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LATTICE QCD FOR RHIC�Sourendu GuptaDepartment of Theoreti
al Physi
s, Tata Institute of Fundamental Resear
hHomi Bhabha Road, Mumbai 400005, India(Re
eived O
tober 6, 2002)I brie�y introdu
e the methods by whi
h latti
e QCD predi
tions forRHIC are obtained. Next I deal with latti
e determinations of strangenessprodu
tion and event-to-event �u
tuations of 
onserved quantities. I alsopresent a new diagrammati
 method for 
omputing derivatives with re-spe
t to 
hemi
al potentials, and 
on
lude with dis
ussions of some testsof thermal perturbation theory whi
h follow.PACS numbers: 12.38.G
, 12.38.Mh, 25.75.�q, 11.10.Wx1. Introdu
tionHeavy-ion 
ollisions at the RHIC have already given eviden
e for denseand hot matter [1℄, and may lead to a dis
overy of the predi
ted plasmaphase of QCD if su
h predi
tions are made pre
ise enough. In re
ent years
omputations in latti
e �eld theories have be
ome pre
ise enough to 
onfrontphenomenologi
al analyses of experimental results. Among the many inter-esting results from RHIC [2℄ I single out three for 
omment � indi
ations ofearly thermalisation leading possibly to hydrodynami
 �ow, rapid 
hemi
alsaturation of strangeness, and �u
tuations from one event to another. Ea
hof these observations may be related to quantities whi
h are easily 
omputedin �nite temperature latti
e QCD. Flow is strongly 
onne
ted to the equa-tion of state, strangeness to the Wróblewski parameter, and �u
tuations tovarious sus
eptibilities. The equation of state has been adequately dealtwith elsewhere [3℄, and I will restri
t myself to the rest.Interesting thermodynami
al quantities 
an be 
onstru
ted by taking thederivative of the free energy with respe
t to intensive quantities. ConsiderQCD with the intensive variables: temperature, T , and the quark 
hemi
alpotentials, �u, �d, �s (for �avours u, d and s of quarks). The �rst derivative� Presented at the XLII Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, PolandMay 31�June 9, 2002. (4259)



4260 S. Guptaof the free energy, F , with respe
t to one of the 
hemi
al potentials is thequark numberhnf i = ���f F (T; �u; �d; �s) = ���f logZ(T; �u; �d; �s) ; (1)where Z is the partition fun
tion. The se
ond derivatives are 
alled quarknumber sus
eptibilities [4℄�fg = �2��f��gF (T; �u; �d; �s) = �hngi��f = �hnf i��g : (2)In general su
h se
ond derivatives measure mi
ros
opi
 �u
tuations in equi-librium. It has re
ently been dis
overed that these �u
tuations, �fg, maybe dire
tly a

essible in heavy-ion 
ollisions [5℄. Higher derivatives, whi
hwe deal with later, may be 
alled non-linear quark number sus
eptibilities,in analogy with similar quantities in 
ondensed matter physi
s.I will des
ribe information on these derivatives whi
h we have obtainedfrom latti
e simulations of QCD. These are numeri
al estimates of the QCDpartition fun
tion, Z, in the Eu
lidean thermal �eld theory 
ontext:Z(T; �u; �d; �s) = Z dU Yf=u;d;sdetM(mf ; �f ) exp[�S(U)℄ : (3)In this formula S(U) is the gauge part of the a
tion, M is the Dira
 operatorfor quarks of mass mf with 
hemi
al potential �f , and the integration isperformed over all 
on�gurations of gauge �elds. The 
hemi
al potentialsenter the Dira
 operator as if they were 
onstant U(1) gauge �elds (see�gure 1). In the Eu
lidean formulation of �nite temperature �eld theorythe temperature enters indire
tly through the fa
t that the Eu
lidean `time'dire
tion is of extent 1=T [6℄.
1/T
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Nt

A  (x)−i 0

exp(iaA  ) exp(i  )0

µ

µContinuum Latti
eFig. 1. Finite temperature Eu
lidean �eld theory in the 
ontinuum and on a latti
e.



