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I briefly review how measurements in rare kaon decays and in hyperon
decays will help unravel the CKM mixing angles. I then discuss recent
work in selected kaon decay modes and in estimates for CP violation in
non-leptonic hyperon decay.
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1. Introduction

As we have already seen in the lectures by Jarlskog [1], the CKM matrix
is a unitary 3 x 3 matrix with four independent parameters [2]. In the com-
monly used, approximate, parameterization of Wolfenstein [3] it is written
as,

Vud Vus Vub
vV = Vea Ves Vb (1)
Vie Vis Vi
1—22%/2 A AX3(p — in)
Val|l =) 1—22/2 AN : (2)

AN(1 —p—in) —AN? 1

Of course, the parameter A ~ V,, is extracted from |AS| = 1 transi-
tions, both from semi-leptonic kaon decay K — mwer and from semi-leptonic
hyperon decay A — pev [4]. The parameter A ~ V,;/)\? is extracted from
B decay, and the other two parameters p and n which give information on
Vup and Vi are the focus of intense studies to test the CKM structure in

* Presented at the XLII Cracow School of Theoretical Physics, Zakopane, Poland
May 31-June 9, 2002.

(4283)



4284 G. VALENCIA

the standard model. The latest numbers quoted by the Particle Data Book
are [5],

p = 0.2240.10,
n = 0.3540.05. (3)

Since these two parameters involve ub or td transitions, their appearance
in |[AS| = 1 processes must arise at the one-loop level. This can be easily
seen from the one-loop flavor-changing neutral current in the |AS| = 1
sector, schematically shown in the diagrams of figure 1, where V;4 is seen to
enter via the top-quark intermediate state.

Fig.1. One-loop diagrams responsible for |AS| = 1 transitions in the Standard
Model in channels with a lepton anti-lepton pair.

In figure 2 we illustrate how some of the rare kaon decays generated by
standard model diagrams as in figure 1 contribute to the knowledge of the
unitarity triangle. In particular, I show schematically the usual unitarity tri-
angle (dashed) and the contributions that kaon measurements could provide
(solid).
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It is convenient to divide the kaon decay modes into the following three
types.

e There are extremely clean modes with small theoretical uncertain-
ties. They always involve a vv pair in the final state. The two
most commonly discussed modes of this type are K+ — 77vi and
K1, — 7% [6,7]. Modes with additional pions in the final state have
also been discussed in the literature [8].

As illustrated in figure 2, K™ — 7" v provides a measurement of the
diagonal of the solid triangle. Within the standard model one finds [7],

B(K* = rtwp) 2 1.0 x 10104 (n* + (po — p)?), (4)

where py =~ 1.4 is a parameter that roughly speaking measures the
importance of charm as an intermediate state [7].

The experimental status of this mode is that BNL 787 has seen two
events from which they derive [9]

B(KT = 1t uD)exp = (1.5775:55) x 10710 (5)

Another mode of this type is K1, — 7%v7 which measures the vertical
side of the solid triangle, or the CP-violating phase 5. Within the
Standard Model the expectation is [7]

B(Ky, — 7%p) =~ 4.1 x 107104492, (6)

This mode has not been seen experimentally although there are a cou-
ple of proposals that may eventually measure this mode. There is an
upper bound from KTeV [10] B(Ky, — 7%v7) < 5.9 x 10~7 and a theo-
retical upper bound derived from the charged mode and a minimal set
of assumptions about the nature of the CP-violating interactions [11]
B(Ky, — mv) < 1.7 x 107°.

e The second type consists of modes with charged leptons in the final
state. These modes suffer from long distance electromagnetic effects
and are less clean theoretically. FExamples of this kind are Ki, —
T~ which could measure the horizontal side of the solid triangle in
figure 2 if one could subtract the long distance effects [12]. A second
example is K1, — mete” which could measure the parameter 7 if
its different components can be un-tangled. In my talk T will discuss
the CP conserving component of the latter, which proceeds via a two-
photon intermediate state. I will also discuss in detail the related mode
K1, — 7%yy with emphasis on recent theoretical and experimental
developments.
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e Finally, the purely hadronic modes such as K — 7w from which the
parameter € is extracted, suffer from large theoretical uncertainties
associated with non-perturbative QCD effects. In my second talk T will
discuss A — pm~ in connection with the efforts by Fermilab experiment
E871 to observe CP violation in hyperon decay. This mode is also
plagued with large theoretical uncertainty.

2. Ky, = w0y

This reaction is interesting for two reasons. One is that it mediates a CP
conserving background to K1, — 7% Te™ and thus it must be understood if
one hopes to extract useful short distance information from the latter. A de-
tailed discussion of this can be found in the many reviews on the subject [6].
As I will discuss in this talk, the mode K7, — 7%y has two invariant ampli-
tudes that roughly correspond to the photon pair being in an .S or D wave.
The state with two-photons in an S-wave leads to a negligible CP conserving
K1, — n%te™, proportional to m?2, whereas the state with two-photons in
a D-wave can yield a sizable CP conserving K1, — 7’e*e~. This provides a
strong motivation for a detailed study of the K, — 7%y~ spectrum. A sec-
ond reason why this reaction is of interest is as a test of chiral perturbation
theory which makes an unambiguous prediction at leading order (p*).

The framework of x¥PT has proved extremely useful for analyzing low en-
ergy processes involving the pseudoscalar meson octet and photons. At low
energies, the strong and electromagnetic interactions of these particles can
be adequately described with a chiral Lagrangian with up to four derivatives.
The most general chiral Lagrangian to this order has been written down by
Gasser and Leutwyler [13]. It consists of two terms at leading order, O(p?):

2 2
L = Z”Tr(DMED“ET) + Bog T (M E + M. (7)

M is the diagonal matrix (m,,, mg, ms), and the meson fields are contained
in the matrix X' = exp(2i¢/ fr) with:

N ESNCRRING wt Kt
¢ = —% T -m°/V2+n/V6  K° (8)
V2 K- KO —2n/v/6

X transforms under the chiral group as ¥ — RXL!. For processes in which
photons are the only external fields the covariant derivative is given by,

DY = 0,5 —ieA,[Q, %] (9)
and @ is the diagonal matrix (—2/3,1/3,1/3).
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At next to leading order, O(p*), there are ten new operators [13], none
of which contributes to K1, — 7%y at order p*.

