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LATTICE QCD FOR RHIC�Sourendu GuptaDepartment of Theoretial Physis, Tata Institute of Fundamental ResearhHomi Bhabha Road, Mumbai 400005, India(Reeived Otober 6, 2002)I brie�y introdue the methods by whih lattie QCD preditions forRHIC are obtained. Next I deal with lattie determinations of strangenessprodution and event-to-event �utuations of onserved quantities. I alsopresent a new diagrammati method for omputing derivatives with re-spet to hemial potentials, and onlude with disussions of some testsof thermal perturbation theory whih follow.PACS numbers: 12.38.G, 12.38.Mh, 25.75.�q, 11.10.Wx1. IntrodutionHeavy-ion ollisions at the RHIC have already given evidene for denseand hot matter [1℄, and may lead to a disovery of the predited plasmaphase of QCD if suh preditions are made preise enough. In reent yearsomputations in lattie �eld theories have beome preise enough to onfrontphenomenologial analyses of experimental results. Among the many inter-esting results from RHIC [2℄ I single out three for omment � indiations ofearly thermalisation leading possibly to hydrodynami �ow, rapid hemialsaturation of strangeness, and �utuations from one event to another. Eahof these observations may be related to quantities whih are easily omputedin �nite temperature lattie QCD. Flow is strongly onneted to the equa-tion of state, strangeness to the Wróblewski parameter, and �utuations tovarious suseptibilities. The equation of state has been adequately dealtwith elsewhere [3℄, and I will restrit myself to the rest.Interesting thermodynamial quantities an be onstruted by taking thederivative of the free energy with respet to intensive quantities. ConsiderQCD with the intensive variables: temperature, T , and the quark hemialpotentials, �u, �d, �s (for �avours u, d and s of quarks). The �rst derivative� Presented at the XLII Craow Shool of Theoretial Physis, Zakopane, PolandMay 31�June 9, 2002. (4259)



4260 S. Guptaof the free energy, F , with respet to one of the hemial potentials is thequark numberhnf i = ���f F (T; �u; �d; �s) = ���f logZ(T; �u; �d; �s) ; (1)where Z is the partition funtion. The seond derivatives are alled quarknumber suseptibilities [4℄�fg = �2��f��gF (T; �u; �d; �s) = �hngi��f = �hnf i��g : (2)In general suh seond derivatives measure mirosopi �utuations in equi-librium. It has reently been disovered that these �utuations, �fg, maybe diretly aessible in heavy-ion ollisions [5℄. Higher derivatives, whihwe deal with later, may be alled non-linear quark number suseptibilities,in analogy with similar quantities in ondensed matter physis.I will desribe information on these derivatives whih we have obtainedfrom lattie simulations of QCD. These are numerial estimates of the QCDpartition funtion, Z, in the Eulidean thermal �eld theory ontext:Z(T; �u; �d; �s) = Z dU Yf=u;d;sdetM(mf ; �f ) exp[�S(U)℄ : (3)In this formula S(U) is the gauge part of the ation, M is the Dira operatorfor quarks of mass mf with hemial potential �f , and the integration isperformed over all on�gurations of gauge �elds. The hemial potentialsenter the Dira operator as if they were onstant U(1) gauge �elds (see�gure 1). In the Eulidean formulation of �nite temperature �eld theorythe temperature enters indiretly through the fat that the Eulidean `time'diretion is of extent 1=T [6℄.