Latti
e QCD for RHIC 4261Sin
e su
h integrals have the usual ultraviolet divergen
es of �eld theory,they 
an be de�ned with a spa
e-time latti
e as a regulator. The spa
ingbetween latti
e sites in all dire
tions is a. The gauge �eld A� asso
iated within�nitesimal 
hanges in position, i.e., ��, is repla
ed by the �nite transporterexp(iaA�). The number of latti
e sites in the time dire
tion is Nt. At �xedtemperature this gives the relationaNt = 1T : (4)This is used to eliminate the ultraviolet 
uto�, � = 1=a from all 
ompu-tations in favour of the physi
al s
ale T . After this is done, the regulatormust be removed by taking �!1 while holding �xed all physi
al quanti-ties. This pro
ess is 
alled �taking the 
ontinuum limit�, sin
e it means thata ! 0 at �xed temperature by taking Nt ! 1 while holding T 
onstant(see �gure 1).Taking the 
ontinuum limit is exa
tly the same as normalizing the �eldtheory. A measurement of the renormalized strong 
oupling at the s
ale of1=a �ows a

ording to the two-loop �-fun
tion of QCD. As a result, good
ontrol over the 
ontinuum extrapolation 
omes from perturbation theory,yielding [7℄ T
�MS = � 1:15 � 0:05 (Nf = 0) ,0:49 � 0:05 (Nf = 2) . (5)This gives us good pre
ision in pinning down the running 
oupling at anygiven temperature sin
e log(T=�MS) = log(T=T
) + log(T
=�MS). T
=�MSis a reasonably easy quantity to measure be
ause there are ni
e de�nitionsof the renormalized QCD 
oupling on the latti
e whi
h show the usual log-arithmi
 s
aling without any power 
orre
tions in a. Other quantities mayhave power 
orre
tions whi
h need to be subtra
ted before the logarithmi
s
aling 
an be seen. While this is tedious, the great advantage of the latti
eis that it allows full 
ontrol over infrared divergen
es whi
h plague �nitetemperature �eld theory.Another fa
t is 
ru
ial. In a latti
e 
omputation we do not determinethe integral in Eq. (3) before taking its derivatives. Instead, we take thederivatives before doing the integral numeri
ally. For example, we noti
ethat for any matrix M(x) where ea
h matrix element may depend on somevariable x � detM(x)�x = detM(x)TrM 0M�1; (6)where M 0 denotes the matrix ea
h term of whi
h is the derivative of the
orresponding term of M . As a result,hnii = 1Z Z dU TrM 0iM�1i Yf Mf exp[�S(U)℄ = hTrM 0iM�1i i : (7)