For |AS| = 1 processes we also need the weak interactions. In the
standard model, the dominant |AS| = 1 operators in the effective weak
Hamiltonian transform as (8, 1r) under chiral rotations. We can write a
chiral representation for operators with this transformation property, and
once again organize them in terms of the number of derivatives. The lowest
order Lagrangian constructed in this way contains two derivatives [14]:

L) = 2RV, V| gs Tr(Ae L L) (10)

Gr |
V2
where L, = if%EDMET. The constant is fit from K — 77 decays, gg ~ 5.1.
It is conventional to use the combination of constants,

Gs = ——|VuaViilgs = 9.1 x 1078 GeV 2, (11)

Gr |
V2

The situation at next to leading order is much more complicated: a very
large number of operators, and therefore of unknown coupling constants, has
been identified [15]. However, one can explicitly check that none of these
contributes at tree-level to Kj — mvy. This implies that the one-loop
result has to be finite as there are no counterterms at order p* that can be
used to absorb divergent terms. Explicit calculation involving diagrams such
as the one shown in figure 3, confirms that the one-loop expression is finite.
For this reason there is a unique, parameter free, lowest order prediction for
this mode from chiral perturbation theory.

KT n Y

10

Fig.3. Example of one-loop diagram generating Ky — 7°vyy at order p*. The
X indicates a lowest order weak vertex and the circle indicates a lowest order
meson—photon vertex.

It has been known since the first experimental results appeared [16] that
lowest order (p?) chiral perturbation theory is not sufficient to explain simul-
taneously the observed rate and spectrum and that the failure is significant.
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For this reason higher order corrections were incorporated into the theo-
retical prediction early on. For some time now, it has become standard to
use a theoretical description which incorporates certain non-analytic terms
at next to leading order (p®) [17,18], as well as one parameter, a;, [18].
This parameter arises in vector meson dominance models for this decay [19],
but it is not the only one. Instead, at order p® the amplitude is described
by three independent parameters: «;, a, and § in the notation of Cohen
et al. [18].

The most general form of the K — myy amplitude contains four in-
dependent invariant amplitudes A, B, C' and D and can be found in the
literature [20]. For the case of K, — 7%y, and in the limit of CP conser-
vation, only two of these amplitudes come into play:

MUEL(pE) = 2@ )r(@) = ey @) @)

B
A (el —q1 -2 9") + 2m—2 (pr - q1 5%
K

+pr - @24 P — @1 - PP — Pr i PK - g2 g™) ] : (12)

In chiral perturbation theory with terms of order up to p®, the amplitudes
A and B take the form [18]:

A(z) = 4F <i) @) |y F@ ey

z

X m T
2 2
+§log—g}+ﬁ, (13)
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where we use the standard kinematic variables

(g1 + g2)° Pr - (1 — q2)
M2 , Y= M2 ) (14)
K K

and A, = 4rf; =~ 1.17 GeV.

This form for the two amplitudes does not correspond to a complete
calculation in chiral perturbation theory at order pb. It contains the com-
plete one-loop calculation of order p* [21] and two types of terms of order
p%. The first type consists of the non-analytic terms in Eq. (13) that mul-
tiply the factors as and aq(z). The inclusion of these terms is inspired by
dispersion relations, and they originate in p* corrections to the K — 37 am-
plitudes [15,22]. The relevant constants which enter a; and ay are extracted
from an analysis of K — 37 data. The second type of term consists of the
analytic terms that arise from tree-level contributions from order pS chiral
Lagrangians. From the analysis of K — 37 in Ref. [15], we have

ay(z) = 0.38 4 0.13Y; — 0.0059Y,

(z—r2 -1
Yo = g 37
’rﬂ'

with 7 = my/Mg. The loop form factors are given by [18§]

4 (1 -\
F(z) = 1— — |arcsin 5\/5 ) z < 4,
z
2
1 1-/1-4
= 1+-{log \/7/Z+i7r : z 24,
Ry
1 2 1
R(z) = _64_; 1_\/marcsin <§\/E):|7 z < 4,
1 2 1—-14 1-+41-4
e VITER (VTR L)L,
6 =z z l—i—m

The three parameters a2 and 3 are related to the three Lorentz invari-
ant couplings that can be derived from a chiral Lagrangian at order p®. In
the following form it is easy to see that there are three possible couplings,

L= 47

<01KL7TOF’“’FW + %WKL(?MTOFWFW
K

+%8QKL8/3WOFQ”FH5) , (16)
K
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they are related to the parameters we are using by,

C
Oél — _202+53,
Qy = 461-1—2624—653,
= —cs. (17)

In the analysis of Ref. [18] the three unknown constants were fixed in
terms of the contribution they receive from vector-meson exchange, supple-
mented with a minimal subtraction Ansatz:

oy = —4av,
oy = 12ay, — 0.65,
B = —8ay —0.13, (18)

and this form has been used, for example, by KTeV [23] to fit their data with
ay, = —0.72£0.05+0.06. In Eq. (18) 8 is no longer independent from a »;
therefore it is clear that this Ansatz introduces model-dependent correlations
between the B amplitude (the one responsible for a large CP-conserving
K1, — n%~e7), and the A amplitude which dominates the K1 — w07y
mode, but which does not contribute significantly to Ki, — m’ete™.

2.1. Resonance models for ay,as and B

As mentioned before, the contribution of vector meson exchange, through
diagrams such as that in figure 4 can be parameterized by the constant
ay. The constant ay has been calculated in several models (there is no

Fig.4. One-loop diagrams responsible for |AS| = 1 transitions in the Standard
Model.

unique way to include vector mesons in the weak effective Lagrangian). The
simplest ones are those that consider only pole diagrams such as figure 4.
There also are possible direct weak terms, and a model to compute these
direct counterterms is the “weak deformation model” of [19]. For this mode,
the model predicts the direct weak counterterm contribution to ay to be
twice as large as that from the pole terms and to have the opposite sign.
The net effect is thus to change the sign of the constant ay calculated from
pole diagrams alone. The chiral quark model is a different type of model
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that can also be parameterized by ay alone [24]. The couplings that occur
at order p® in a vector meson dominance model have been obtained in [19].
They are of the form

Ggopy 4ay,

Ly =
V7 4 M2

<aaKLaaw0FWFW + 28aKL8ﬁw°F““FH5> (19)

resulting in Eq. (18) (aside from small additional constants which appear in a
particular regularization scheme for the loop amplitudes [18]). Although this
pattern is a firm prediction of vector meson dominance models, a specific
value for ay, is not. For example, in Ref. [19] the values a;, = 0.32 or
a;; = —0.32 can be obtained depending on whether one uses the so called
“weak deformation model” or not. This is just another way of saying that the
concept of “vector meson dominance” is not uniquely defined for the weak
interactions. In addition, phenomenological treatments of vector mesons
such as those of Ref. [25] include effects from n — 7' mixing, which are
formally of higher order, but which result in significantly different “vector
meson” contributions to Ky, — 7%y~. It is worth mentioning that a quark
model estimate of the parameters ay, a, and (3 [24] yields the same pattern
as in Eq. (18) with ay, = (N./27)g% (M3% /m?) in the notation of [24].

