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In these lectures I first cover radiative and semileptonic B decays, in-
cluding the QCD corrections for the quark subprocesses. The exclusive
modes and the evaluation of the hadronic matrix elements, i.e. the rele-
vant hadronic form factors, are the second step. Small effects due to the
long-distance, spectator contributions, etc. are discussed next. The second
section we start with non-leptonic decays, typically B — 7w, Km, pm, ...
We describe in more detail our predictions for decays dominated by the
b — sn. transition. Reports on the most recent experimental results are
given at the end of each subsection. In the second part of the lectures I
discuss decays forbidden by the Lorentz and gauge invariance, and due to
the violation of the angular momentum conservation, generally called the
Standard Model-forbidden decays. However, the non-commutative QED
and/or non-commutative Standard Model (NCSM), developed in a series
of works in the last few years allow some of those decay modes. These
are, in the gauge sector, Z — 7, gg, and in the hadronic sector, flavour
changing decays of the type K — 7wy, B — K~, etc. We shall see, for
example, that the flavour changing decay D;r — 7+~ dominates over other
modes, because the processes occur via charged currents, i.e. on the quark
level they arise from the point-like photon X current x current interactions.
In the last section we present the transition rate of “transverse plasmon”
decay into a neutrino—antineutrino pair via non-commutative QED, i.e.
Yp1 — vv. Such decays give extra contribution to the mechanism for the
energy loss in stars.
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1. Rare B meson decays: theory and experiments

1.1. Introduction to the rare B meson decays

The experimental challenge of finding new physics in direct searches may
still take some time if new particles or their effects set in only at several
hundred GeV. Complementary to these direct signals at highest available
energies are the measurements of the effects of new “heavy” particles in loops,
through either precision measurements or detection of processes occurring
only at one loop in the Standard Model (SM).

In the light quark system, however, the presence of quite large Long-
Distance (LD) effects that cannot be calculated reliably makes this study
difficult, except in the extremely rare process K — wrv. The situation
is much better in the b quark system. Among these are the transitions
induced by Flavour-Changing Neutral Currents (FCNC). Rare decays of the
B meson offer a unique opportunity to study electroweak theory in higher
orders. Processes such as b — sy, b — s/~ and b — sg do not occur at
tree level, and at one loop they occur at a rate small enough to be sensitive
to physics beyond the SM.

Studying B meson radiative decays B — K*vy based on the b — sv
quark transition, described by a magnetic dipole operator, we have found
two major effects [1]:

(1) Large QCD correction due to the introduction of 1-gluon exchange.
One might say that 1-gluon exchange changes the nature, i.e. the
functional structure of the GIM cancellation [1,2]: (m? —m?2)/m¥, —
In(m?/m?2). Note, however, that since miq, ~ 2my, the GIM mecha-

nism is no longer crucial and QCD corrections become modest.

2) Huge recoil effect caused by the motion of the hadron as a whole
g
producing a large suppression of the hadronic form factor [1].

To simplify the very first attempt of calculating the b — sy and B —
K*v, we have made a few very important assumptions, which all turned out
to be right and were proved within the past decade by a number of authors.
They become major advantages for studies of rare B meson decays:

(i) the B meson is made of a sufficiently heavy b quark, thus permitting
the use of the spectator approximation in the calculation;

(ii) absence of large long-distance effects;
(iii) the b — sv transition is the only contribution to the B® decays;

(iv) the B meson lifetime is, relatively speaking, prolonged more than that
of kaons because of the smallness of V,;, and Vy;, allowing BB mixing
to be studied.
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Other important impacts of studies of B mesons are:

(I) tests of electroweak theory (SM) in one loop are of interest in their
own right, because they verify the gauge structure of the theory;

(IT) the realization of a heavy quark symmetry, i.e. the structure of had-
rons, becomes independent of flavour and spin (spin symmetry) for
1/my — oo;

(TTT) the emergence of the Heavy Quark Effective Theory (HQET);

(IV) if there exists an enhancement of the SUSY over SM contribution,
it is clear that the B meson radiative processes, dominated by the
b — sy quark 1-loop transition, can be an interesting candidate di-
rectly affected by the SUSY contribution [3];

(V) the decay b — s is by far the most restrictive process in constraining
the parameters of the charged Higgs boson sector in Two Higgs Dublets
Model (2HDM), yielding bounds that are stronger than those from
other low-energy processes and from direct collider searches [4].

Today almost everybody in the particle physics community agrees that
B decays in general do provide one of the most important classes of tests of
the SM and physics beyond the SM.

Although the quark level calculations are fairly precise in the b quark
system, one is still hampered by the lack of knowledge of the hadronic form
factors. However, in the past decade there has been extensive activity in
the form factor evaluation using the perturbative QCD techniques with the
help of the HQET and from improving lattice model calculations.

The first observations of the exclusive B — K*v decays were reported
in 1993/94 by the CLEO Collaboration [5].

On the experimental side the last two years were especially exciting since
BaBar and Belle Collaborations joined CLEO Collaboration in producing
and publishing a large number of data concerning the B meson decays.

1.2. Radiative and semileptonic B decays

The b — s decay is a one-loop electroweak process that arises from the
so-called penguin diagrams through the exchange of u, ¢, t quarks and weak
bosons, see Fig. 1, and is given by

Ju = {Glg(’YMQQ — 4y QI)bL + 1G9 [msgo',uuqybL + mbgo',uuqbe]} ) (1)

where the first term vanishes identically for real photon due to the electro-
magnetic gauge condition. Using the standard parametrization of the CKM
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Fig.1. The penguin diagrams, including the QCD short-distance corrections, con-
tributing to the b — s transition.

matrix in the case of three doublets, G5 is given by

GF (& ng
Go= 7 Y AiFs(zi); Ai=ViiVy, == —34, (2)
\/_47.( i=u,c,t mW

where the modified Inami-Lim function Fy(z;) derived from the penguin
(1-loop) diagrams is [6]

Fy(a;) = ——2 ) [(1 — 2;)(822 + by — 7) — 624(2 — 3z;) Inz;] . (3)

12(1 — z;)*

Introduction of 1-gluon exchange (QCD corrections) in penguin diagrams re-
moves the power suppression, i.e. (m7 —m?2)/m%, — In(m?/m?); or one can
say that QCD corrections change the nature of the GIM cancellation from
quadratic to logarithmic [1,2]. These QCD corrections also strongly affect
the semileptonic transitions [7]. The following properties are important to

note:

(a) the dominant contribution to the perturbative b — sy amplitude orig-
inates from charm-quark loops;

(b) after inclusion of the QCD corrections, the top-quark contribution is
less than 50 % of charm and it comes with an opposite sign;

(¢) the up-quark contribution is suppressed with respect to charm by
Vi Vi / VsV = 2%.

It is necessary to consider the above facts when one attempts to extract the
CKM matrix element |Vis| from b — s7.
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Before proceeding, it is important to note that, in the limit my — oo the
inclusive meson decay partial width is equal to the free quark decay partial
width. In the case of B mesons the b quark is sufficiently heavy to satisfy
the above statement:

F(B — Xq’}/, £+€_)|inclusive = F(B — Xq’}/, €+£_)|free quark (4)

decay decay

where ¢ represents the light quarks.

1.2.1. Complete QCD corrected weak Hamiltonian density

In the SM, B decays are described by the effective weak Hamiltonian

obtained by integrating out heavy, i.e. the top-quark, W-boson and Higgs
fields:

HYo= ' =2V2Gr + h.c.

(5)

10
Y VeV (0] +:08) = ViV, Y~ 0
i3

q=u,c

The O;’s are operators

0t = (stwal) (dret) . 08 = (i) (@)

Op) = (51,701 zq;qlé)v“ q'(]PL{), Oy = (Ei%b{) zq;qlé)v“ Q'(iPL{),

e _; . —7 1] 1.7

Or = g (FLowb) P, Os = 1o my (SLowTilth) G,
0_624' bz‘ZMO—e2‘i b)) Oyteyst 6
= Toz (owth) Bt Ow = g (Sowth) Bt (©

where F* and G4” are the electromagnetic and gluon interaction field
strength tensors, respectively, and e and g are the corresponding coupling
constants. The ¢;’s are the well-known Wilson coefficients first calculated up
to the Next-to-Leading Order (NLO) in Ref. [8]. The calculation was per-
formed with the help of the renormalization group equation whose solution
requires the knowledge of the anomalous dimension matrix to a given order
in ag and the matching conditions:

) = 3. < (),

cr(p) = €710/ [07(mw) - 208(mw) (1 - 52/23> + % (1 - 519/23>] ,
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eo() = colmm) — [ex (1) + Bea()] I [(%) _8/9]
_as(‘i;"w) [% (1 _5711/23) _ 8% (1 _ 529/23)] _ (7)

The coefficient ¢19(p) = c10(mw ), and € = ag(p)/as(mw).
The Wilson coefficients at the scale my receive the following contribu-
tions from W loops:

cr(mw) = —5A(z), cs(mw)=—5EB(z), cwo(mw)= —[B(z) - C(z)],

co(mw) = —cro(mw) —4C(z) — D(z) + 5. (8)

The functions A(z), ...are:
Tz (2 5 7 2 Inz
A e 2 22 it
() = 3 <33c TR <33c ‘”) P )
T Inx
Bz) = L (—14 22
() 4z < L ) ’

1 3 |
cw) = & (5o-3+ (Ja+1)) 2

D(z) = <—£m3 + §x2 + <—1x4 + §x3 — 3% + Ex — é) ln_x) ,

36 6 3 9 9) =z
z (1 ) Inz

where z = (m;/mw)?, and z = x — 1. The values of the Wilson coefficients
are calculated at the scale p ~ my, for my = 4.8 GeV, Agyg = 250 MeV
and myop = 174 GeV. The other four coefficients turn out to be very small,
i.e. at this scale they receive the following values: c¢3 = 0.017, ¢4 = —0.037,
c5 = 0.010, and ¢ = —0.046.