4262 S. GuptaThe expe
tation value on the right is 
omputed with a Monte Carlo pro
e-dure whi
h simulates the integrand of Eq. (3) [8℄. Su
h a pro
edure worksonly when the integrand is non-negative. Sin
e the Eu
lidean Dira
 operatorwith 
hemi
al potential has 
omplex eigenvalues, the determinant is not pos-itive de�nite, and latti
e Monte Carlo simulations of QCD at �nite 
hemi
alpotential be
ome tremendously hard to do. In all the work reported here wedeal with the sus
eptibilities evaluated at zero 
hemi
al potential. Interest-ingly, they 
an be (and have been) used to 
ontinue latti
e QCD informationto non-zero 
hemi
al potential [9℄.Finally a word about �avour symmetry breaking. If the u and d quarkmasses in nature were equal then �avour symmetry would be broken onlyin ele
tro-weak intera
tions. Latti
e QCD 
omputations are done in thislimit. In reality, however, u and d quark masses di�er. It turns out that thisbreaking is almost irrelevant to thermodynami
s [10℄. The strange quark ismu
h heavier, with a mass not mu
h di�erent from T
. Hen
e it is almostquen
hed 
lose to T
 but should be treated as unquen
hed far above T
.2. Flu
tuations2.1. Latti
e measurementsI will introdu
e some notation. The usual baryon 
hemi
al potential is�0 = (�u + �d + �s)=3. The 
hemi
al potential asso
iated with the isospinquantum number is �3 = (�u � �d)=2. The 
orresponding number densitiesare hn0i = hnu + nd + nsi=3 and hn3i = hnu � ndi=2. These are zerowhenever the 
hemi
al potentials vanish. The sus
eptibilities obtained bytaking double derivatives with respe
t to �0 and �3 are written �0 and �3.These 
an be non-zero even when the 
hemi
al potentials vanish.We re
ently improved upon previous measurements [4,11℄ of these quan-tities in several ways. First, by 
hanging the size of the spatial box withinwhi
h the latti
e 
omputation is done, we have found a range of sizes su
hthat the box has no e�e
t on the physi
al measurement. All our subsequentmeasurements are in this range of box sizes. Se
ondly, unlike previous 
om-putations, we have held the quark mass, m, �xed in terms of physi
al masss
ales su
h as GeV or T
 as we 
hange the temperature. Previous studieshad, for 
onvenien
e, �xed ma = m=TNt, whi
h meant that their quarkmass 
hanged as they s
anned a
ross temperature. Finally, by improvingthe estimators of the tra
es, it turns out that modern 
omputers 
an allowus to redu
e the error bars in some of the sus
eptibilities by over 3 orders ofmagnitude � an e�e
tive gain of a fa
tor of a over million in the statisti
savailable ten years ago when the last 
omputations were performed.For a = 1=4T , i.e., Nt = 4, our simulations with the quen
hed theory(Nf = 0) [12℄ and with two light �avours of sea quarks (Nf = 2) [13℄ showed
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Fig. 2. The sus
eptibility �3 as a fun
tion of T for several di�erent valen
e quarkmasses, mv and latti
e spa
ing a = 1=4T . The lines summarize data for quen
hedQCD while the symbols are for data in Nf = 2 QCD for the mv=T
 values shown.Error bars are mostly smaller than the symbols. The shaded region 
overs a rangeof quark masses appropriate to strange quarks.that the sus
eptibility is quite di�erent from that for the ideal gas, �FFT,on the same latti
e. There is a small e�e
t from unquen
hing the light seaquarks � about 5%. Sin
e this e�e
t is so small, it seems that the e�e
t ofunquen
hing the strange quark should be smaller than the statisti
al errorsin our measurement. By making the valen
e quark heavier we 
an thereforeinvestigate the dynami
s of strange quarks. We will return to this importantpoint later.The quark mass dependen
e of �3 is quite nontrivial and is interestingin itself. It has been known for a long time that �3 
an be written asthe zero-momentum limit of a 
ertain 
omponent of a ve
tor 
orrelationfun
tion at �nite temperature [6℄. Now, the breaking of Lorentz symmetryat �nite temperature due to the sele
tion of a preferred frame (that of theheat bath) means that angular momenta do not ne
essarily label the statesof the system [15℄. One of the most well-known 
onsequen
es of this is thedi�eren
e between ele
tri
 and magneti
 polarizations of gauge bosons at�nite temperature [16℄. In any 
ase, this broken symmetry 
auses �3 tomix with s
alar/pseudo-s
alar representations [13,17℄. Previous work on thelatti
e has seen 
learly that 
orrelations in this 
hannel at high temperaturesdeviate strongly from that of an ideal quark gas [18℄. As the quark massis 
hanged, this 
orrelation fun
tion, the 
orresponding s
reening mass, and�3 all 
hange in response (see �gure 3).The �avour o�-diagonal sus
eptibility �ud turns out to be surprisinglysmall. Our measurements reveal that above T
 the dimensionless number�ud=T 2 is zero to within a few parts in 105. This is a major surprise, be
ause
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M  /TSFig. 3. The dependen
e of �3 and the pseudo-s
alar sus
eptibility, ��, on the
ommon s
reening mass of the s
alar and pseudo-s
alar at T = 1:5T
 and 2T
.Error bars are smaller than the symbols. �� is the zero-momentum pseudo-s
alar
orrelator [14℄.a re
ent 
omputation in resummed �nite temperature QCD shows that thisquantity should be of the order of �3S(2�T ) log �S(2�T ) and predi
ts thatit should be of order 10�3 [19℄. A non-log 
ontribution of order �3(2�T )remains to be 
omputed, but even if this 
an
els the 
omputed term at someT , the range of temperatures over whi
h results are available is large enoughthat a substantial non-zero value would still be seen. This disagreementbetween the latti
e and perturbative 
omputations stands as a puzzle.Below T
 this o�-diagonal sus
eptibility has only been investigated inthe quen
hed theory. It is small but 
learly non-zero (see �gure 4). With
hanging quark mass it is seen to vary roughly as 1=m2� where m� is thepion s
reening mass, showing that su
h �u
tuations are essentially 
arriedby pions. The 
onne
tion between the ve
tor-ve
tor 
orrelator �ud and thepion below T
 