More recently, possible contributions from intermediate scalars and ten-
sors have also been discussed. It is found that the tensor meson f5(1270),
in particular, can contribute at a level comparable to that of vector mesons
and yet produce a different pattern for the three constants [26,27]. The
effect of scalar resonances near 1 GeV turns out to be small [28]. The effect
of a broad scalar resonance in the vicinity of 500 MeV would be important
and several authors have considered this term. We prefer to include it in a
different way, through a phenomenological pion re-scattering that comprises
the additional p® contributions. The effect of resonances such as the fy(980)
can be estimated as follows. First take the simplest form for the scalar—pion
and scalar-photon interactions [29],

Ls = g:STr <D“2D“ET) + Mg SFIE, . (20)

The coupling g, can be determined from the decay width of the scalar
into two pions. Adding the charged and neutral modes we obtain

S —nn) = o f4 V1—4r2, 7rMS <1 —27’7r5+4r7r5) (21)

with rps = M;/Mg. If we identify the scalar meson with the f;(980),
and use the particle data book figures B(fy — nTn~) = 2/3, B(fo —
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707%) = 1/3, [5] and the NOMAD result I'(fy) = 35 4+ 12 MeV [30] we find
gr ~ £5 MeV (we cannot decide the sign ambiguity from the experimental
rates).

The width for the scalar—-meson decay into two photons allows us to
determine g,. We find for the width

* gy M3

i (22)

(S —y) = <%—M)

4

If again we identify the scalar with the fy(980) and use the particle data book

value I'(fo — vy) = 0.397019x1073 MeV [5], we find g, ~£3.9x 10" 3MeV .

Collecting these results we finally obtain for the contribution of the scalar
f0(980) to K1, — w0y (see figure 5):

M2
o = —y = 169W97F§ ~ 40.08, f=0. (23)
S

(a) (b)
Fig.5. Scalar— and tensor-meson resonance Feynman diagrams contributing to
K1, — 7%yy. The dots in (a) and (b) represent flavor-changing mass-insertions in
the incoming and outgoing particles, respectively [20, 21, 57].

In a similar manner we can determine the contribution from a tensor me-
son. A simple look at the low energy data for the reaction yy — 7970 [31]
suffices to motivate the potential importance of the f2(1270) for our ampli-
tudes through diagrams such as those in figure 5. Following Ref. [29] we
write the lowest order couplings of a tensor meson 7}, to pions and photons
as

Lp = hyT"Tr <DMZDVET ) + Ojf—WMhWT“”FWFIf‘ . (24)
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For the inclusive width of the tensor meson into two pions, and following
Ref. [32] for the description of the spin 2 states, we obtain

3h2 M3 4m2\ %/
r(r =TT : 25
=) = Shom < M3 ) (%)
For the decay width of the tensor meson into two photons we find
2 h2 M3
DT —yy) = (2EM ) 2T (26)
47 807

Identifying the tensor meson with the f9(1270) and using the particle data
book values for mass and partial widths [5], we obtain h; ~ £40 MeV and
hy ~ +0.03 MeV~'.

The tensor (f2) contribution to the parameters oy, o, and § can be read
from the interaction that results after the tensor meson has been integrated
out

_ Gyagy 4hehy

L
T 4 M2

2
<§aaKLaaw0FWFW + 2aaKLaﬂw°Fa#Fﬂﬁ) . (27)

The resulting contributions are:

4 2
o, = —=hph,—5& ~ F0.25,
37 MZ
28 M3
ay = —heh,—5 ~41.7,
37T M2
M2
B = —Shthﬁlg ~FL15. (28)
T

Table T summarizes the resonant contributions to the three parameters.

TABLE 1

A comparison of parameters for K1, — 7%y for various resonant contributions.

Vector (ay = £+ 0.32) Scalar Tensor
a F12 £008 F025
s 136 T008 +1.7
8 F 24 0 F 15
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2.2. The KTeV data

We now proceed to fit the KTeV results to our formulae. In figure 6 we
reproduce the data from Ref. [23] as can be read from their published paper.
We superimpose on the data the best fit we obtain in terms of the parameter
ay as a solid line. Our fit gives a;r = —0.95 with a x?/d.o.f. = 46/27, which
corresponds to

B =1T5. (29)

125

100

75

50

Events/0.01 GeV/c?

25

0.0 0.1 0.2 0.3
m,, (Gev/c?)

o
IS

Fig.6. Two different fits to the data from Ref. [23], as explained in the text. The
solid line is a one-parameter fit corresponding to Eq. (29), the dashed line is the
three-parameter fit shown in Eq. (30).

Notice that our value for ay, is not the same value quoted by Ref. [23]
because we do not have access to the raw data and hence we have not taken
into consideration any background or detector issues. Nevertheless, we feel
that it is fair to compare this fit to our best three-parameter fit obtained
in the same way. This one is presented in figure 6 as the dashed line, and
corresponds to
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Q) = 07
OQ - 17,
B = —5. (30)

For this fit we obtain a x2/d.o.f. = 37/25, slightly better than Eq. (29).
Clearly it is up to the experiments to present a complete best fit to the data
using the general form, Eqgs. (12), (13), and taking into consideration all
experimental issues. The KTeV fit was obviously performed using the shape
of the distribution and ignoring the overall normalization. This is evident in
that the theoretical rate corresponding to the best fit value of ay disagrees
with the measured rate. Much more instructive is a comparison with NA48
data that follows.
2.3. The NAJ8 result

The recently released NA48 data [33] is significantly different from the
KTeV data and leads to different conclusions regarding the CP-conserving
contribution to Kj, — n%e*e™ [34,35] as we will see below. Unlike KTeV,
NA48 has presented their data in a form that allows us to directly compare
our general fit to the usual VMD fit. This allows us to show that whereas it is
possible to fit the decay distribution dI'/dm., equally well with the general
and VMD approaches, only the former is capable of fitting simultaneously
the decay distribution and the total decay rate.