1.2.2. Inclusive radiative and semileptonic decays

To avoid the uncertainty in my, it is customary to express the branching
ratios BR(b — sv) and BR(b — s£7/7) in terms of the dominant semilep-
tonic branching ratios BR(b — cfiy):

(b sv) 6oem Vit Vis|? 2
R, = = 10
rb—stte)

Ry ,—
e I'(b— cliy)
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— <Oéem)2 2|Ves|? [Fi(Jeo|” + |c10]?) + Fsereg + Foler|?] L(11)
dm ) Ag(m?/m})

where the phase space factor g(m?/m3) and the QCD correction factor A for
the semileptonic process are well known [9,10]. We have used g(m2/mj}) =
0.507 and A = 0.888. The phase space integration from (¢?)min = (2me¢/ms)?
t0 (¢%)max = (1 — mg/my)? give the following values for constants Fj [11]:

Fy =1, F3=8, for (q2)ming0a (qQ)manl’
Fy = 32In(my/2my), for (¢Hmax =1, L=e,u,T. (12)

The SM theoretical prediction for the inclusive radiative decay, up to NLO [8]
in agIn(m,, /my),

BR(B — Xsy)nLo = (3.30 £0.32) x 107, (13)
is considerably larger than the lowest-order result [12]:
BR(B — Xs7)Lo = (2.46 £0.72) x 107*. (14)

Buras et al. [13]| performed a new analysis by using expansions in powers of
ag and reported a higher Short-Distance (SD) result:

BR(B — X,v)sp = (3.60 +£0.33) x 107 (15)

Let us now present and discuss the experimental results.
Based on 9.7 x 10° analysed BB pairs from 1 (4s), the CLEO Collabo-
ration reported two years ago the following inclusive branching ratio [14]:

BR(B — X,7v) = (3.22 £0.40) x 10, (16)
Analysing 33 x 10¢ BB pairs, a BaBar reported 20% larger rate [15]:
BR(B — X,v) = 3.88 x 10 %, (17)

and they also published a measurement of the inclusive branching ratio,
obtained by summing up exclusive modes, which is even larger than the first
one [16]:

BR(B — X,7) = Y BR(B - Kjvy) =43 x 10 " (18)
i

A few years ago I was reporting that the inclusive branching ratio will in-
crease with the number of events analysed, up to a certain limit, of course [17].
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The Belle Collaboration reported the first results on inclusive semilep-
tonic decay [18]:

BR(B — Xs£T¢7) = (6.1 £1.4% 1) x 1075, (19)

which is in fair agreement with our theoretical predictions for the myo, = 180
GeV [7,9,11]. See for example Fig. 1 in Refs. [7,11]. Note here that we
estimated the e~y rate for the inclusive [7,11] channels:

BR(b — sete™)
BR(b — sutpu~)

~14 - 16 (20)

and found that the e— ratio has a weak dependence of myqp.

1.2.3. Exclusive radiative and semileptonic decays

Exclusive modes are, in principle, affected by large theoretical uncertain-
ties due to the poor knowledge of non-perturbative dynamics and of a correct
treatment of large recoil-momenta, which determine the form factors.

First we have to define the hadronic form factors. The Lorentz decom-
position of the penguin matrix elements for (¢ = p — k) is:

(K*(K)|50,,q" (1 + 75)b| B(D)) = icuwpre™ (q)(p + k)’ Ti(¢%)

+T2(¢%) [e,(q) (mB — mi.) — (p€" (@) (p + K),u]
2

)P @) |0 = 30+ R (21)

with T1(0) = T5(0) as a consequence of the spin symmetry. Note that the
last term in the square bracket vanishes for real photons. Similarly, for
semileptonic (and/or non-leptonic) decays, we have

5Yu(1 = v5)b| B(p)) = —iepwpre™ (k) (p + k)’q
+e;, (k) (mh —mie) Ar — (g (k) (p + k) u Az
+(qe* (k) (mp + mx-) (4u/0°) 2mr- Ao — (mp — mi-) (A1 — A2)], (22)

—~
=
*
—
=

with the corresponding definitions of the relevant form factors

V(g? V(0
v Dy YO
(mp + m-+) 1- -4
1
Ao(¢?) 2y Ao(0)
Ay = —————, Aolg") = ——,
© 7 (mp +mke) ole’) 1- %
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Aq(q? Aq(0
A= Dy = A
(mp — m-+) 1- -9
m1+
As(q? Ao (0
4y = A gy = 2O
(mp +mk-) 1- %
m1+
mp + M- mp — Mg~
Ay = ——A1(0) — ———A5(0 23
o = MBI £y (0) - B 4y(0) (23)

In the above V(¢?) and 4;(¢?), (i = 0,1,2) form factors the ¢? for semilep-
tonic decays is determined by the invariant lepton pair mass squared, while
for the two-body non-leptonic decays (calculated in a factorization approxi-
mation) it is the mass squared of the factorized meson.

Finally, the operator Oy, taking into account the gauge condition, the
current conservation, the spin symmetry gives, for real photon, the following
hadronization rate Rg~ [19,20]:

(B~ K*y) _ [mb(m% - m%(*)r <1 N Z_g)_l ITE (0)2. (24)

' — sy) mB(mi —m2) i

RK* =

In Table I we give a few typical results for the hadronic form factors, while
in Table II the typical hadronization rates are given for different types of
the form factor estimates.

TABLE I
Comparison of a few different results on form factors at ¢ = 0.
Form factors| Ref. [21] | Ref. [22] | Ref. [23] Ref. [25] Ref. [24]
(3pt SR) | (LCSR) | (LCSR) |(lattice+LCSR)| (LCSR)
VE*0) | 0.47+0.3 |0.38+0.08(0.45 £ 0.08 — 0.46 + 0.07
AK*(0)  ]0.37+0.03/0.32+0.06|0.36 + 0.05|  0.29790,  |0.3440.05
AK*(0)  0.40 £+ 0.03 — 0.40 + 0.05 — 0.28 + 0.04
TE*(0) ]0.38+0.06[0.324+0.05[0.34+0.10|  0.32705)  |0.38 £ 0.06
TE*(0) 0.6 — 0.26 + 0.10 — 0.26 + 0.04
V2(0) 0.6+0.2 [0.35+0.07/0.37+£0.07| 0.35739¢  10.34+0.05
AL(0) 0.54+0.1 |0.27+0.05/0.30+0.05| 0.27739  10.26 + 0.04
A5(0) 0.4+0.2 [0.28+0.05/0.33+£0.05| 0.267005  |0.22+0.03
T!(0) — 0.24+0.07/0.30 £ 0.10| 0.32+0.06 |0.29 4+ 0.04
TY(0) — — 0.20 + 0.10 — 0.20 + 0.03
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TABLE 11

Comparison of the results for the hadronization rate Rg-|%]

Authors Reference Ry« [%] Model
O’Donnel (1986) [27] 97.0 —
Deshpande et al. (1987) [1] 7 cQM
Deshpande et al. (1988) [19] 6 RCQM
Altomari (1988) [26] 4.5 cQM
Deshpande, Trampetic¢ (1989) [20] 6-14 RCQM
Ali, Mannel (1991) [22] 28-40 QCD SR
Faustov, Galkin (1992) [28] 6.5 RCQM
Colangelo et al. (1993) [21] 16 +£3 3pt SR
Casalbuoni et al. (1993) [29] 8 Cfé:pseiiﬁﬁg
Atwood, Soni (1994) [30] 1.6-2.5 RCQM
Bowler et al. (1994) [31] 9.0£3.0+£1.0 | QCD on lattice
Ali, Sima (1994) 32] 1242 QCD SR
Bernard et al. (1994) [33] 6+1.2+34 | QCD on lattice
Burford et al. (1995) [34] 15.0-35.0 QCD on lattice
Veseli, Olsson (1996) [35] 16.8 £ 6.4 HQET
Aliev (1997) [23] 13+4 LCSR
Ball, Braun (1998) [24] 16+ 3 LCSR
Debbio et al. (1998) [25] 122 eonarraints
Mohanta et al. (1999) [36] 12 coQM
Asatryan et al. (1999) [37] 16 g]f;‘irv
Bosch, Buchalla (2002) [38] 22 NLO pQCD type

exclusive/inclusive



Rare and Forbidden Decays 4327

Since the first calculation of the hadronization rate Ry« =~ 7% by
Deshpande et al. [1], a large number of papers have reported Rk~ from
the range of 3 to an unrealistic 90%. Different methods have been em-
ployed, from quark models [1,19,20,26,36], QCD sum rules [21,22], HQET
and chiral symmetry [29], QCD on the lattice [31], light cone sum rules [24],
to the perturbative QCD type of evaluations of exclusive modes |37, 38].