omes from the fa
t that the 
ontribution
π γ0τγ0τ (8)to �ud is allowed at �nite temperature, and therefore, dominates � ex
hange
ontributions purely kinemati
ally. This is another manifestation of thesame physi
s that led to the 
orrelation shown in �gure 3. While �ud is nonvanishing below T
, �3 is 
onsistent with zero.Continuum extrapolation of these results have been attempted [20�22℄.It turns out that �3 measured with staggered Fermions have large power
orre
tions in a. As a result, the ratio �3=�FFT at T = 2T
 de
reases from
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e of �ud on m� at T = 0:75T
 in quen
hed QCD.a = 1=4T to 1=6T but then turns over and approa
hes the limit from be-low. The same limit is obtained by extrapolating �3=T 2 using the usualstaggered Fermions or an improved version, although both these extrapola-tions approa
h the limit more smoothly. The results at 2T
 are in marginaldisagreement with the resummed perturbative 
omputations of [19℄ (i.e.,disagrees at the 1-� level but agrees at 3-�), but be
ome 
ompatible withit at T = 3T
. �ud=T 2 remains 
ompatible with zero at the level of a fewparts in 10�5 in the 
ontinuum limit.2.2. Appli
ations to phenomenologyTwo important qualitative observations emerge from the latti
e 
om-putation. First, that above T
 one has non-vanishing �3 but �ud is zero.Se
ond, that below T
 �3 vanishes and �ud is non-zero. Sin
e there are onlytwo independent types of sus
eptibilities (as I show later), all �u
tuationsof interest are governed by these two and their 
hanges with valen
e quarkmass.Flu
tuations of ele
tri
 
harge, for example, are 
ontrolled by the sus-
eptibility �q = 19 (10�3 + �s + �ud � 2�us) ; (9)whereas baryon number �u
tuations are related to�0 = 19 (4�3 + �s + 4�ud + 4�us) : (10)The following quantitative 
on
lusions 
an be obtained1. For T � T
, sin
e �3 � �s � �ud � �us, we have �q � (11=9)�3 and�0 � (5=9)�3 so that the ratio �q=�0 � 2.



