameters at freeze-out by about 30%, and in consequence the problems (1)
and (2) are alleviated: the geometric parameters become large enough to be
reconciled with expansion, and the HBT correlation radii can be properly
reproduced, see Sec. 8.

8. HBT radii

The transverse HBT radii Rgqe and Royt (here we use the Bertsch—
Pratt [92-94| parameterization) measured [95-97| at RHIC have values very
close to those measured at smaller beam energies. Only the longitudinal
radius, Riong, exhibits a monotonic growth with /syn [95]. The weak
energy dependence of Rgge and Royt has come as a great puzzle, since the
RHIC beam energy, \/syny = 130 GeV, is almost one order of magnitude
larger than the SPS energy, \/snyn =17 GeV, and based on the hydrodynamic
calculations one would expect much larger systems to be produced at RHIC.
Also, a longer life-time of the firecylinder was expected at RHIC, which
should be reflected in longer emission times of pions, which in turn would
result in the ratio Royut/Rside much larger than unity [98]. On the contrary,
the experimental measurements indicate that Royt/Rsige 1S compatible with
unity in the whole range of the studied transverse-momenta of the pion pair
(0.2 < kt < 1.0 GeV). This fact is another surprise delivered by the analysis
of the RHIC data for the pion—pion correlations.

We have computed the pion HBT radii in our model. The calculation
is based on the formalism of Ref. [99], and is similar to the case of the
particle spectra shown in Sec. 4. Details will be presented elsewhere [100].
The results of an approximate calculation neglecting the hadronic widths
are shown in Fig. 7, where the HBT radii are plotted as a function of the
transverse momentum of the pion pair, k. We note that very reasonable
agreement with the data is achieved. We have used § = 1.3 of Sec. 7. In
particular, the ratio Royt/Rside (independent of the scale factor .S) is close to
unity. The k| dependence of Rgqge is a bit too flat. The longitudinal radius,
Riong, is sensitive to the cut-off in the rapidity distribution and cannot be
reliably computed in the present, boost-invariant, model.
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Fig.7. The HBT correlation radii for most-central collisions, Rgiqe, Rout; and

their ratio, as predicted by the model (solid line) and measured by the PHENIX
collaboration.

9. Conclusions

The presented results for the hadron production at RHIC support the
idea that particles are produced thermally, and this is the basic lesson for
today. The simple, economic model with the approximation of a universal
freeze-out, simple expansion, and complete treatment of resonances, predicts
the particle ratios, the transverse-momentum spectra, and the HBT correla-
tion radii for the pion in agreement with the data. We note that the thermal
approach works noticeably better at the RHIC energies than at lower ener-
gies, where, e.g., the particle ratios are not described to that accuracy [15],
or the spectrum of the {2 baryons is not reproduced. This indicates that the
soft physics becomes simpler at RHIC, with our model being able to yield
the quite impressive results of Table I and Figs. 4, 5, 6 and 7.
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In our phenomenology the pre-freeze-out stages are hidden and only the
conditions at the moment where the hadrons decouple are relevant. This
provides useful constraints for the more microscopic approaches. These cal-
culations, describing early stages of the evolution, should ultimately provide
the freeze-out conditions such as, or similar, to the ones used in our study.

Certainly, the most challenging theoretical question which remains and
should be addressed in future efforts is why the model works so nicely, and
what it means for the underlying physics of particle production and the
mechanism of hadronization.

We are grateful to Professor Andrzej Budzanowski for his encourage-
ment and interest in this work, to Marek Gazdzicki for numerous helpful
discussions, and to Boris Hippolyte for pointing out the early experimental
spectra for the {2 baryons. We also thank Julia Velkovska for pointing out
the updated experimental numbers.
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