Concerning Ref. [38] we have to comment that even in such very complex
evaluations of exclusive modes, the hadronic form factor 77(0) was not in-
cluded as a part of “from first principles” pQCD calculations, but was rather
used as an input from other sources [24]. Clearly, the final results of Ref. [3§]
crucially depend on the authors’ choice of 77 (0).

In any event, the above form factor will be obtained in the future from
first principle calculations on the lattice. Recently, it seems that the hadron-
ization rate Ry~ in radiative decay calculations has stabilized around 10%.

Exclusive semileptonic B decay rates, estimated for myq, ~ 180 GeV in
Refs. [7,9,11],

BR(B — Kete)
BR(b — sete™)
BR(B — K*ete™)
BR(b — sete™)
BR(B — K*ete)
BR(B — K*utpu~)

~ (.08,

~ (.20,

=~ 1.23, (25)

were later confirmed by other authors.
The first measurements by the Belle Collaboration [39]

BR(B — K¢107) = (0.7510:37 £0.19) x 1076,
BR(B — Kpu" ) = (0.99%5:5%013) x 107, (26)

are in good agreement with theory.

Concerning the rare B decay to the orbitally excited strange mesons, the
first CLEO [40] observation has recently been confirmed by Belle [41,42].
These important experimental measurements provide a crucial challenge to
the theory. The exclusive radiative B decays into higher spin-1 resonances
are described by a formula similar to the above one (24):

I'(B — K**y)
T sy)
3 -1
my(my; — m%(**)] <1 + Z—§> T (0) (27)

mB(mg—mg) g

RK** =
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The K** represent all higher resonances. Most of these theoretical ap-
proaches rely on the non-relativistic quark models [19,22,26], HQET [35],
relativistic model [43], and LCSR [44]. Different results for the hadroniza-
tion rate Rg=«+ are presented in Table III. Note, however, that there is a
large spread between different results, because of their different treatments
of the long-distance effects.

TABLE III

Comparison of a few different results for the rate Ry« [%].

R[]
Meson |Ref. [19]| Ref. [26] | Ref. [22] | Ref. [35] | Ref. [43] | Ref. [44]

K (494) forbidden
K*(892) 6 4.5 3.5-12.2 |16.8+6.4| 15+3 [10.0+4.0
K*(1430 forbidden

forb. |forb./6.0| 4.5-10.1 | 4.3 +1.6 |1.5+0.5| 2.0+0.8

(1430)
(1270)
K1(1400)| 7 |forb./6.0{ 6.0-13.0 | 2.1 £0.9 [2.6 +0.6] 0.9+ 0.4
(1430)
(1680)
(1580)

K5(1430 6.0 17.3-37.1]1 6.2+2.0 |5.7+1.2| 5.0+ 2.0
K*(1680 0.9 1-1.5 0.5£0.2 0.7+0.3
K5(1580 4.4 4.5-64 | 1.7+£04

K (1460) forbidden

K*(1410) 7.3 7.2-10.6 | 4.1 £0.6 0.8+0.4
K;(1950) forbidden

K,(1650) not given | not given | 1.7 + 0.6 0.8+0.3

The modes based on b — dvy represent a powerful way of determining
the CKM ratio |V;q/Vis|. If long-distance and other non-perturbative effects
are neglected, two exclusive modes are connected by a simple relation [45]:

BR(B — py) = €2 |Viq/Vis|* BR(B — K*7), (28)

where & measures the SU(3) breaking effects. They are typically of the order
of 30% [24]. Misiak has reported the following short-distance contributions
to the branching ratios [46]:

BR(b — dy) = 1.61 x 10°% BR(Bt = pty) =[1+4] x 1075,  (29)
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BR(B? = p%) = BR(B® = wy) = [0.5 + 2] x 1075. (30)
The simple isospin relations are valid for the above decay modes:
I'(BT = pty) =2r'(B% = p%) =21'(B° — wy). (31)

This year, experimental results for exclusive radiative and semileptonic
decay modes, based on 33 x 10 BB pairs, are coming from the Belle Col-
laboration [42]

BR(B” — K*%) = (4.087033 £0.26) x 10",
BR(BT — K*"y) = (4.92703910-%8) x 107°,
BR(B — Kj(1430)y) = (1.5010:33011) 5 1075, (32)

Acp = ( = (32709 £2.0) % =0. (33)

Using the latest results for inclusive and exclusive branching ratios, one has
obtained the following central value for the so-called hadronization rate:
Rizf*p ~ 10%, which is in excellent agreement with the theory.

The BaBar Collaboration [47] produced the latest experimental results
on exclusive semileptonic B decays:

—0.18
BR(B — K*¢1¢7) = (1.6870:55 +0.26 £ 0.28) x 10°°. (34)

BR(B — K{T07) = <0.78t8;§§ +0.26 +0‘11> x 1079,

Measurements for exclusive modes based on the quark b — dry transition
were recently reported by the BaBar Collaboration [48]:

BR(B? — p%y) < 1.5 x 1075,
BR(BT — pty) < 2.8 x 107°,
BR(B — pv)

- 34
BR(B = Ky 034 (35)

they are considerably lower than the first CLEO results [5|. However, the
isospin relations (32) are nicely satisfied. From the BaBar measurements we
obtain the following ratio of CKM:

Vial/|Vis| < 0.64 — 0.76. (36)
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Note about quark models

In principle there are two types of models for describing hadrons, i.e.
quark models: non-relativistic potential and relativistic models. They are
all represented mainly by the constituent quark model (CQM) and the MIT
bag model.

Almost all quark models describe the static properties of ground state
hadrons with 15% accuracy. In particular, the CQM and the MIT Bag model
have been very useful when computing the mass spectrum and static prop-
erties such as charge radii, magnetic moments, (g4/9v)pn, etc., of ground
state baryons. Apart from the fact that the MIT Bag model is essentially
the solution of the Dirac equation with boundary conditions, we have to note
that this model is static, which is certainly a disadvantage. The MIT Bag
model also has problems in describing the particle’s higher excited states.

On the other hand the non-relativistic CQM (harmonic oscillator type,
etc.) [49,50] could take into account the motion of the particle as a whole,
but it is not well grounded conceptually. However, these models, based on
Gaussian wave functions, give us the possibility to compute effects coming
from the internal quark motions as well as from the motion of the particle
as a whole. These models have also been successful in computing mesonic
pseudo-scalar, vector and tensor form factors.

Note about HQET

The physical essence of the Heavy Quark Symmetry lies in the fact that
the internal dynamics of the heavy hadrons becomes independent of heavy
quark mass mg and the quark spin when m is sufficiently large. The heavy
quark becomes a static source of colour fields in its rest frame. The bind-
ing potential is flavour-independent and spin effects fall like 1/m¢. Light
quarks and gluons in the hadron are the same whether Q = ¢ or Q@ = b (as
Mep — 00).

In HQET the heavy quark moves with the hadron’s velocity v, so that
the heavy quark momentum is

PS = mqu" + k¥, (37)

where k* represents the small residual momenta.
The velocity v, in heavy quark rest frame, according to the Georgi’s

covariant description, has the very simple form v, = (1,0). The heavy
quark propagator has to be modified accordingly:
' 1 k 1
lim L= +¢+O<—):Lﬂ+... (38)
mQﬁooPQ—mQ v-k 2 meg v-k 2

The residual momentum is in effect a measure of how off-shell the heavy
quark is. The HQET is valid for m¢g > |k| ~ Aqcp.
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Applying the limit mg — oo to the covariant form of QCD Lagrangian
for heavy quarks, we obtain:

ACQCD = Q(’LE - mQ)Q — EHQET = BgQ)i(U . D)h%Q) . (39)

From the above Lagrangian LuqrT, we obtain the following Feynman rule
for the quark—quark-gluon vertex in HQET: igT%v,,.
Q)

It is very important to note here that h,*’ destroys a heavy quark of the
4-velocity v* and does not create a correct antiquark.