4266 S. Gupta2. When T > T
 but very 
lose to T
, sin
e �3 � �s � �ud � �us, we�nd �q � (10=9)�3 and �0 � (4=9)�3 so that the ratio �q=�0 � 2:5.3. For T < T
 sin
e �ud / 1=m2� and assuming that �us / 1=m2K , sin
e�3 � �s � 0, we expe
t that �q=�0 � 0:25 +O(m2�=m2K).Under the assumptions given above, there are diametri
ally oppositepredi
tions above and below T
�0 < �q < �s (T > T
) ;�0 > �q > �s (T < T
) : (11)The ordering of �u
tuations in baryon number [23℄, 
harge [5℄ and totalstrangeness [24℄ are therefore radi
ally di�erent above and below the phasetransition. 3. Strangeness produ
tionStrangeness abundan
es in heavy-ion 
ollisions at the CERN SPS 
olliderand the RHIC have been analyzed extensively. There is some 
onsensus thatthe observed 
hemi
al 
omposition is that in equilibrium 
lose to T
, andthat it 
annot arise due to hadroni
 res
atterings [25℄. One of the 
entralquantities that has been extra
ted from data is the Wróblewski parameter�s = 2h�ssih�uui+ h �ddi : (12)The averages on the right are de�ned to be the number of primary 
reatedquark pairs of ea
h �avour. It turns out that latti
e determinations of stati
equilibrium quantities 
an be used to predi
t this dynami
al quantity undersome well-de�ned, and testable, assumptions.As a preparatory example, 
onsider the ele
trons in a metal intera
tingwith external �elds. In a stati
 magneti
 �eld, H, at a �xed temperature,the response is an indu
ed magnetization whose rate of 
hange with the�eld strength is the magneti
 sus
eptibility, �(0). This is a measure of the�u
tuations of spins in thermal equilibrium. On the other hand, when anele
tromagneti
 wave of frequen
y ! propagates through the medium, it isattenuated due to dissipative phenomena whi
h generate many ex
itationsin the medium. One 
an des
ribe the dissipation through a 
omplex sus-
eptibility �(!), des
ribing the response of the material to a magneti
 �eld,H(!) of frequen
y ! [27℄. Causality relates the real and imaginary parts of�(!) through a Kramers�Krönig dispersion relation. From the �u
tuation�dissipation theorem it is possible to dedu
e that the 
omplex sus
eptibilitiesare proportional to the stati
 sus
eptibility if the 
hara
teristi
 time s
ales



Latti
e QCD for RHIC 4267of the system are very di�erent from the energy s
ales dominating the pro-du
tion pro
ess [28℄.This 
arries over to strangeness produ
tion. The rate of produ
tion ofquark pairs is proportional to a 
omplex sus
eptibility, and hen
e to thestati
 sus
eptibility that we measure. This gives�s = 2�s�u + �d = �s�u ; (13)where the sus
eptibilities are evaluated at the temperature and 
hemi
alpotential 
hara
teristi
 of the 
ollision. In �gure 5 we display our predi
tionof �s, from the latti
e 
omputations already outlined, and a 
omparison withvalues extra
ted from experiments. Further details, in
luding a 
omplete listof all assumptions and ways to test them, 
an be found in [20℄.
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Fig. 5. The Wróblewski parameter on the latti
e 
ompared with extra
tion fromdata [26℄. The error bars are statisti
al errors. For the latti
e extra
tion thebra
keted interval an estimate of possible errors due to extrapolation to T
.4. Testing perturbation theoryWe have already seen eviden
e of non-perturbative e�e
ts in the sus
ep-tibilities. We extend this observation by investigating non-linear sus
epti-bilities. We de�ne these as higher derivatives of the free energy�fgh::: = �n logZ��f��g��h : : : ; (14)where the �avour indi
es f , g, h, et
., need not be distin
t. There is a ni
eand systemati
 way of evaluating the derivatives of Z. It begins by noting