2.4. Fitting the shape of the dI'/dm.,, distribution

NA48 has recently released their result for Ky, — 7%yy [33]. They an-
alyze their data using Eq. (13) with the VMD assumption, and they find
ay, = —0.46. For our fits we use the information in Table 2 of Ref. [33],
which gives the number of unambiguous events, estimated background and
acceptance for each 20 MeV bin in m.,.

We begin our analysis with a fit to the shape of the dI"/dm., distribution,
ignoring the measured branching ratio, to compare with the fit performed
by NA48 (this is also what was done by KTeV). We calculate the number of
events predicted in each bin as

N, =N [L /dm,w <£>N(KL)] Acceptance; + Background; , (31)
Trey Ji Ay

where N is a normalization chosen to match the total number of events and

N(K1,) = 23.9 x 10° is the number of decays in the fiducial volume. The

arbitrary normalization allows us to fit the shape of the distribution while

ignoring the overall rate.
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We use data from 17 out of 20 bins presented in Table 2 of Ref. [33]. We
exclude two bins in the m,, region near the 7° mass which do not have any
events due to kinematic cuts, and we also exclude the last bin with no events
because it lies outside the physical region. We perform a least squares fit
using Poisson statistics for the bins with small number of events following
Ref. [36].

With this procedure, and the VMD Ansatz, we reproduce approximately
the NA48 best fit. We obtain a;, = —0.466 with a x?/d.o.f. = 15.1/16 [27].
We show this result in figure 7 where we superimpose our best three-parameter
fit which has a x2?/d.o.f. = 12.4/14 [27]. The two fits are nearly identical as
can be seen in the figure and they are indistinguishable statistically. Never-
theless, when they are both expressed in terms of the three general parame-
ters one can see they correspond to very different solutions. For the general
fit,

a, =451,  ay,=-406, B =093; (32)
whereas for the VMD fit (in terms of ay,),

o, =186, ay=-624, B=2360. (33)

For the case of the three-parameter fit we find that «; and «, are corre-
lated as was discussed in Ref. [26], so that there are many other fits with a
X2 near the minimum for the same value of f3.

As stated above, neither one of these fits reproduces the experimental
rate, B(K1, — 7%y) = (1.36 & 0.03 4 0.03) x 10°% [33]. The theoretical
branching ratio predicted for a;, = —0.466 (the NA48 value) is B(Kj, —
71%97) = 1.1 x 1075, and the one predicted for the three parameters in
Eq. (30) is B(Ky, — n%yy) = 1.0 x 1075.

2.5. Simultaneous fit to the shape of the dI'/dm.. distribution
and to the decay rate

To obtain a fit that reproduces the observed branching ratio we proceed
as in Eq. (31) but removing the arbitrary normalization,

1 dr

N; = [— /dmw <—)N(KL)] Acceptance; + Background;, (34)
Ik, Ji Ay

with the same notation of Eq. (31). We first attempt this fit with the VMD

Ansatz and find that it is impossible to obtain a good fit. Our least squares fit
using the VMD Ansatz occurs for a;, = —0.64 and has a x?/d.o.f. = 69.7/16.
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0 0
Ky » myy
T R e B S B
500 - ———- a; = 4.51, ay = —4.06, B = 0.93 —
i a, = —4ay = 1.86 ]
200 = a = 12ay—0.65 = —6.24 ]
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g 300 — —
3 i ]
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3 i ]
100 — —
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m,, (GeV/c?)

Fig. 7. Two different fits to the data from Ref. [33], as explained in the text. The
solid line is a one-parameter fit corresponding to Eq. (33), the dashed line is the
three-parameter fit shown in Eq. (32).

We show this result as the solid line in figure 8. The implied branching ratio
is B(Ky1, — m%y7y) = 1.27 x 107% and a;, = —0.64 corresponds to

o =256, ay=-832, [=499. (35)

Our best three parameter fit, on the other hand, has a x?/d.o.f. =
15.8/14 and is shown as the dashed line in figure 8. It implies a branching
ratio B(K1, — 7%yy) = 1.35 x 1075 in good agreement with the measured
one. The parameters for this best fit are,

a; =—-259, a,=-288, B=057. (36)

We conclude from figure 8 that the VMD Ansatz cannot reproduce the shape
of the spectrum and the total decay rate simultaneously, but that the general
formula, Eq. (13) does accommodate both. We hope KTeV implements the
general analysis when they release their new result.

We now consider the dependence of our results on the parameter a, that
appears in the B amplitude. This parameter is extracted from K — 37
decays and up to now we have used the value a, = 6.5 [18]. However,
the value of this parameter has a large uncertainty, of order ~ 35%. For
example, from the recent analysis of Ref. [37] one extracts a, = 6.8 £ 2.4.
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Fig.8. A simultaneous fit to the shape of dI'/dm,, and to the decay rate. The
solid line is a one-parameter fit corresponding to Eq. (35), the dashed line is the
three-parameter fit shown in Eq. (36).

The analytic form for the B amplitude in Eq. (13) clearly indicates that
a, and ( are correlated and this is confirmed by our numerical study. It is
possible to obtain many equally good fits to the data with different values of
as and (. For example if we take the central value from Ref. [37] and 1-sigma
deviations from it, we find good fits to the shape and spectrum with the
values listed in Table II. This is not possible with the ay parameterization,
where we cannot find a good fit for any of these values of as.

TABLE 1II
Three-parameter best fits for three different values of as, corresponding to its cen-
tral value from Ref. [37] and its 1-sigma deviations.

a, | o a, B | x*/d.o.f.
6.8 | —2.82 | —2.23 | -0.03 | 16.2/14
44| -2.80 | -1.31 | -0.73 | 16.0/14
9.2 | 2.72 | -3.86 | 1.32 15.9/14
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2.6. CP-conserving contribution to Ki, — mlete”

The estimate of this contribution starts with the absorptive contribu-
tion from the on-shell two-photon intermediate state to K1, — nlete™, as
depicted in figure 9.

+ e

Fig.9. Contribution from the on-shell two-photon intermediate state to
BCP(KL — 7T0€+€_).