Finally, this theory uses the mass of the heavy quark as an expansion
parameter, yellding predictions in terms of powers of 1/my.

1.8. Long-distance and other small contributions
to inclusive and exclusive B decays

Long-distance corrections

First note that long-distance contributions for exclusive decays cannot be
computed from first principles without the knowledge of the hadronization
process. However, it is possible to estimate them phenomenologically [51].

The operators Oj 2 contain the éc current. So one could imagine the
cc pair propagating through a long distance, forming intermediate cc states
(off-shell J/4)’s), which turn into a photon via the vector meson dominance
(VMD) mechanism. Application of the VMD mechanism on the quark
level was used by Deshpande et al. [52]. Such an approach, with a care-
ful treatment of the decay amplitude by the Lorentz and electromagnetic
gauge invariance, i.e. by canceling the contributions coming from longitudi-
nal photons, makes it possible to form the total (short- plus long-distance)
amplitude for the b — d(s)y decay [52]

eGp

m (0)
22 ViaVin (4 2o () = _“QZ :Z/J mb)

29,0 1g50) 1620\,
V Vub(gzi my, 2 mi 6 md Ao (1 +75)bE - (40)

M(b — d'7)|tota1

If in the above equation we replace the d by the s quark and forget the last
three terms, then we obtain the total amplitude for the b — sy decay. It is
important to note that we have found strong suppression when extrapolating
9111(7”12/,) to gy (0): gd} 19) (0 )/gw 15) (m¢) = 0.13 £ 0.04 [52]. This fact has to
be taken into account in any other approach (LCSR, pQCD, lattice-QCD,
etc.) to the long-distance problem [53].

The long distance contributions to an inclusive amplitude and to its
exclusive mode are all found to be small, typically of one order of magnitude
below the short distances [52].
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Other small corrections

Other small corrections to the b — d(s)~y transitions come from spectator
quark contributions [54], non-perturbative effects [55] and from the fermionic
and bosonic loop effects [56].

(i) Donoghue and Petrov found that the spectator contributions to rare
inclusive B decays are about 5%, i.e. they give the following rise to
the branching ratio [54]:

BR(B — Xsv)
Al ———F ) ~+1.05; 41
< BR(b — s7) +L00; (41)
(ii) Non-perturbative corrections up to the A?/m?2 order were estimated
by Voloshin [55]. They gives the following rise to the branching ratio:

A (BR(b — s7)) =~ +3%; (42)

(iii) Czarnecki and Marciano calculated the leading electroweak corrections
via fermionic and bosonic loops. In particular, the vacuum polarization
renormalization of a by the fermionic loops, contributions from quarks
and leptons in the W propagator loops, the two-loop diagrams where
a virtual photon exchange gives a short-distance logarithmic contribu-
tion, etc. These corrections reduce BR(b — sv) by ~ 8% [56], i.e.

A (BR(b— s7v)/BR(b — cep)) ~ —(8 £2)%. (43)
Note that aem = 1/137 for a real photon was used.

However, all above corrections never exceed an overall ~ 10%, and on
top of that there is a cancellation among them! So it turns out that the
inclusive branching ratio is stable and agrees well with measurements.

1.4. Non-leptonic B decays

Non-leptonic processes at the quark level involve gluons and gq pairs,
i.e. they are dominated by transitions b — s(d)g and b — s(d)qq [57, 58].
The following non-leptonic B meson decay properties are very important:

(i) they play major a role in the determination of the unitarity triangle
parameters: «, 8, and 7;

(ii) there are three decay classes:
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1. pure ‘tree’ contributions,
2. pure ‘penguin’ contributions,

3. ‘tree + penguin’ contributions;

(iii) there are two penguin topologies:

1. gluonic (QCD) penguins,
2. electroweak (EW) penguins;

(iv) the photon in EW penguin could be real (v) or virtual (y* — gq, £¢);
(v) there are two types of decay modes:

1. the b — sgq mode,
2. the b — dgq mode.

The experimental signatures for such charmless transitions are exclusive
decays such as B — 7w, wK, etc. For the b — s(d)cc transitions involving
charm, the exclusive decays are the very well known B — J/¢K,... and the
less known B — n.K,... modes. These modes in general are not considered
to belong to the rare decays. However, the modes based on b — s 7, are just
an order of magnitude larger than the rare sector. So they are interesting
enough to be discussed in one of the next subsections.

1.4.1. The b — sgq and b — dgq decay modes

The calculations for these processes involve matrix elements of four-quark
operators of dimension 6, and there are difficulties to estimate these ele-
ments. An additional complication here is that charmless hadronic decays
can also arise through the tree Hamiltonian with the b — u transition. A
careful study of these modes reveals that the penguins clearly dominate in
some of the, while the tree contribution can be significant in others.

The calculation proceeds in two steps [59]. First we obtain the effective
short-distance interaction including one-loop gluon-mediated diagram (I).
We then use the factorization approximation to derive the hadronic matrix
elements by saturating with vacuum state in all possible ways (II). The
resulting matrix elements involve quark bilinears between one meson state
and the vacuum, and between two meson states. These are estimated using
relativistic quark model wave functions, lattice model calculations, light cone
sum rules, the perturbative QCD type of approach, etc.

(I) To get a better understanding of the complete QCD-corrected weak
Hamiltonian density we shall discuss the gluon-mediated penguin contribu-
tion. Dictated by gauge invariance, the effective FCNC J, contains, as in
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the electromagnetic case, two terms. The first, which is proportional to G,
we call the charge radius, while the second, proportional to G, is called
dipole moment operator

Jy = Ei%)\ij {G1(vuq® — qud) L + iG20,,q" (ms L+ mypR) } . (44)

Using the standard parametrization of the CKM matrix in the case of three
doublets, G is given by

Gr gs
G1 = —= B} Z AkFl(iﬁk),
\/547{- k=u,c,t
m2
Ak = Vk*stba Ty = 2Z I 1-— Tk o (45)
myy

where the modified Inami-Lim function F(z;) derived from the penguin
(1-loop) diagrams is [6]

zp (1 13 6 2 z [ 4 4 3
Filz)="2(—+= - = — — 2=+ —=—-—]]1 . (46
1) 12<Zk+z,z )*[3 6<z,3+zz )] e (40

Note that when the gluon is on-shell (i.e. ¢> = 0), the G term vanishes.
In the ¢?#0 cases both terms participate. For a gluon exchange diagram (i.e.
for the processes b — s(d) Gg where momentum transfer ¢20) we find that
the 1 contribution dominates over Go, and we can neglect Go. At larger
¢*, G develops a small imaginary part, which is important for a discussion
of CP violation.

Charmless decays also arise from the standard tree level interactions with
the b — u transition. The effects of the tree level interaction could be large
in general. The most typical example are the two decay modes of the B+
meson. The decay BT — K170 is dominated by the tree diagram, while
the BY — K% is dominated by the penguin diagram; Figs. 2, and 3.

U 3 ;
\’\&\K‘F

Fig. 2. Tree-dominated decay Bt — K*rY.
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S KO

Fig. 3. Penguin-dominated decay B — K%zt.

(IT) From experience we know that non-leptonic decays are extremely
difficult to handle. For example, the AI = 1/2 rule in K — 7 decays
has not yet been fully understood. A huge theoretical machinery has been
applied to K — 7w decays, producing only partial agreement with exper-
iment [60]. For energetic decays of heavy mesons (D, B), the situation is
somewhat simpler. For these decays, the direct generation of a final meson
by quark current is indeed a good approximation.

According to the current-field identities, the currents are proportional to
interpolating stable or quasi-stable hadron fields. The approximation now
consists only in taking the asymptotic part of the full hadron field, i.e. its
“in” or “out” field. Then the weak amplitude factorizes and is fully deter-
mined by the matrix elements of another current between the two remaining
hadron states. For that reason, we call this approximation the factorization
approximation. Note that in replacing the interacting fields by the asymp-
totic fields, we have neglected any initial- or final-state interaction of the
corresponding particles. For B decays, this can be justified by the very sim-
ple energy argument that one very heavy object decays into two light but
very energetic objects whose interactions might be safely neglected. Also,
diagrams in which a quark pair is created from vacuum will have small am-
plitudes because these quarks have to combine with fast quarks to form the
final-state meson. Note also that the 1/N, expansion argument provides a
theoretical justification [61] for the factorization approximation, since it fol-
lows in the leading order in the 1/N, expansion [62]. Here N, is the number
of colours.

Each of the B-decay two-body modes might receive three different contri-
butions. As an example, we give one amplitude obtained from the effective
weak Hamiltonian:

ABY = 71 = L(a®)(x* by, (1 - 75)dl B (i7" y5ul0)
+ L) (s d]0) (0[5 (1 — 5)ul BT
+ LBty (1 = 75)dI0)0fbyysul B) . (47)
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The coefficients L(7%), L(7T), and L(B*) contain the coupling constants,
colour factors, flavour symmetry factors, ¢.e. flavour counting factors and
factors resulting from the Fierz transformation of the four-quark operators
from the effective weak Hamiltonian. The coefficients L(7®) and L(zn™t)
correspond to the quark decay diagram, whereas the L(B™T) corresponds
to the so-called annihilation diagrams. These factors are different for each
decay mode, as indicated by the dependence on the final-state meson. To
obtain the amplitudes for other decay modes, one has to replace the final-
state particles with the particles relevant to that particular mode.