4268 S. Guptathat the 
hemi
al potentials �f appear in the partition fun
tion of Eq. (3)only through the quark determinant. Then, we 
an evaluate the derivativesat by a 
hain rule starting with� detM��f = detMO(1)f ; �2 detM��f��g = detM hO(1)f O(1)g + ÆfgO(2)f i ; (15)et
. The operators O(n)f are de�ned re
ursively through the relationsO(n)f = �O(n�1)f��f ; (16)and the 
on
rete 
omputational rules are:O(1)f = TrM 0fM�1f ; �M�1f��f = �M�1f M 0fM�1f : (17)This is the 
omplete set of rules for writing down the operator expressionsfor the non-linear sus
eptibilities [29℄.In the 
ontinuum theory, sin
e the Dira
 operator 
ontains � linearly,se
ond and higher derivatives, M 00f et
., vanish. Every M 0f 
orresponds toan insertion of 
0�f (where �f is a �avour generator) [30℄, and ea
h M�1fis a quark propagator. Thus the 
hain rule (Eqs. (15)�(17)) 
an be writtendiagrammati
ally. The rules for a sus
eptibility of order n are:1. Put down n blobs (ea
h 
orresponding to anM 0f , i.e., a derivative withrespe
t to �f ) and label ea
h with its �avour index.2. Join the blobs by lines (ea
h representing an M�1f ) into sets of 
losedloops su
h that ea
h loop 
ontains only blobs of a single �avour. Countthe number of ways in whi
h ea
h topology arises and sum them allup.3. For degenerate �avours for �f = 0, the operator depends only on thetopology and the �avour label on O(n)f is irrelevant. So delete all the�avour indi
es after the 
ounting is done.4. The operators 
an then be labelled only by the topology, whi
h isspe
i�ed 
ompletely by the number of blobs per loop and the numberof su
h loops. Thus, ea
h distin
t topology is a partition of n.In �gure 6 are shown the topologies that 
ontribute to the 3rd and4th order sus
eptibilities. There are 
learly two types of operators � one



Latti
e QCD for RHIC 4269quark-line 
onne
ted operator for ea
h n, and the remaining quark-line dis-
onne
ted. Flavour o�-diagonal operators are ne
essarily quark-line dis
on-ne
ted. Sin
e the free energy is even in ea
h �f , the odd-order sus
eptibilitiesvanish for � = 0, just as do the number densities.
111 21 3

1111 211 22 31 4Fig. 6. The operator topologies whi
h 
ontribute to the third and fourth ordersus
eptibilities.The rules show that V �uu=T = hO2 +O11i and V �ud=T = hO11i. Dueto �avour symmetry, �uu = �dd. The number of independent physi
al quan-tities, i.e., sus
eptibilities, is equal to the number of operators. Hen
e,the operator expe
tation values are themselves physi
al. At third orderV �uud=T = hO111+O12i and V �uuu=T = hO111+3O12+O3i. Flavour sym-metry gives two di�erent physi
al quantities � �uuu = �ddd and �uud = �uddwhereas there are three di�erent operators. At fourth order, there are threedi�erent physi
al quantities, whi
h are �uuuu = �dddd, �uuud = �uddd and�uudd, but �ve di�erent operators. Due to �avour symmetry, the numberof di�erent n-th order sus
eptibilities is equal to 1 + n=2 for even n and(1 + n)=2 for odd n, whereas the number of distin
t matrix elements is thenumber of partitions of n. For n > 2 there are more matrix elements thansus
eptibilities, and the former 
annot all be physi
al. The parti
ular fourthorder sus
eptibility�uudd = TV hO1111 + 2O211 +O22i � �2uu � 2�2ud (18)is a 
umulant related to the Binder variable [32℄ and hen
e interesting tostudy.For ea
h n only one of the sus
eptibilities, that with only a single �avour,
ontains a quark-line 
onne
ted diagram. All other sus
eptibilities are ne
-essarily quark-line dis
onne
ted. We have investigated some of these quark-line dis
onne
ted quantities numeri
ally. In dynami
al QCD with Nf = 2