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Lattie QCD for RHIC 4261Sine suh integrals have the usual ultraviolet divergenes of �eld theory,they an be de�ned with a spae-time lattie as a regulator. The spaingbetween lattie sites in all diretions is a. The gauge �eld A� assoiated within�nitesimal hanges in position, i.e., ��, is replaed by the �nite transporterexp(iaA�). The number of lattie sites in the time diretion is Nt. At �xedtemperature this gives the relationaNt = 1T : (4)This is used to eliminate the ultraviolet uto�, � = 1=a from all ompu-tations in favour of the physial sale T . After this is done, the regulatormust be removed by taking �!1 while holding �xed all physial quanti-ties. This proess is alled �taking the ontinuum limit�, sine it means thata ! 0 at �xed temperature by taking Nt ! 1 while holding T onstant(see �gure 1).Taking the ontinuum limit is exatly the same as normalizing the �eldtheory. A measurement of the renormalized strong oupling at the sale of1=a �ows aording to the two-loop �-funtion of QCD. As a result, goodontrol over the ontinuum extrapolation omes from perturbation theory,yielding [7℄ T�MS = � 1:15 � 0:05 (Nf = 0) ,0:49 � 0:05 (Nf = 2) . (5)This gives us good preision in pinning down the running oupling at anygiven temperature sine log(T=�MS) = log(T=T) + log(T=�MS). T=�MSis a reasonably easy quantity to measure beause there are nie de�nitionsof the renormalized QCD oupling on the lattie whih show the usual log-arithmi saling without any power orretions in a. Other quantities mayhave power orretions whih need to be subtrated before the logarithmisaling an be seen. While this is tedious, the great advantage of the lattieis that it allows full ontrol over infrared divergenes whih plague �nitetemperature �eld theory.Another fat is ruial. In a lattie omputation we do not determinethe integral in Eq. (3) before taking its derivatives. Instead, we take thederivatives before doing the integral numerially. For example, we notiethat for any matrix M(x) where eah matrix element may depend on somevariable x � detM(x)�x = detM(x)TrM 0M�1; (6)where M 0 denotes the matrix eah term of whih is the derivative of theorresponding term of M . As a result,hnii = 1Z Z dU TrM 0iM�1i Yf Mf exp[�S(U)℄ = hTrM 0iM�1i i : (7)



4262 S. GuptaThe expetation value on the right is omputed with a Monte Carlo proe-dure whih simulates the integrand of Eq. (3) [8℄. Suh a proedure worksonly when the integrand is non-negative. Sine the Eulidean Dira operatorwith hemial potential has omplex eigenvalues, the determinant is not pos-itive de�nite, and lattie Monte Carlo simulations of QCD at �nite hemialpotential beome tremendously hard to do. In all the work reported here wedeal with the suseptibilities evaluated at zero hemial potential. Interest-ingly, they an be (and have been) used to ontinue lattie QCD informationto non-zero hemial potential [9℄.Finally a word about �avour symmetry breaking. If the u and d quarkmasses in nature were equal then �avour symmetry would be broken onlyin eletro-weak interations. Lattie QCD omputations are done in thislimit. In reality, however, u and d quark masses di�er. It turns out that thisbreaking is almost irrelevant to thermodynamis [10℄. The strange quark ismuh heavier, with a mass not muh di�erent from T. Hene it is almostquenhed lose to T but should be treated as unquenhed far above T.2. Flutuations2.1. Lattie measurementsI will introdue some notation. The usual baryon hemial potential is�0 = (�u + �d + �s)=3. The hemial potential assoiated with the isospinquantum number is �3 = (�u � �d)=2. The orresponding number densitiesare hn0i = hnu + nd + nsi=3 and hn3i = hnu � ndi=2. These are zerowhenever the hemial potentials vanish. The suseptibilities obtained bytaking double derivatives with respet to �0 and �3 are written �0 and �3.These an be non-zero even when the hemial potentials vanish.We reently improved upon previous measurements [4,11℄ of these quan-tities in several ways. First, by hanging the size of the spatial box withinwhih the lattie omputation is done, we have found a range of sizes suhthat the box has no e�et on the physial measurement. All our subsequentmeasurements are in this range of box sizes. Seondly, unlike previous om-putations, we have held the quark mass, m, �xed in terms of physial masssales suh as GeV or T as we hange the temperature. Previous studieshad, for onveniene, �xed ma = m=TNt, whih meant that their quarkmass hanged as they sanned aross temperature. Finally, by improvingthe estimators of the traes, it turns out that modern omputers an allowus to redue the error bars in some of the suseptibilities by over 3 orders ofmagnitude � an e�etive gain of a fator of a over million in the statistisavailable ten years ago when the last omputations were performed.For a = 1=4T , i.e., Nt = 4, our simulations with the quenhed theory(Nf = 0) [12℄ and with two light �avours of sea quarks (Nf = 2) [13℄ showed