Finaly, we have to note that the successful application of the factorization
to the B decays was proven, in the serieus of works by the Benecke group [63].
It was performed rigorously, in the heavy quark limit, from the basic QCD
principles.

We summarize all types of transitions in Table TV.

Next we present experimental results from the CLEO Collaboration [65]

BR(BT — K'7°%) = (11.673:971-3) x 1079,

BR(B' — K1) = (18.271§ £1.6) x 107°,
BR(B? —» Kr7) = (17.273 +1.2) x 107°,
(

BR(B? - K°7%) = (14.6127133) x 1075, (48)
BR(B” —» 7tn ) = (4758 £0.6) x 1075,
BR(BjE — g0 ( 4+§:(1) + 1-5) x 1075, (49)

BR(B™ — 77 p") = (104737 £2.1) x 107°,

BR(B? — 75pT) = (27.6751 £4.2) x 10~ 6,

BR(B™ — 7 w) = (11.3135 £1.4) x 1079, (50)
which are in rough agreement with the very first theoretical attempts to
predict the above measured rates [45,57-59)].

Recently from the 60 x 106 BB pairs analysed from T (4s), the BaBar
Collaboration published the following rates [66]
BR(B? = 7ntn™) = (5.4 £0.7 £0.4) x 1075,
(B® - KT77) = (17.8 £1.1 £0.8) x 1075,
BR(B? - KTK~) < 1.1 x 1075 (90% CL),
BR(B? — 7%7%) < 3.4 x 107% (90% CL). (51)

They reconstructed a sample of B mesons (Byec) decaying to mm and/or
mK final states, and examine the remaining charged particles in each event
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TABLE 1V

The leading and subleading modes for b — s(d) gq transitions.

B — sqq| Leading | Secondary | Sample By Sample By
modes term term B, modes angle B; modes| angle
b—scc| ViV, VsV J/pKg B Un 0

pentgif;?;—t) peng?lrilrll)(]u—t) el D,D,
th— s3s| VXV, VEV., PKs B on' 0
penguinic—t) | penguin(u—t) | K

b—suu| VEV, ViV ' Kg competing | ¢n’  |competing
b — sdd peng‘:l?rlfzc_t) pengleier)l(t—t) pKs terms KsKq terms

B — dqq| Leading | Secondary Sample By Sample Bg
modes term term B, modes angle B; modes| angle
b—dcc| V5LV, ViV DtD- *B YKs *3

penguin(c—u) | penguin(t—u) DD
b—dss| ViV, ViV om competing ¢Ks |competing
peng?llilrll}(,t—u) pengﬁ?r?(,c—u) KsKs terms terms
b—duu| V.5V, VisVie T TP e m'Ks |competing

b — ddd pengﬁﬂ%’u_c) pentg‘:;(t_c) Tal PP K terms

b—cud| V5V, 0 D70 DO p° B D°Ks 0
CP eigen st.|CP eigen st.

*Leading terms only.
tSee analysis of CP asymmetry in Ref. [64].

to “tag” the flavour of the other B meson (Byag). The decay rate distribution
f+(f=) in the case of 777~ and Byag = B°(BY) is given by

Fi(At) = %e*\m\/f [1 + Sprsin(AmgAt) T Cry cos(AmgAt)],

T

(52)

where 7 is the mean BY lifetime, Amy is the eigenstate mass difference,
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and At = trec — tiag is the time between the (Brec) and (Byag) decays. The
asymmetry and CP-violating parameters S;, and C,, are defined as:

_ Ng-nt+ — Ngtn- 2ImA 12

= Spr = — =—. 53
AKW NK—W-F +NK+7r— ) T 1+ |>\|2 ) T 1+ |>\|2 ( )
The experimental results are
Arr=-0.05 £0.06 £0.01,
Srr=—0.01 £0.37 +£0.07,
Crr = —0.02 £0.229 +£0.07. (54)
For pure three diagram, through b — « W~ decay, we have

>‘Bﬁ7r+7r— = .
VinVig VudVy,

A small asymmetry Ag, disfavours many theoretical predictions and/or
models with large asymmetry.

1.4.2. Exclusive and semi-inclusive B decays based on the b — s7. transition

The b — sn. transition offers a unique opportunity to test our under-
standing of the B meson decays. The related process b — st is known to
give the ratio for semi-inclusive decays “B — 1+ anything” to exclusive
decays B — K1 and B — K™, in good agreement with data. Here we
show that by taking the ratio of processes involving 7. to those involving
1), one can remove the model dependence to a large extent, and have an
independent and powerful way of determining f, , the pseudoscalar decay
constant of 7., the Sy state of charmonium.

The weak Hamiltonian corrected to NLO in QCD is given in Section 1.2.1.
The relevant QCD coefficients we need are:

c1 =1.150, ¢ =-0.313, ¢3=0.017,
cy = —0.037, ¢5=0.010, ¢g=—0.046. (56)
Now, we define the matrix elements
(0leyuclp(q)) = ieu(a) gy . (Oleyurselne(q)) = iqu fo. » (57)

where g, = (1.414+0.083) GeV* from ¢ — eTe™ [67]. The effective Hamil-
tonians in momentum space for the two decays are [68]:

Gr * —i i
i, = EWcchbHCﬂgwei(Q)S (B)vu(1 —5)0"(p) ,

G . » .
T, = 7g|vcsvcb||0 N et ()5 (B) (1 = 45)b (p) (58)
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where

1
|C¢|:CQ+03+C5+F(01 +C4+06),
C

|C’nc|202+03—C5+Ni(01+04—06). (59)
Cc
We shall treat Cy, and Cj,, as phenomenological parameters, thus absorbing
in their definition any higher-order correction or deviation from factorization
that may arise. From Ref. [69] we use the stable ratio Cy, /Cy = 1.132+0.026
and the |Cy| = 0.220 £ 0.026, which was determined following Ref. [68].
The ratio of semi-inclusive 1 production to 7, production has been found

to be

I'(B = Xsne) I'(b— sne)

I'(B — Xs) F(b — 31/))

1/2
me\? (24
My, Aoy
(mi—m§)2—m2 (mj +m2)

|

f Ne Cnc

mi(m? + mfp) — m2(2mb 1/1) +mi— 2mfp

2

>~ 4.0(GeV~?) , (60)

fnc Cnc

where A, = (1 —mj/m2 —m?2/m2)? — 4m?m?/m}. A measurement of this

hadron-model-independent ratio offers a very accurate determination of f;,. .
Next we consider the B — K1 and B — K1, exclusive modes. Using

the general Lorentz decomposition of the vector current matrix element

(K (K)|57,blB(®) = (b + k) ufiip(@®) + auf (@), (61)
we found the following ratio

I'B— Kn,)
I'(B — K1)

2 2 ()\B )1/2
(22) S
mnc (A[‘%w)i}/? KB v

fnc C”Ic
2

'rn2 m2 _
| (172 ) + e pim) (62

B B

Since my, = my,,, we have set f[(:l;(m?k)/f[(:l;(mfp) 2 1. The second term in
the above ratio is = —0.06, i.e. it is negligible with respect to the first term.
An essentially hadron-model-independent ratio is thus obtained:

I'(B— Kn,)
I'(B = Kv)

2

>~ 14.2(GeV™?) (63)

fnc Cnc
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Finally, we calculate the exclusive rates for B — K*i and B — K*n,.
Taking the general Lorentz decomposition of the relevant (V-A) current
from Section 1.2.3, we obtain the hadron-model-dependent ratio

3/2
mp +mg-\ Ag*nc | Ag|?
My, )\ﬁ*w 0
4 9
2V + 5 B <1—m[§*)|A1|2
AK*#} 4mK*mw mpy

4
m B
* (w . ) Mg Aol
K*mw

I'B— K*n.)
I'(B — K*)

f Ne Cnc

4 2 2 2 -1
mp UL Myes my
‘(W m2)<‘m—2‘m2><1‘ ) o
K=y, B B mp
This ratio can be represented as
I'(B— K*n.) I 2 (65)
I'(B— Kxp) ™ Cnc ’

where the factor R depends on the hadronic model used. We consider a
number of different models to estimate that factor. Extensive discussion
and various values of a factor R is given in Ref. [69].