The above contribution is not the full absorptive part since there is a
further cut due to on-shell pions. Moreover, the full CP-conserving ampli-
tude includes a contribution from the dispersive part of the amplitude, with
off-shell photons (and pions). The general form of the amplitude is

Mcp(Kr, — nlete”) = GsahnKpy - (kot — ko= )Pk + pr) Wyuv,  (37)

where K is the result of the loop calculation and the extra antisymmetry
under k.+ <> k.- is a reflection of the properties under a CP transformation.
Introducing a form factor to regularize the virtual photon couplings, an
expression for K [35] is obtained:

2 m2\ 1 —s 7
21 Ll -2 - —
3 %8 (—s) 18 <mg> + 18] ’ (38)

where s = (k.+ + ke—)2. The log factor is of course expected, since the
photon absorptive part comes from the expansion log(—s) = log s+im. This
representation of the amplitude leads to CP-conserving branching ratios as
follows:

_ Bz
N 1672m?2,

e Using the KTeV data:

4.8 x 10712 VMD

7.3 x 10712 three-parameter fit. (39)

BCP(KL — 7T0€+67) = {
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e Using the NA48 data, with only the results of the fit to the shape of
the distribution, Eqs. (29) and (30),

_ 4.5 x 10713 vector meson dominance
Bep(Ky, — mlete) =
cp(Ky = mete”) { 1.4 x 10713 three-parameter fit .
(40)

e Using the results of the fits to both rate and spectrum measured by
NA48, Egs. (35) and (36), we find instead,

_ 14.6 x 10~!%  vector meson dominance
B K 0_+ —
cp (K = meter) {2.7 x 10713 three-parameter fit .
(41)

Notice that the numbers obtained from NA48 data are an order of mag-
nitude smaller than what is obtained using the KTeV data. We can see from
figure 10 why the NA48 result [33] implies a much smaller Bepe (K, —
mlete™) than the KTeV result [23] (8 = —5 for the three-parameter fit or
B = 7.5 for the ay fit). These two points are shown as the two internal
dotted lines in figure 10. It is clear from this figure that the NA48 results
correspond to a K1, — wyy that produces a minimal CP-conserving con-
tribution in Kj, — 7%ete™, i.e. it indicates that the two photons have a
negligible D-wave component. The VMD result in Eq. (40) is consistent with
the result reported by NA48. The latter is based on an analysis of the low
M. Tegion only and yields Bepe (K, — nlete”) = (4.7132) x 10713 [33].
The NA48 result is obtained from data with m,, below 110 MeV and is
therefore model independent because in that region the B amplitude domi-
nates and the correlation with the A amplitude implied by the VMD Ansatz
disappears.

The two points from the complete fit (rate and spectrum) are shown as
the external dotted lines in figure 10. Not surprisingly, the general three-
parameter fit continues to agree with the model independent NA48 limit as
it gives a good fit to both the rate and spectrum. On the other hand, the
fit in terms of ay, alone does not reproduce the data very well and we can
dismiss its implication of a larger Bep (K, — nlete™).

In figure 10 we see why there are two different solutions for 4 that result
in the same Bepc(Kr, — m’ete ). This CP-conserving component depends
quadratically on the B(z) amplitude of K1, — m%yy, and therefore there are
two values of B for any given Bcpc(Ky, — m’ete™). They correspond to
constructive and destructive interference between the term with a, and g in

Eq. (13).
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Bepe(K-»mle’e™) x 102, a, = 6.5

20

|1|~|||||||||||||||||||

15

|III\L|IIII|

L s

//: .
1’|’T||i||||||||

3 3.604 5

10
AN

Fig.10. CP-conserving contribution to K — 7’eTe as a function of 3 with
as = 6.5 [18]. The dashed line shows the absorptive contribution and the solid
line the model of Ref. [35]. The enlargement shows the results for the branching
ratio vs. the four values of § = 0.57, 0.93, 3.60 and 4.99 from the three- and
one-parameter fits discussed in the text. These are marked by vertical dotted lines.

2.7. Conclusions on K1, — 7r077

The NA48 data for the reaction Ki — 7’yy can be accommodated
nicely by the theoretical expression based on chiral perturbation theory at
order pb. With this expression it is possible to describe simultaneously the
total rate and the shape of the spectrum, which is not possible with chiral
perturbation theory at order p* [16]. The commonly used VMD Ansatz fails
in this case, and that it is impossible to fit both the rate and the shape of
the spectrum if this Ansatz is adopted, this is true for both the KTeV and
NA48 data sets.

The new results from NA48 indicate a very small D-wave component for
the photon pair and this leads to a prediction of a negligible CP-conserving
background to Ki, — 7’ete~. We have shown that this result is not an
artifact of the VMD Ansatz and that it holds in the general parameterization.
This result is at odds with the earlier KTeV data and we must wait for the
new KTeV results to see how this discrepancy is resolved.
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3. Hyperon decay

I discuss CP violation in A — p7~ contrasting the standard model expec-
tations with upper bounds that can be saturated in new physics scenarios.
I review recent progress in the theoretical estimates.

3.1. Introduction

In non-leptonic hyperon decays such as A — pmw™ it is possible to search
for CP-violation by comparing the angular distribution with the correspond-
ing anti-hyperon decay [38]|. The Fermilab experiment HyperCP is currently
analyzing data searching for CP-violation in such a decay.

The reaction of interest for HyperCP is the decay of a polarized A, with
known polarization w, into a proton (whose polarization is not measured)
and a 7~ with momentum q. The interesting observable is a correlation in
the decay distribution of the form

dr
— ~ 1 -q . 42
10 +aw-q (42)

The branching ratio for this mode is 63.9% and the parameter o has been
measured to be a, = 0.64 [5]. The CP-violation in question involves a
comparison of the parameter a with the corresponding parameter a from
the reaction A — prt.

To obtain polarized A’s with known polarization, it is necessary to study
the double decay chain &~ — An~ — pr~ 7~ [39,40]. This eventually leads
to the experimental observable being sensitive to the sum of CP-violation in
the = decay and CP-violation in the A decay.

It is standard to write the amplitudes in terms of their isospin compo-
nents in the form

S = Slei(sls +53€i6§,
P = Pl 4 pyeids (43)

A AT = 1/2 rule is observed experimentally, S3/S; =~ 0.026 and P3/P; =
0.03 £ 0.03 [41]. The strong 7N scattering phases have been measured for
the I = 1/2 channel, 07 ~ 6° and 6 ~ —1° [42]. The I = 3/2 scattering
phases have been measured with large errors but are not needed here.