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Fig. 2. The suseptibility �3 as a funtion of T for several di�erent valene quarkmasses, mv and lattie spaing a = 1=4T . The lines summarize data for quenhedQCD while the symbols are for data in Nf = 2 QCD for the mv=T values shown.Error bars are mostly smaller than the symbols. The shaded region overs a rangeof quark masses appropriate to strange quarks.that the suseptibility is quite di�erent from that for the ideal gas, �FFT,on the same lattie. There is a small e�et from unquenhing the light seaquarks � about 5%. Sine this e�et is so small, it seems that the e�et ofunquenhing the strange quark should be smaller than the statistial errorsin our measurement. By making the valene quark heavier we an thereforeinvestigate the dynamis of strange quarks. We will return to this importantpoint later.The quark mass dependene of �3 is quite nontrivial and is interestingin itself. It has been known for a long time that �3 an be written asthe zero-momentum limit of a ertain omponent of a vetor orrelationfuntion at �nite temperature [6℄. Now, the breaking of Lorentz symmetryat �nite temperature due to the seletion of a preferred frame (that of theheat bath) means that angular momenta do not neessarily label the statesof the system [15℄. One of the most well-known onsequenes of this is thedi�erene between eletri and magneti polarizations of gauge bosons at�nite temperature [16℄. In any ase, this broken symmetry auses �3 tomix with salar/pseudo-salar representations [13,17℄. Previous work on thelattie has seen learly that orrelations in this hannel at high temperaturesdeviate strongly from that of an ideal quark gas [18℄. As the quark massis hanged, this orrelation funtion, the orresponding sreening mass, and�3 all hange in response (see �gure 3).The �avour o�-diagonal suseptibility �ud turns out to be surprisinglysmall. Our measurements reveal that above T the dimensionless number�ud=T 2 is zero to within a few parts in 105. This is a major surprise, beause
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M  /TSFig. 3. The dependene of �3 and the pseudo-salar suseptibility, ��, on theommon sreening mass of the salar and pseudo-salar at T = 1:5T and 2T.Error bars are smaller than the symbols. �� is the zero-momentum pseudo-salarorrelator [14℄.a reent omputation in resummed �nite temperature QCD shows that thisquantity should be of the order of �3S(2�T ) log �S(2�T ) and predits thatit should be of order 10�3 [19℄. A non-log ontribution of order �3(2�T )remains to be omputed, but even if this anels the omputed term at someT , the range of temperatures over whih results are available is large enoughthat a substantial non-zero value would still be seen. This disagreementbetween the lattie and perturbative omputations stands as a puzzle.Below T this o�-diagonal suseptibility has only been investigated inthe quenhed theory. It is small but learly non-zero (see �gure 4). Withhanging quark mass it is seen to vary roughly as 1=m2� where m� is thepion sreening mass, showing that suh �utuations are essentially arriedby pions. The onnetion between the vetor-vetor orrelator �ud and thepion below T omes from the fat that the ontribution
π γ0τγ0τ (8)to �ud is allowed at �nite temperature, and therefore, dominates � exhangeontributions purely kinematially. This is another manifestation of thesame physis that led to the orrelation shown in �gure 3. While �ud is nonvanishing below T, �3 is onsistent with zero.Continuum extrapolation of these results have been attempted [20�22℄.It turns out that �3 measured with staggered Fermions have large powerorretions in a. As a result, the ratio �3=�FFT at T = 2T dereases from
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4266 S. Gupta2. When T > T but very lose to T, sine �3 � �s � �ud � �us, we�nd �q � (10=9)�3 and �0 � (4=9)�3 so that the ratio �q=�0 � 2:5.3. For T < T sine �ud / 1=m2� and assuming that �us / 1=m2K , sine�3 � �s � 0, we expet that �q=�0 � 0:25 +O(m2�=m2K).Under the assumptions given above, there are diametrially oppositepreditions above and below T�0 < �q < �s (T > T) ;�0 > �q > �s (T < T) : (11)The ordering of �utuations in baryon number [23℄, harge [5℄ and totalstrangeness [24℄ are therefore radially di�erent above and below the phasetransition. 