To estimate branching ratios for B — X,n., B = Kn, and B — K™,
decays, one has to know the pseudoscalar decay constant f;, . Theoretically,
like the value of gy, the quantity f, can be related to the wave function of
the S-state of the charmonium at the origin:

95 = 12mylp(0)*,  fr =48 C [ (0)]7. (66)
nc
Without QCD corrections the above expressions give f, = 350 MeV. The
QCD corrections are significant but approximately cancel in the inclusive
ratio.

A non-perturbative estimate of f,. based on the QCD sum rules [70]
could be more reliable. Following Ref. [70] we have found f,. = (300 & 50)
MeV.

Using the central value of f,, = 300 MeV, and taking the ratio |Cy, /Cy| =
1.132, we estimate the following branching ratios [69]:

BR(B — X,n.) = (4.61 & 1.15) x 1073,
BR(B™ — K 1n.) = (1.80 £ 0.29) x 1073,
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BR(B® - K%.) = (1.23 £ 0.41) x 1073,
BR(B~ — K* 1.) = R(0.21 £ 0.07) x 1072,
BR(B? — K*%,) = R(0.20 + 0.04) x 1073, (67)

In summary we have shown a very accurate technique of measuring f;,
from the measurement of relevant inclusive and exclusive branching ratios
by predicting branching ratios of exclusive and inclusive ratios for the most
important modes [69]. Note also that the measurement of B — K™*n, probes
the spin-0 part of the axial form factor and, again, provides a useful check
of the model building.

The BaBar Collaboration presented, a few months ago the first measure-
ments of the above branching ratios [71]|. Their results,

BR(B" — KT5.) = (1.50 + 0.19 + 0.15 4 0.46) x 1073,
BR(B — K%)= (1.06 = 0.29 £ 0.11 4+ 0.33) x 103, (68)

are almost perfectly placed within our predicted rates.

Taking the central BR values, from the charge and from the neutral
decay mode measurements, we obtain f,. = 274 MeV and f;, = 279 MeV,
respectively.

1.5. Discussion and conclusions on the rare B meson decays

As part of the discussion, I will first present interesting results on forward—
backward asymmetry in B — K*utpu~ ‘decay and the possibility that new
physics arise through the non-standard bsZ coupling [72]:

s dI'(B = K*utpu—)\ *
AR = (I )

! d’I'(B — K*ptp™)
d(cos @
8 /1 (cos9) dsd(cos 0)

sign(cos ), (69)

where, in the p™p~ c.m.s., the variable s = mzﬂr /mQB

Since the lepton current has only (V—A) structure, then asymmetry A(F%)
provides a direct measure of the A x V interference. The asymmetry after
integration is proportional to

AR ~Re 0y (56579 + sl 2 x| (70)

Fig. 4, from Ref. [72], shows very nicely the asymmetry as a function of the
variable s. From this the following conclusions could be drawn:
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AFB(B -> K /1“+ ,uf)(S)

Lo

|
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\ \
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S

Fig.4. The forward-backward asymmetry Apg(B — K*u*pu~)(s) including non-
perturbative effects from the resonant éc background [72].

(1) in the case of CP conservation in the SM, we have .A%@ = —A%%);

(2) because of hadronic uncertainties the A%%)(SMSM = 0.1) = 0 at the
10% level;

(3) in the SM Agg)(s > s9) > 0 and sgnCig change in the presence of
non-standard bsZ vertex, which is the sign of new physics;

(4) the CP violation

acp(B — K*'p'p™) =

AL (5) + AP (s)
(B

(71)
AL (s) — AL (s)

could rise up to 10% in the presence of new physics in the bsZ vertex;
(5) the resonant ¢c background was eliminated by taking the cut at

s < 0.3. The short-distance contributions are then reduced by ~ 60%
in agreement with Refs [9,46].
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A few important points have to be emphasized. The so-called spectator-
quark contributions [54] and the first calculable non-perturbative, essentially
long-distance, correction [55] to the inclusive rate are of the order of a few
per cent. It has also been proved that the fermionic (quarks and leptons)
and photonic loop corrections to b — sy reduce BR(b — s7v)/BR(b — cer)
by ~ 8 £ 2% [56]. Consequently, it is more appropriate to use qem = 1/137
for the real photon emission [46, 56].

In general, we can conclude that, in the theory, more effort is required in
calculating quark (inclusive) decays through higher loops. A better under-
standing of bound states of heavy-light quarks (B meson etc.) and highly
recoiled light quark bound states (K*, p, ...) is desirable. This can be
achieved by inventing new, more sophisticated perturbative methods [73]
and applying them to the calculation of radiative B meson decays, which
incorporate the full spectrum of quark bound states (K*, p, Ky, ...). In
any case it looks like hadronic form factors will be obtained in the future
from basic-principle QCD calculations on the lattice.

In experiment, with a larger amount of data, we might expect a regular
but smaller and smaller increase of inclusive and exclusive branching ratios,
and consequently stabilization of the hadronization rates: Rg~«, R,, R+,
etc.; determinations of BR(B — K;+y) and some other, higher K** resonant
modes; first measurements of BR(b — dvy), BR(B — py), and many other
inclusive and exclusive rare B meson decay modes.

2. Forbidden decays

On non-commutative space, the Non-Commutative Standard Model
(NCSM) allows new, usually SM-forbidden interactions: for example, triple-
gauge boson, fermion—fermion—2 gauge bosons interactions, photon coupling
to left-handed and to sterile (right-handed) neutrinos, etc. In these lec-
tures we concentrate on decays, forbidden in the SM due to the Lorentz
and gauge invariance. They are Z — vy and Z — gg decays, from the
gauge sector of the NCSM, the flavour-changing K — 7y, D — (m, K)7,
and B — (m, K, D)y decays from the hadron sector, and the “transverse
plasmon” decay to neutrino antineutrino pairs, i.e. yp — V.

For the gauge sector, it was necessary to construct the model, which
we name ‘non-minimal NCSM”, which gives the triple-gauge boson cou-
plings. To consider plasmon decay we constructed the non-commutative
Abelian action and estimated the rate I'(y, — v7). For forbidden decays
in the flavour-changing hadron sector, we constructed the effective, point-
like, photon X current X current interaction based on the minimal NCSM.
The corrections due to the strong interactions are also taken into account.
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The branching ratio for K™ — 7+ decay estimated, in the static-quark ap-
proximation and at a non-commutativity scale of order 1/4 TeV, is predicted
to be of the order of 10716,

2.1. Introduction to the non-commutative gauge theories

The idea that coordinates may not commute can be traced back to
Heisenberg. A simple way to introduce a non-commutative structure into
spacetime is to promote the usual spacetime coordinates z to Non-Com-
mutative (NC) coordinates & with [74-79]

[ZH, V] = 0", [0",3P] =0, (72)

where 0" is a constant, real, antisymmetric matrix. The non-commutativity
scale Anc is fixed by choosing dimensionless matrix elements ¢ = A% O*
of order 1. The original motivation to study such a scenario was the hope
that by introducing a new fundamental scale one could deal with the infini-
ties of quantum field theory in a natural way.

Apart from many technical merits, the possibility of a non-commutative
structure of space-time is of interest in its own right, and its experimental
discovery would be a result of fundamental importance.

Note that the commutation relation (72) enters in string theory through
the Moyal-Weyl star product

e GHIVL L. QHnln

f*QZZWam--

n=0

O f Oy - O, (73)

which gives for coordinates: z# * ¥ — ¥ x gt = 10"

Experimental signatures of non-commutativity have been discussed from
the point of view of collider physics [80-83] as well as low-energy non-
accelerator experiments [83-85]. Two widely disparate sets of bounds on Axc
can be found in the literature: bounds of order 10'! GeV [84] or higher [83],
and bounds of a few TeV from colliders [80-82]. All these limits rest on one
or more of the following assumptions, which may have to be modified:

(a) 0 is constant across distances that are large with respect to the NC
scale;

(b) unrealistic gauge groups;
(¢) non-commutativity down to low-energy scales.

Non-Commutative Gauge Field Theory (NCGFT) as it appears in string
theory is, strictly speaking, limited to the case of U(N) gauge groups, where
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the Seiberg—Witten (SW) map [86] plays an essential role since it does ex-
press non-commutative gauge fields in terms of fields with ordinary “commu-
tative” gauge transformation properties. A method of constructing models
on non-commutative space-time with more realistic gauge groups and parti-
cle content has been developed in a series of papers by the Munich group [87]
and [88], culminating in the construction of the NCSM [89].

This construction for a given NC space rests on a few basic ideas, which
it was necessary to incorporate [90]:

1

non-commutative coordinates,

2) the Moyal-Weyl star product,

4) Seiberg—Witten map as a most important new idea.

(1)
(2)
(3) enveloping algebra-valued gauge transformation has to be used,
(4)
(5)

Concepts of covariant coordinates, locality, gauge equivalence, and
consistency conditions had to be maintained.

The problems that are solved in this approach include, in addition to
the introduction of general gauge groups, the charge quantization problem
of NC Abelian gauge theories and the construction of the covariant Yukawa
couplings.