To discuss CP violation, we allow the amplitudes in Eq. (43) to have
a CP-violating weak phase, S; — S;exp(i¢;7) and P; — P;exp(i¢!) and
compare the pair of CP conjugate reactions. CP symmetry predicts that
I' = I' and that & = —a. One therefore defines the CP-odd observables
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r-r S . :
A= o~ Vo s - o) sin(ed — 1),
a+« . . .
A(A%) = — ~ —sin(0F — 07) sin(¢f — ¢7) ~ 0.12sin(¢7 — 47) .

a—«

(44)

The partial rate asymmetry is very small, being suppressed by three small
factors, S3/S1, strong phases, and weak phases. It represents an interference
between amplitudes with AT = 1/2 and AI = 3/2. The asymmetry A(A°),
on the other hand, is not suppressed by the AI = 1/2 rule, as it originates
in an interference of S and P-waves within the AT = 1/2 transition. For
this reason, the observable A(A%) is qualitatively different from ¢’/e.

The experimental observable is [39,40],

Azy = Ap+ Az, (45)

and the current limit from E756 is A=, = 0.012 £ 0.014 [39], and the ex-
pected sensitivity of HyperCP is 10~ [40]. Previous estimates for A=,
indicated that it occurs at the few times 1075 level within the standard
model [43-45] and that it can be as large as 1073 beyond the standard
model [43,46-48]. The larger asymmetries occur in models with an enhanced
gluon dipole operator that is parity-even and thus does not contribute to ¢’.
The 10~2 upper bound corresponds to the phenomenological constraint from
new contributions to the ¢ parameter in kaon decay. This illustrates the rel-
evance of the HyperCP measurement which complements the ¢’ experiments
in the study of CP-violation in AS = 1 transitions.

The strong NN scattering phases needed have been measured to be
64 ~ 6° and 63 ~ —1° with errors of about 1° [42]. In contrast, the strong
Am scattering phases have not been measured. Modern calculations based
on chiral perturbation theory indicate that these phases are small, with |63 |
at most 7° [49-54]. For our numerical results, we will allow the Am phases
to vary within the range obtained at next-to-leading order in heavy-baryon
chiral perturbation theory [52],

—-3.0° < 05 < +0.4°, —3.5° < 05 < —1.2°. (46)
Eventually these phases can be extracted directly from the measurement of

the decay distribution in = — Am [40]. I now summarize the efforts to
determine the weak phases.
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3.2. Chiral perturbation theory

The chiral Lagrangian that describes the interactions of the lowest-lying
mesons and baryons is written down in terms of the lightest meson-octet,
baryon-octet, and baryon-decuplet fields [55-58|. I will illustrate the terms
involving octet fields only and refer you to the literature for incorporating
the decuplet. The meson and baryon octets are collected into 3 x 3 matrices
¢ and B. The octet mesons enter as discussed before.

In the heavy-baryon formalism [58, 59], the baryons in the chiral La-
grangian are described by velocity-dependent fields, B,. For the strong
interactions, the leading-order Lagrangian is given by [58—60]

) = Te(B,iv- DB,) + 2DTr (B,S4 {A,, B,}) + 2FTr (B,S! [A,,B,]) ,
(47)
where S, is the spin operator, and
i t_ gt Ou 3
A, =5 (€080 - ¢o,8) =55 + 06, (48)
with further details given in Ref. [61]. In this Lagrangian, D, F' and other
constants associated with the decuplet are free parameters which can be
determined from hyperon semi-leptonic decays. Fitting tree-level formulas,
one extracts [58,59]

D =0.80, F =0.50. (49)

The nonrelativistic quark model yields relations [60] between these param-
eters.

At next-to-leading order, the strong Lagrangian contains a greater num-
ber of terms [62]. The ones of interest here are those that explicitly break
chiral symmetry, containing one power of the quark-mass matrix M =
diag(0,0,m,) . For our calculation of the factorization of the penguin oper-
ator we will need these terms in the form,

ﬁgg) = %fQTr(XJr) + b—DTF(Bu {x+:B,})
+ 25 my(B, [y BL)) + A2 Te(x)T(B,B,).  (50)

where we have used the notation x, = Exet + €xTé to introduce coupling
to external (pseudo)scalar sources x = s + ip such that in the absence of
the external sources this term reduces to the mass matrix x = 2B;M. As
will be discussed in the next section, we also need from the meson sector the
next-to-leading-order Lagrangian

£l = LyTr(0" 510,50 &) + -+, (51)
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where only the relevant term is explicitly shown. In these Lagrangians, B,
bp ro» € €y, and Ly are free parameters to be extracted from data.

"As in the meson sector, the weak interactions responsible for hyperon
non-leptonic decays are described by a |AS| = 1 Hamiltonian that trans-
forms as (8;,1z) @ (271, 1) under SU(3); xSU(3)y rotations. It is also
known from experiment that the octet term dominates the 27-plet term,
as indicated by the fact that the |AI| = 1/2 components of the decay
amplitudes are larger than the |AI| = 3/2 components by about twenty
times [41,61]. We shall, therefore, assume in what follows that the decays
are completely characterized by the (8;,1y), |AI| =1/2 interactions. The
leading-order chiral Lagrangian for such interactions is [55,63|

L, = hDTr< {gThg B }) 4 hpTr (Bv [g*hg, BUD . (52)

where h is a 3x3 matrix with elements h,;; = 5i253j, and the parameters
hD7F contain the weak phases.