3. Strangeness produtionStrangeness abundanes in heavy-ion ollisions at the CERN SPS olliderand the RHIC have been analyzed extensively. There is some onsensus thatthe observed hemial omposition is that in equilibrium lose to T, andthat it annot arise due to hadroni resatterings [25℄. One of the entralquantities that has been extrated from data is the Wróblewski parameter�s = 2h�ssih�uui+ h �ddi : (12)The averages on the right are de�ned to be the number of primary reatedquark pairs of eah �avour. It turns out that lattie determinations of statiequilibrium quantities an be used to predit this dynamial quantity undersome well-de�ned, and testable, assumptions.As a preparatory example, onsider the eletrons in a metal interatingwith external �elds. In a stati magneti �eld, H, at a �xed temperature,the response is an indued magnetization whose rate of hange with the�eld strength is the magneti suseptibility, �(0). This is a measure of the�utuations of spins in thermal equilibrium. On the other hand, when aneletromagneti wave of frequeny ! propagates through the medium, it isattenuated due to dissipative phenomena whih generate many exitationsin the medium. One an desribe the dissipation through a omplex sus-eptibility �(!), desribing the response of the material to a magneti �eld,H(!) of frequeny ! [27℄. Causality relates the real and imaginary parts of�(!) through a Kramers�Krönig dispersion relation. From the �utuation�dissipation theorem it is possible to dedue that the omplex suseptibilitiesare proportional to the stati suseptibility if the harateristi time sales



Lattie QCD for RHIC 4267of the system are very di�erent from the energy sales dominating the pro-dution proess [28℄.This arries over to strangeness prodution. The rate of prodution ofquark pairs is proportional to a omplex suseptibility, and hene to thestati suseptibility that we measure. This gives�s = 2�s�u + �d = �s�u ; (13)where the suseptibilities are evaluated at the temperature and hemialpotential harateristi of the ollision. In �gure 5 we display our preditionof �s, from the lattie omputations already outlined, and a omparison withvalues extrated from experiments. Further details, inluding a omplete listof all assumptions and ways to test them, an be found in [20℄.
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Fig. 5. The Wróblewski parameter on the lattie ompared with extration fromdata [26℄. The error bars are statistial errors. For the lattie extration thebraketed interval an estimate of possible errors due to extrapolation to T.4. Testing perturbation theoryWe have already seen evidene of non-perturbative e�ets in the susep-tibilities. We extend this observation by investigating non-linear susepti-bilities. We de�ne these as higher derivatives of the free energy�fgh::: = �n logZ��f��g��h : : : ; (14)where the �avour indies f , g, h, et., need not be distint. There is a nieand systemati way of evaluating the derivatives of Z. It begins by noting



4268 S. Guptathat the hemial potentials �f appear in the partition funtion of Eq. (3)only through the quark determinant. Then, we an evaluate the derivativesat by a hain rule starting with� detM��f = detMO(1)f ; �2 detM��f��g = detM hO(1)f O(1)g + ÆfgO(2)f i ; (15)et. The operators O(n)f are de�ned reursively through the relationsO(n)f = �O(n�1)f��f ; (16)and the onrete omputational rules are:O(1)f = TrM 0fM�1f ; �M�1f��f = �M�1f M 0fM�1f : (17)This is the omplete set of rules for writing down the operator expressionsfor the non-linear suseptibilities [29℄.In the ontinuum theory, sine the Dira operator ontains � linearly,seond and higher derivatives, M 00f et., vanish. Every M 0f orresponds toan insertion of 0�f (where �f is a �avour generator) [30℄, and eah M�1fis a quark propagator. Thus the hain rule (Eqs. (15)�(17)) an be writtendiagrammatially. The rules for a suseptibility of order n are:1. Put down n blobs (eah orresponding to anM 0f , i.e., a derivative withrespet to �f ) and label eah with its �avour index.2. Join the blobs by lines (eah representing an M�1f ) into sets of losedloops suh that eah loop ontains only blobs of a single �avour. Countthe number of ways in whih eah topology arises and sum them allup.3. For degenerate �avours for �f = 0, the operator depends only on thetopology and the �avour label on O(n)f is irrelevant. So delete all the�avour indies after the ounting is done.4. The operators an then be labelled only by the topology, whih isspei�ed ompletely by the number of blobs per loop and the numberof suh loops. Thus, eah distint topology is a partition of n.In �gure 6 are shown the topologies that ontribute to the 3rd and4th order suseptibilities. There are learly two types of operators � one



Lattie QCD for RHIC 4269quark-line onneted operator for eah n, and the remaining quark-line dis-onneted. Flavour o�-diagonal operators are neessarily quark-line dison-neted. Sine the free energy is even in eah �f , the odd-order suseptibilitiesvanish for � = 0, just as do the number densities.