There are two essential points in which NC gauge theories differ from
the standard gauge theories. The first point is the breakdown of Lorentz
invariance with respect to a fixed non-zero 6* background (which obviously
fixes preferred directions) the second is the appearance of new interactions
(triple-photon coupling, for example) and the modification of the standard
ones. Both properties have common origin and appear in a number of phe-
nomena.

2.2. Non-commutative Standard Model decays
2.2.1. Gauge sector: Z — v, gg decays

Strictly SM forbidden decays coming from the gauge sector of the NCSM
could be probed in high energy collider experiments. This sector is partic-
ularly interesting from the theoretical point of view. Our main results are
summarized in (88) to (91).

The general form of the gauge-invariant action for gauge fields is [89]

1 ~ ~
Seauge = —3 d%TrEFW * FHv . (74)
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Here Tr is a trace and G is an operator that encodes the coupling constants
of the theory. Both will be discussed in detail below. The NC field strength
is

Foy=0,V, —8,V, —i[V, * V] (75)

and ‘/}M is the NC analogue of the gauge vector potential. The Seiberg—
Witten maps are used to express the non-commutative fields and parameters
as functions of ordinary fields and parameters and their derivatives. This
automatically ensures a restriction to the correct degrees of freedom. For
the NC vector potential, the SW map yields

~ 1
Ve = Ve + 10" {Vi, (0uVe + Fug)} + 0 (6%). (76)

where F,, = 0,V, — 0,V,, — [V}, V,] is the ordinary field strength and V,, is
the whole gauge potential for the gauge group Ggy = SU(3)¢ x SU(2), x
U(l)y:

3 8
Vi=gAu@)Y + 9> Bua(@)Tf +g5, Y Gup(z)T8. (77)
a=—1 b=1

It is important to realize that the choice of the representation in the def-
inition of the trace Tr has a strong influence on the theory in the non-
commutative case. The reason for this is that, owing to the Seiberg—Witten
map, terms of higher than quadratic order in the Lie algebra generators will
appear in the trace. The adjoint representation as, a natural choice for the
non-Abelian gauge fields, shows no triple-photon vertices [89,91].

The action that we present here should be understood as an effective
theory. According to [89], we choose a trace over all particles with different
quantum numbers in the model that have covariant derivatives acting on
them. In the SM, these are, for each generation, five fermion multiplets
and one Higgs multiplet. The operator G, which determines the coupling
constants of the theory, must commute with all generators (Y, Tf,TSb) of
the gauge group, so that it does not spoil the trace property of Tr, i.e.
the G takes on constant values g1, ..., ge on the six multiplets (Table 1 in
Ref. [89]).

The action up to linear order in # allows new triple gauge boson inter-
actions that are forbidden in the SM and has the following form [92]:

1
Sgauge = _Z/d4$fuufﬂy

—% / d*z Tr (F,, F') — % / d*z Tr (G, G*™)
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1
+%m7$fn<f%GW—QMnJGW

+ g'%o”/ d'z <1prqu _ fupfw) Iz

1
gfgef/ﬁ4 E:[(ZLWE&-Lmﬁz)zﬂWﬂ+Cp}
1
+gy§%9f/fx§:[<zﬂwab — fupGY )Gmw+cp],w&
b=1
where c.p. means cyclic permutations in f. Here f,,, Fj,, and wa are
the physical field strengths corresponding to the groups U(1)y, SU(2),, and

SU(3)c, respectively. The constants k1, ko, and g are functions of 1/¢? (i =
1,...,6) and have the following form:

1 1 8 1 1 1

Rl = — o e b o
gt 493 993 997 3692  4g3
L1
ky = ——5+ 5+,
493 49 4qg?
11 1
Ky = 4 — (79)

392 697  6g2

In order to match the SM action at zeroth order in 6, three consistency
conditions have been imposed in (78):

12,1 8 L 2 1.1
g% ¢ g2 33 3¢7 32 g2

S S L

2 i ¢ R

1 1 1 2

= = S+5+ (80)
2 g g g

These three conditions, together with the requirement that 1/ gf > 0, define
a three-dimensional simplex in the six-dimensional moduli space spanned
by 1/¢%,...,1/g?. Since the last three couplings in (78) are not uniquely
fixed by the NCSM, they need to be determined through the various types of
physical processes, such as decays and collisions, unpolarized—polarized, etc.

From the action (78) we extract the neutral triple-gauge boson terms
which are not present in the SM Lagrangian. In terms of physical fields
(A, Z,G) they are [92]
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Loy = 5 5in0200 Kooy 07 A (A Apr = 44,5 Arr)

1
Kyyy = 3 99’ (k1 + 3k2) ; (81)

Ly = Z $in 20y Kz 077 [221 (24,0 Ayr — Ay A,y)

+ 87, AP Ay — Zpy Ay A,
1

Kzyy = 2 [91251 + (9’2 - 292) f<é2} ; (82)

£ZZ7 = ,CZrW(AHZ),
-1

Kzzy = %94 [9’4H1 +g° <g2 - 2912> f<é2} ; (83)

L2727 = Lo(A = 2),

—1
Kzzz = 5= [91451 +394H2} ; (84)
29

Lzgg = Lzyy(A— Gb) )

2 !
g g
Kzgg = Es [1 + (E)Q] K3} (85)
Loygg = Lzg9(Z — A),
2 !
-9 g g
Kygg = 25 [? + g] K3 (86)

where A, = 0,A, — 0,A,, etc. Fig. 5 shows the three-dimensional simplex
that bounds allowed values for the dimensionless coupling constants K,
Kz,y and Kz4,. For any chosen point within the simplex in Fig. 5, the
remaining three coupling constants (83), (84), (86), i.e. Kzz,, Kzzz and
K, 4 respectively, are uniquely fixed by the NCSM. This is true for any
combination of three coupling constants from Eqs. (81) to (86).

Experimental evidence for non-commutativity coming from the gauge
sector that should be searched for in the processes involving the above cou-
plings. The simplest and most natural choice are the Z — 77, gg decays,
allowed for real (on-shell) particles. All other simple processes, such as
vy = vy, 99, and Z — Z~, ZZ, are on-shell-forbidden by kinematics. The
Z — vy, gg decays are strictly forbidden in the SM by Lorentz and gauge
invariance; both could therefore serve as a clear signal for the existence of
space-time non-commutativity.
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0.2
Kz
o 99
0.6
-0.4
Kyyyo0.2 -0.2
0

6.3 -0.2 -0.1 0 01
KZW

Fig.5. The three-dimensional simplex that bounds possible values for the coupling
constants K., Kz,, and Kz, at the Mz scale. The vertices of the simplex
are: (—0.184, —0.333, 0.054), (—0.027, —0.340, —0.108), (0.129, —0.254, 0.217),
(—0.576, 0.010, —0.108), (—0.497, —0.133, 0.054) and (—0.419, 0.095, 0.217).

There is huge interest among the experimentalists to find the anomalous
triple-gauge boson couplings [93], since such an observation would certainly
contribute to the discovery of physics beyond the SM. The experimental
upper bound, obtained from the eTe~ — 7y annihilation, for Z — v, is:

5.2 from L3 [95]
rZ—vy) < | 55 |x107°GeV,| from DELPHI[96] |. (87)
14.0 from OPAL [97]

Note that the Z — ~7 process has a tiny SM background from the rare
Z — 7%y, ny decays. At high energies, the two photons from the 70 or 7
decay are too close to be separated and they are seen in the electromagnetic
calorimeter as a single high-energy photon [97]. The SM branching ratios
for these rare decays are of order 10~! to 107'% [98]. This is much smaller
than the experimental upper bounds which are of order 107> for the all three
branching ratios (Z — vy, 70, nv) [67].

The Z — gg decay mode should be observed in Z — 2 jets processes.
However, it could be smothered by the strong Z — ¢q background, i.e. by
hadronization, which also contains NC contributions. Since the hadronic
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width of the Z is in good agreement with the QCD-corrected SM, the
7 — gg can be at most a few per cent. Taking into account the discrep-
ancy between the experimentally observed hadronic width for the Z-boson
and the theoretical estimate based on the radiatively corrected SM, we es-
timate the upper bound for any new hadronic mode, such as I'z_,4, to be
~ 1073 GeV [67].

We now derive the partial widths for the Z(p) — ~(k)~(k') decay.
From the Lagrangian Lz, it is easy to write the gauge-invariant ampli-
tude Mz_,,, in momentum space, which gives:

8 16
D7 Mz = =67+ 5 (06%p) — - o (kOK')?. (8)
spins Z Z

From the above equation and in the Z-boson rest frame, the partial width
of the Z — ~y decay is [92]:

5 7. .
FZ_VY’Y Sln 29WKZ’Y'Y |:§(E0)2 + (B0)2:| \ (89)

4
12 ANC

where Ejy = (¥, %2, %3) and By = (c®,c'3, c'?), are responsible for time-—
space and space—space non-commutativity, respectively. This result differs
essentially from that given in [83], where the I';_,,, partial width depends
only on time-space non-commutativity.