4270 S. Guptaat temperatures T � 1:5T
, it turns out that �ud=T 2 vanishes to one part in105, and both �uud=T 3 and �uudd=T 4 vanish to better than one part in 103.While the quark-line dis
onne
ted diagrams are expe
ted to vanish inan ideal gas, in QCD they may be 
onne
ted by gluon lines, and dressedby all possible gluon and quark loops. In [19℄ 
ertain power 
ounting ruleswere developed whi
h may be applied to operators su
h as these: the mainingredient being that every loop with n blobs 
onne
ts to ng ele
tri
 gluonlines, where ng > 1 and ng + n is even. As a result, hO11i / g6 (a
tuallyg6 ln g as shown in [19℄ after a detailed 
omputation). All 
ontributions tothe third order sus
eptibility vanish. Of the diagrams 
ontributing to �uudd,hO22i / g4 and gives the leading perturbative 
ontribution. At temperaturesof 2T
, for Nf = 2, we get hO11i=T 2 � 0:1, and �uudd=T 4 � 0:5. These roughperturbative estimates 
an easily be modi�ed by an order of magnitude dueto subleading logarithms and numeri
al 
oe�
ients. Nevertheless, the latti
eresults are signi�
antly below the perturbative estimates, and temperatureindependent over a range of temperatures where the perturbative estimatesvary by a fa
tor of 5.This �nite temperature analogue of Zweig's rule holds in a region of tem-peratures away from T
. Closer to T
 there is some eviden
e for non-zerovalues of �ud [4, 11, 21℄ as well as �uudd. Sin
e these quantities measure de-partures from ideal gas behaviour, they would be very interesting quantitiesto study in the vi
inity of the 
riti
al point of QCD.It is a pleasure to thank the organizers for a wonderful s
hool. I wouldalso like to thank my 
ollaborators, Rajiv Gavai, Pushan Majumdar andJean-Paul Blaizot for dis
ussions.REFERENCES[1℄ L. M
Lerran, Invited talk at the ICPAQGP 2001, Jaipur, India,hep-ph/0202025; H. Satz, Opening talk at Quark Matter 2002, Nantes,Fran
e, hep-ph/0209181.[2℄ See http://www.bnl.gov/RHIC/ for all re
ent results from the experimentsat RHIC.[3℄ K. Kanaya, talk given at the Quark Matter 2002 meeting, Nantes, Fran
e,hep-ph/0209116.[4℄ S. Gottlieb et al., Phys. Rev. Lett. 59, 2247 (1987).[5℄ M. Asakawa, U.W. Heinz, B. Müller, Phys. Rev. Lett. 85, 2072 (2000); S. Jeon,V. Ko
h, Phys. Rev. Lett. 85, 2076 (2000); see also the talk by V. Ko
h, A
taPhys. Pol. B33, 4219 (2002).[6℄ J.I. Kapusta, Finite Temperature Field Theory , Cambridge University Press,Cmabridge 1989.