The Lagrangian Eq. (52) is thus the leading-order (in xPT) realization
of the effective |AS| =1 Hamiltonian in the standard model,

Gp
7-lW \/_ ’M
where G, is the Fermi coupling constant, V,, are elements of the Cabibbo—
Kobayashi-Maskawa (CKM) matrix [2],

Zc Q; + He, (53)

%
C, = z4+71y, = 2 — 415 4 (54)
K3 K3 K3 K3 VJqus 13
are the Wilson coefficients, and @, are four-quark operators whose expres-
sions can be found in Ref. [7]. Writing the V}; in the Wolfenstein parame-
terization [3| we have

VaadVus =X ViaVis = N A® (1 —p+in) (55)
at lowest order in X. For our numerical estimates, we will employ [64]
A =0.2219, A =0.832, n = 0.339 . (56)

We now have all the ingredients necessary to calculate the weak decay
amplitudes in terms of the parameters h D.F and 7y (only the first two are
needed at leading order and ~g is related to gg discussed earlier). The am-
plitude for the weak decay of a spin—% baryon B into another spin—% baryon
B’ and a pseudoscalar meson ¢ has the general form [63]

/L.MBﬁB’d) = _i<BI¢|£W+S|B> =up (*A(S) + QSv'p¢ A(P)> upg , (57)
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where the superscripts refer to the S- and P-wave components of the am-
plitude. We further follow the convention [63],

aBB, =V27f AB_>B, (58)

to express our results. With the Lagrangians given above, one can derive the
amplitudes at leading order, represented by the diagrams in figure 11. The
figure indicates that the S-wave is directly obtained from a weak vertex from
Eq. (52). The leading contribution to the P-wave arises from baryon-pole
diagrams which involve a weak vertex from Eq. (52), a strong vertex from
Eq. (47), and a mass difference (for the baryon propagator) from Eq. (50).
The leading order results are [55,57,63],

(S)

aglmﬁ =0, O5-pr— = ~hp +he,
a(/li)w— - %(hD + 3hF) ’ a(”s—)/lfr \/_(hD 3hF) ’
oP) =Dy —hy) 5D (hp+3hy)
S+nat My —my my—my
(P) _ —Fhp—hp) 3D (hp + 3hy)
Z-nr- My, — My my—my
g - Gl el
s N AN
a(EP—)Aﬂ— = —2D (hp + hy) B (D — F) (hp = 3hy) . (59)

V6 (mz —my) V6 (mz —my)

The leading nonanalytic contributions to the amplitudes have been calcu-
lated by various authors [55,63,65,66]. We will adopt the results of Ref. [66]
for the numerical estimate of our uncertainty.

Once we specify the value of the weak couplings h D.F the expressions
in Eq. (59) determine the leading order amplitudes. It is well known that
this representation does not provide a good fit to the measured P-wave am-
plitudes, and that higher order terms are important [55,57,63,65-67]. The
procedure that we adopt to estimate the weak phases is to obtain the real
part of the amplitudes from experiment (assuming no CP-violation), and to
use Eq. (59) to estimate the imaginary parts. The dominant CP-violating
phases in the |AI| = 1/2 sector of the |AS| = 1 weak interaction occur
in the Wilson coefficient Cy associated with the penguin operator Q. Our
strategy will be to calculate within a model the imaginary part of the cou-
plings h D.F.C and ~g induced by Qg. As a numerical result we propose a
central value from leading order xPT (Eq. (59)), and an estimate of the error
from the non-analytic corrections obtained with the expressions in Ref. [66].
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B - B/ A - ;
(@) (b)
Lo 1= Lo 1=
N n o, v Mg g P
(c)

Fig.11. (a) B — B’ transition due to Qg, solid square. (b) S-wave obtained from
(a) via a soft-pion theorem. (c) P-wave obtained from (a) with strong pion emission
(solid circle).

3.3. Estimate of counterterms

Our goal is to match the dominant |AI| = 1/2 CP-violating term from
the standard model effective weak Hamiltonian in Eq. (53) to the weak
chiral Lagrangian in Eq. (52). That is, to compute the imaginary part of
the parameters hp,, hp and ~g that is induced by Im CsQ in Eq. (53).

To do this we will include both factorizable contributions that arise from
regarding the operator Qg as the product of two (pseudo)scalar densities,
and direct (non-factorizable) contributions calculated in the MIT bag model.

The non-factorizable contributions are easily obtained from the obser-
vation that the weak chiral Lagrangian of Eq. (52) is responsible for non-
diagonal “weak mass terms” such as

hpy+3h,
<n|(HW)8|A> = %unu/la
_ hp—3hn,
(A|(Hy)s1Z%) = %U’AUEa
. _ he
(B |(Hy)gl27) = ——S i1z - ug, (60)

where the subscript 8 denotes the component of H, that transforms as
(8;,1g). These terms can be computed directly from the short-distance
Hamiltonian in Eq. (53) by calculating the baryon—baryon matrix elements
of the four-quark operators in the MIT bag model [68],

Imhp =0.028 yq4, Imhp =0.25 yq, (61)
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The units are (v/2f,Grm2A* A1), chosen to separate both the conventional
normalization for the hyperon decay amplitudes as in Eq. (58) and the rel-
evant combination of CKM parameters that occurs in the observable A.

To obtain the factorizable contributions to the imaginary part of the
parameters hp g we follow the procedure used in kaon physics for g [69].
We start from the observation that the quark-mass terms in the QCD La-
grangian can be written as

1

ﬁm:—Q—( XQR+QRXTQL> ) (62)

where ¢; = 2(1—75)q and gg = $(1+75)g, with ¢ = (u d s)T. It follows
that

3L,
—qrq%r = 2B
IL YkR 0 5Xlk
_ oL
—Qr4r, = 2Bo—+- (63)
OXy,

The weak Lagrangian corresponding to a factorized Q¢ is then given by
Eq. (52) with

Gp A Gp A
V2 V2

The values of by, by, can be found by fitting the mass formulas derived from
the Lagrangian in Eq. (50), with x = 2B, M, to the measured masses of the
octet and decuplet baryons. Thus one finds

hp = 8Cy f*Bybp hp = 8 Cy [*By by - (64)

bpmg = 0.0301 GeV, bpmy, = —0.0948 GeV (65)
for m, = m, = 0. In this limit, the Lagrangian in Eq. (50) also gives
m? = Byms. Using m, = m,(u =m,) = 170MeV from Ref. [7], one then
has

b, =0177, bp=-0558, c¢=130, B,=145GeV. (66)

Correspondingly we use for our numerical estimates

o
() + ma(p)

By(p) = ] ~1.38 GeV .
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3.4. Numerical results

If Eq. (59) provided a good fit to the hyperon decay amplitudes, it would
be straightforward to calculate the weak phases of Eq. (44). We would
simply divide the imaginary parts of the amplitudes by the real part of
the amplitudes obtained from a matching of the parameters hp r to the
short distance Hamiltonian. However, as we mentioned before, leading-order
chiral perturbation theory fails to reproduce simultaneously the S- and P-
wave amplitudes. Consequently we are forced to employ the real part of the
amplitudes that are extracted from experiment under the assumption of no
CP violation.