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1111 211 22 31 4Fig. 6. The operator topologies whih ontribute to the third and fourth ordersuseptibilities.The rules show that V �uu=T = hO2 +O11i and V �ud=T = hO11i. Dueto �avour symmetry, �uu = �dd. The number of independent physial quan-tities, i.e., suseptibilities, is equal to the number of operators. Hene,the operator expetation values are themselves physial. At third orderV �uud=T = hO111+O12i and V �uuu=T = hO111+3O12+O3i. Flavour sym-metry gives two di�erent physial quantities � �uuu = �ddd and �uud = �uddwhereas there are three di�erent operators. At fourth order, there are threedi�erent physial quantities, whih are �uuuu = �dddd, �uuud = �uddd and�uudd, but �ve di�erent operators. Due to �avour symmetry, the numberof di�erent n-th order suseptibilities is equal to 1 + n=2 for even n and(1 + n)=2 for odd n, whereas the number of distint matrix elements is thenumber of partitions of n. For n > 2 there are more matrix elements thansuseptibilities, and the former annot all be physial. The partiular fourthorder suseptibility�uudd = TV hO1111 + 2O211 +O22i � �2uu � 2�2ud (18)is a umulant related to the Binder variable [32℄ and hene interesting tostudy.For eah n only one of the suseptibilities, that with only a single �avour,ontains a quark-line onneted diagram. All other suseptibilities are ne-essarily quark-line disonneted. We have investigated some of these quark-line disonneted quantities numerially. In dynamial QCD with Nf = 2



4270 S. Guptaat temperatures T � 1:5T, it turns out that �ud=T 2 vanishes to one part in105, and both �uud=T 3 and �uudd=T 4 vanish to better than one part in 103.While the quark-line disonneted diagrams are expeted to vanish inan ideal gas, in QCD they may be onneted by gluon lines, and dressedby all possible gluon and quark loops. In [19℄ ertain power ounting ruleswere developed whih may be applied to operators suh as these: the mainingredient being that every loop with n blobs onnets to ng eletri gluonlines, where ng > 1 and ng + n is even. As a result, hO11i / g6 (atuallyg6 ln g as shown in [19℄ after a detailed omputation). All ontributions tothe third order suseptibility vanish. Of the diagrams ontributing to �uudd,hO22i / g4 and gives the leading perturbative ontribution. At temperaturesof 2T, for Nf = 2, we get hO11i=T 2 � 0:1, and �uudd=T 4 � 0:5. These roughperturbative estimates an easily be modi�ed by an order of magnitude dueto subleading logarithms and numerial oe�ients. Nevertheless, the lattieresults are signi�antly below the perturbative estimates, and temperatureindependent over a range of temperatures where the perturbative estimatesvary by a fator of 5.This �nite temperature analogue of Zweig's rule holds in a region of tem-peratures away from T. Closer to T there is some evidene for non-zerovalues of �ud [4, 11, 21℄ as well as �uudd. Sine these quantities measure de-partures from ideal gas behaviour, they would be very interesting quantitiesto study in the viinity of the ritial point of QCD.It is a pleasure to thank the organizers for a wonderful shool. I wouldalso like to thank my ollaborators, Rajiv Gavai, Pushan Majumdar andJean-Paul Blaizot for disussions.REFERENCES[1℄ L. MLerran, Invited talk at the ICPAQGP 2001, Jaipur, India,hep-ph/0202025; H. Satz, Opening talk at Quark Matter 2002, Nantes,Frane, hep-ph/0209181.[2℄ See http://www.bnl.gov/RHIC/ for all reent results from the experimentsat RHIC.[3℄ K. Kanaya, talk given at the Quark Matter 2002 meeting, Nantes, Frane,hep-ph/0209116.[4℄ S. Gottlieb et al., Phys. Rev. Lett. 59, 2247 (1987).[5℄ M. Asakawa, U.W. Heinz, B. Müller, Phys. Rev. Lett. 85, 2072 (2000); S. Jeon,V. Koh, Phys. Rev. Lett. 85, 2076 (2000); see also the talk by V. Koh, AtaPhys. Pol. B33, 4219 (2002).[6℄ J.I. Kapusta, Finite Temperature Field Theory , Cambridge University Press,Cmabridge 1989.
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