Latti
e QCD for RHIC 4271[7℄ S. Gupta, Phys. Rev. D64, 034507 (2001).[8℄ Noti
e that two 
on
eptually di�erent quark masses appear in Eq. (7). Thevalen
e quark mass, mv, appears in the operator whose expe
tation value ismeasured � the tra
e in this 
ase. The sea quark mass, m, appears in themeasure, i.e., the determinants.[9℄ Z. Fodor, S.D. Katz, Phys. Lett. B534, 87 (2002); J. High Energy Phys. 03,014 (2002); C.R. Allton et al., Phys. Rev. D66, 074507 (2002); P. de For
rand,O. Philipsen, Nu
l. Phys. B642, 290 (2002); M. D'Elia, M.-P. Lombardo,hep-lat/0205022.[10℄ R.V. Gavai, S. Gupta, hep-lat/0208019.[11℄ R.V. Gavai et al., Phys. Rev. D40, 2743 (1989); C. Bernard et al., Phys. Rev.D54, 4585 (1996); S. Gottlieb et al., Phys. Rev. D55, 6852 (1997).[12℄ R.V. Gavai, S. Gupta, Phys. Rev. D64, 074506 (2001).[13℄ R.V. Gavai, S. Gupta, P. Majumdar, Phys. Rev. D65, 054506 (2002).[14℄ S. Gupta, Phys. Lett. B288, 171 (1992); G. Boyd et al., Z. Phys. 64, 331(1994).[15℄ B. Grossman et al., Nu
l. Phys. B417, 289 (1994); P. Arnold, L.G. Ya�e,Phys. Rev. D49, 3003 (1994); S. Datta, S. Gupta, Nu
l. Phys. B534, 392(1998).[16℄ H.A. Weldon, Phys. Rev. D26, 1394 (1982).[17℄ S. Gupta, Phys. Rev. D60, 094505 (1999).[18℄ C. DeTar, J.B. Kogut, Phys. Rev. Lett. 59, 399 (1987); A. Go
ks
h et al.,Phys. Lett. B205, 334 (1988); K.D. Born et al., Phys. Rev. Lett. 67, 302(1991); T. Hashimoto et al., Nu
l. Phys. B400, 267 (1993); P. de For
randet al., Phys. Rev. D63, 054501 (2001); R.V. Gavai et al., Phys. Rev. D65,094504 (2002); E. Laermann, P. S
hmidt, Eur. Phys. J. C20, 541 (2001).[19℄ J.-P. Blaizot, E. Ian
u, A. Rebhan, Phys. Lett. B523, 143 (2001);hep-ph/0206280.[20℄ R.V. Gavai, S. Gupta, Phys. Rev. D65, 094515 (2002).[21℄ C. Bernard et al., hep-lat/0209079.[22℄ R.V. Gavai, S. Gupta, in preparation.[23℄ Zi-Wei Lin, C.M. Ko, Phys. Rev. C64, 041901 (2001); D. Bower, S. Gavin,Phys. Rev. C64, 051902 (2001).[24℄ S. Jeon et al., Nu
l. Phys. A697, 546 (2002); M. Abdel-Aziz, S. Gavin,nu
l-th/0209019.[25℄ P. Braun-Munzinger et al., Phys. Lett. B465, 43 (1999); J. Letessier, J. Rafel-ski, Nu
l. Phys. A661, 97
 (1999); F. Be
attini et al., Phys. Rev. C64, 024901(2001); U. Heinz, J. Phys. G 25, 263 (1999); R. Sto
k, Phys. Lett. B456, 277(1999).[26℄ J. Cleymans, hep-ph/0201142.[27℄ Kapusta's 
omputation of �q as the self-energy of a photon propagating in theplasma [6℄, is pre
isely the stati
 (! ! 0) limit 
omputation.



4272 S. Gupta[28℄ P.C. Martin in Many Body Physi
s , Pro
eedings of the 1967 Les Hou
hesS
hool, Eds. C. DeWitt, R. Balian, Gordon and Brea
h, New York 1968;W. Marshall, S.W. Lovesey, Theory of Thermal Neutron S
attering , OxfordUniversity Press, London 1971; A.L. Fetter, J.D. Wale
ka, Quantum Theoryof Many-parti
le Systems , M
Graw-Hill, New York 1971.[29℄ Similar expansions and diagrammati
 rules 
an also be written for other quan-tities, su
h as the 
hiral 
ondensate, h �  i = TrM�1, and hadron propagators.[30℄ The non-linear terms in �f on the latti
e are needed only for divergen
e 
an
el-lation (see [31℄), and have no e�e
t on the physi
s in the subsequent dis
ussion.[31℄ R.V. Gavai, Phys. Rev. D32, 519 (1985).[32℄ A. Billoire et al., Phys. Rev. B42, 6743 (1990); K. Binder et al., Phys. Rev.B34, 1841 (1986).