We assume that the real part of the weak decay amplitudes originates
predominantly in the tree-level operators 12, and that the imaginary part
of the amplitudes is primarily due to the Im CgQg term in the weak Hamil-
tonian. This is true both in the bag model and in the vacuum saturation
model of Ref. [44]. With these assumptions we calculate a central value for
the imaginary part of the weak decay amplitudes using Eq. (59) with values
for Imhp r obtained in the previous section by adding the factorizable and
non-factorizable contributions. We estimate the uncertainty in this predic-
tion by computing the leading non-analytic corrections with our values for
Im hp F.

For the numerical results below, we use the leading-order (in QCD) Wil-
son coefficients at p = m, = 1.3GeV listed in Table XIX of Ref. [7]. In
particular,

Yy = —0.096 , (67)

corresponding to A% = 325 MeV.

Numerically we find uncertainties in ¢¢ and ¢ of order 100% and 50%,
respectively, for both decays. We present our predictions for these phases
and also the resulting phase differences in Table IIT [68]. The errors for the
differences have been obtained by adding the individual errors. We have also
collected strong-phase differences in this table. Combining these results we

TABLE III

Weak phases in units of A% A2, and strong-phase differences, 64 — dp.

Decay mode s bp bs — op ds —0p

A — pr~ 1.0£+1.0 1.2+0.6 —-0.2+1.6 7° £ 2°
E7 = An™ 0.9+0.9 —-0.6+0.3 1.5+1.2 1.1°+2.8°
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finally obtain

A(A%) = A, =(0.03+0.25) A%)\5y,
A(EZ) = Az = (—0.05£0.13) A%\, (68)

leading to
Az, = A, + Az = (—0.02 £ 0.38) A%X°7 . (69)

With the CKM parameter values given in Eq. (56), we have A2\%n ~ 1.26 x
10~* and, therefore,

L<AX1077, —2x 1070 < Az <1x1077, (70)
L <5 x 1075, (71)

3.5. Beyond the Standard Model

There have been several estimates of A(A%) beyond the standard model.
For the most part these studies discuss specific models, concentrating on one
or a few operators and normalizing the strength of CP violation by fitting e.
Some of these results (which have not been updated to incorporate current
constraints on model parameters) are:

-2 x 1075 SM [43]
-2 x107° 3 Higgs [43]
0 Superweak
6x107* LR [47]

A(A°) = (72)

Perhaps a more interesting question is whether it is possible to have large
CP violation in hyperon decays in view of what is known about & and ¢’
This question has been addressed in a model independent way by consider-
ing all the CP-violating operators that can be constructed at dimension 6
that are compatible with the symmetries of the standard model [46]. With
this general formalism one can compute the contributions of each new CP-
violating phase to e,¢’, and A(A%). Of course, there is the caveat that the
hadronic matrix elements cannot be computed reliably. Nevertheless, one
finds in general, that parity even operators generate a weak phase ¢! and
do not contribute to €. Their strength can be bound from the long distance
contributions to & that they induce. Similarly, the parity-odd operators
generate a weak phase ¢7 and contribute to ¢’ (but not to ¢).

The constraints from €’ turn out to be much more stringent than those
from e, and, therefore, the only natural way (without invoking fine cancel-
lations between different operators) to obtain a large A(A°) given what we
know about &’ is with new CP-odd, P-even interactions. Within the model
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independent analysis, one can identify a few new operators with the required
properties, that can lead to [46],

A(A%) ~5x 107" P —even, CP — odd. (73)

This possibility has been revisited recently, motivated in part by the ob-
servation of ’. The average value €' /e = (21.244.6) x 10~ [70] appears to be
larger than the standard model central prediction with simplistic models for
the hadronic matrix elements. This has motivated searches for new sources
of CP violation that can give large contributions to &', in particular, within
supersymmetric theories. One such scenario generates a large ¢’ through an
enhanced gluonic dipole operator [71]. The effective Hamiltonian is of the
form

Hep = (8%)1RC,ydo,ut® (1 + 5)sGH
+ (511i2)RLCgCZO-/Juta(]- — ’)’5)8Gauu . (74)

The quantity C, is a known loop factor, and the (5‘1i2)LR,RL originate in
the supersymmetric theory [72]. Depending on the correlation between the
value of (6%)rr and (0¢,)ry, one gets different scenarios for ¢’ and A(A°) as

shown in figure 2 [48]. For example, if only (6{,)1r is non-zero, there can be

excluded by ¢ for LR=RL case

103

10"

[A(A)sysyl
Too large €'/e

\World Average

10 103 1072
(e/8)susyl

Fig.12. The allowed regions on (|(¢'/¢)susy]|, |A(A%)susy|) parameter space
for three cases: (a) only Im(d%,)rr contribution, which is the conservative case
(hatched horizontally), (b) only Im(df,)rr, contribution (hatched diagonally), and
(¢) Im(6¢,)1.r = Im (6%, )R1 case which does not contribute to &’ and can give a large
|A(A%)] below the shaded region (or vertically hatched region for the central values
of the matrix elements). The last case is motivated by the relation A = \/mg/ms.
The vertical shaded band is the world average [70] of ¢’ /e. The region to the right
of the band is therefore not allowed.
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a large ¢’ [71], but A(A%) is small as in the 3-Higgs model of [43]. However,
in models in which Im(6%,)r = Im(6%)r1 the CP-violating operator is
parity-even. In this case there is no contribution to ¢’ and A(A°) can be as
large as 1073 [48]. It is interesting that this type of model is not an ad-hoc
model to give a large A(A%), but is a type of model originally designed to

naturally reproduce the relation A = /mg/mgs, as in Ref. [73], for example.

3.6. Conclusion and comments on hyperon decay

ES871 is expected to reach a sensitivity of 10~* for the observable A(A% )+
A(EZ7). I conclude that a non-zero measurement by E871 is not only possible
but that it would provide valuable complementary information to what we
already know from &’. It would almost certainly indicate physics beyond the
standard model.

Finally I would like to mention two related issues. A search for AS = 2
hyperon non-leptonic decays is also a useful enterprise as it provides infor-
mation that is complementary to what we know from K — K mixing [74].
A CP-violating rate asymmetry in £2 — =7 decay can be as large as 2x 107>
within the standard model (and up to ten times larger beyond), much larger
than the corresponding rate asymmetries in octet-hyperon decay [75].

This work was supported in part by DOE under Contract Number
DE-FG02-01ER41155. I wish to thank the organizers of the School and
in particular Michal Praszatowicz for a very stimulating meeting and warm
hospitality.
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