For the Z-boson at rest and polarized in the direction of the 3-axis, we
find that the polarized partial width is [92]

5

a M
Tys_ = 1 Aﬁi sin? 29WKZ77

g [%((c“)?+(c°2)2)+§(c°3)2+(c”)2 . (90)

In the absence of time-space non-commutativity a sophisticated, sensibly
arranged polarization experiment could in principle determine the vector of
E() A NC structure of space-time may depend on the matter that is present.
In our case it is conceivable that the direction of Eg, Bg may be influenced
by the polarization of the Z particle. In this case, our result for the polarized
partial width is particularly relevant.

Since the Lagrangians Lz,, and Lz4, have the same Lorentz structure,
we find

I'z99 L7344 _ KQZgg
= = 88—+ (91)
L'z I'z3 59y K7y
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The factor of 8 in the above ratios is due to colour.

In order to estimate the NC parameter from upper bounds Fg’ﬁw <

1.3 x 10~* GeV and F;’fgg < 1x 1073 GeV [67] it is necessary to determine
the range of couplings Kz, and Kzg,.

The allowed region for the coupling constants Kz, and Kz, is given in
Fig. 6. Since Kz, and K744 could be zero simultaneously, it is not possible
to extract an upper bound on € from the above experimental upper bounds
alone.

0.2
0.1
Kzgg
0
0.1 /
0.3 -0.2 -0.1_ 0 01
Kzyy

Fig.6. The allowed region for Kz, and Kz,, at the My scale, projected from
the simplex given in Fig. 5. The vertices of the polygon are (—0.254, 0.217),
(—0.333, 0.054), (—0.340, —0.108), (0.010, —0.108) and (0.095, 0.217).

To succeed in estimating 6, we should consider an extra interaction from
the NCSM gauge sector, in particular triple-photon vertices. From the sim-
plex we find that the triplet of coupling constants K., Kz, and Kzgq,
as well as the pair of couplings K,,, and Kz, cannot vanish simultane-
ously (see e.g. Fig. 7) and that it is possible to estimate 6 from the NCSM
gauge sector through a combination of various types of processes containing

0.1
0
-0.1
Kyyy 79-2
-0.3
-0.4
-0.5

—0.3 -0.2 -0.1 0 0.1

Kzyy

Fig.7.  The allowed region for Kz,, and K,,, at the My scale, pro-
jected from the simplex given in Fig.5. The vertices of the poly-
gon are (—0.333, —0.184), (—0.340, —0.027), (—0.254, 0.129), (0.095, —0.419),
(0.0095, —0.576), and (—0.133, —0.497).



4352 J. TRAMPETIC

the yvyvy and Z~v+v vertices. These are processes of the type 2 — 2, such as
ete” — vy, ey — ey, and 7y — eTe in leading order. Such inclusion of
other triple-gauge boson interactions sufficiently reduce available parameter
space. The analysis has to be carried out in the same way as in Ref. [81].
Theoretically consistent modifications of relevant vertices are, however, nec-
essary. The allowed region for pairs of couplings K., and Kz, is presented
in Fig. 8.

0.1 [
0
-0.1
Kyyy 02
0.3
-0.4
-0.5 /
—
0.1 0 0.1 0.2

KZgg

Fig.8. The allowed region for K., and Kz,, at the M scale, projected from
the simplex given in Fig.5. The vertices of the polygon are (—0.108, —0.576),
(—0.108, —0.027), (0.217, 0.129), (0.217, —0.419), and (0.054, —0.497).

2.2.2. Hadron sector — flavour changing decays: K — 7w, ...

From the action (55) in Ref. [89], for quarks that couples to an non-
Abelian gauge boson in a non-commutative background, we obtain the ex-
plicit formulas for the electroweak charged currents in the leading order of
the expansion in 6:

d u
too=(act )LJ+VCKM s | +( ass )LLV@*KM c |2
b t
L L

were J are given in Egs. (69) and (70) of Ref. [89]. Note that for left-handed
quarks the hypercharge ¥ = 1/6.

Isolating terms linear in W and A fields, we have found the following
charged current:

- - 2 - (1
I = T W — e sin b (50%”‘ + 0”%“)
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1
x [g <AWWJ 2W;VA ) + (AW, — A W) oo | ¢, (93)

with A, = d,A, — 0,A,, etc.

To simplify the calculation of the K — 7y decay rate, we use the static-
quark approximation (sqa) in the following way.

First we modify the charged current by applying the integration by parts
on the QZW;;AOA/J term of the above equation. We then use the static-quark
approximation in the above equation by neglecting all derivatives acting
on quark fields, i.e. by putting da1) = 9,90 = 0, and obtain the following
expression:

g2
_ g 1
Joy = —— Wry' — I_sing <—0“" * 4+ o7 “)
Iy = g ﬂw P NG W 50" gl
1
AW = 5 (@AW~ 0 AW) |0 (9
The contributions to the K — 7wy decay amplitude come from the Feyn-
man diagrams given in Fig. 9. The first two classes of diagrams in there, by
integrating out the heavy W ™-boson field, effectively shrink into the fifth
diagram, which represents in the momentum space, the effective, gauge-
invariant, point-like, non-commutative photon X current X current inter-

action Hamiltonian [99] in the static-quark approximation, responsible for
SM-forbidden K (k) — m(p)y(q) decay:

y 22
HIS\IqSSM(A]]T) = ZTGGF V Vud (GIL( ) J“(k,p)) 9
J*(k,p) = g (05 + 0V + 0°*5) 1, q=k—p,
. vor - oy . . t
(0% +0°5 +0°57) b, = (B0 ) (diarit)
H;Wa — ouu,ya 4 oua,yu 4 Hau,yu’ (95)

where €,(g) is the photon polarization vector. Note that in the calculation
of the diagrams in Fig. 9 we were using the valence quark approximation,
i.e. the fact that quark-antiquark pairs in K and 7 mesons are collinear.

The flavour-changing parts of the charge current are defined as

= Ly —s)u; = (Ldyr (1 — )’ (96)

Before proceeding to the next step of our calculations, we have to discuss
the possible £3M + LNESM contributions that come from the diagrams where
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Fig.9. Free quark Feynman diagrams representing the procedure of deduction of
the point-like photon X current x current interaction Hamiltonian in the minimal
NCSM. The diagram with double W+ exchange is given for the sake of complete-
ness, since its contributions are suppressed by G% and consequently neglected.
QCD corrections are indicated. The different combinations of ¢1, >, ¢; and ¢y pro-
duce different decay modes. For example the combination (5u) — (du)~y represents
the K+ — 7%~ decay mode.

the photon is attached to the quark and to the boson fields. Considering
only vertices from SM and NCSM up to linear order in 6, it is clear from
diagrams in Fig. 9 that we have to analyse altogether five diagrams. Vertices
in diagrams are of the following type: 55 (qqy) + iN"M(qqy), 15 (ggW) +
RN (qgW), and G (WWa) + G M (W),

First, the terms coming from the neutral currents (Eq. (73) of Ref. [89])
are absent due to the static-quark approximation, i.e. diagrams where pho-
tons are attached to quark fields do not contribute. Second, isolating the
WW A terms from Eq. (73) of Ref. [89], we obtain a structure containing
terms with power proportional to eg?, the same as for the pure SM dia-
gram. However, integrating out heavy W fields [100], it is easy to see that
diagrams contribute to the amplitude with power proportional to eG%, and
consequently we could safely neglect them.

The next, very important step is to introduce QCD short-distance effects,
by considering gluon exchange contributions; see e.g. sixth diagram in Fig. 9.
All the other contributions that originate from diagrams that contain vertices
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with more than two gauge bosons (for example photon-photon—W) are of
order 2. We also note that a diagram with a photon-gluon-gluon vertex
does not exist in the minimal NCSM [89]. Because of this QCD corrections
to the NCSM photon x current x current Hamiltonian are not affected by non-
commutative terms, i.e. they remain the same as in the case of the SM QCD
enhanced effective weak Hamiltonian [100|. This way, for the above current
X current interactions, we have

eff
(338) gy = # (-0 +:04). (97)

where the operators O are defined in the usual way [100]:
O = 59" (1 =y )u'@y (1 — ) F 59" (1 = y5)d @ 7 (1 — y5)u , (98)

with upper ¢, j indices defining the colour quantum numbers. The one-loop
corrections, i.e. the QCD enhancement (suppression) coefficients c_ (c) at
the renormalization scale p ~ 1 GeV, and Agcp ~ 0.2 GeV receive the
following values ¢ ~ 2.1, ¢, ~ 0.4. Consequently, branching ratios receive
an order of magnitude enhancement and/or suppression due to the QCD
corrections.

Now we proceed with the calculation of the KT — 7%+ decay. The
hadronic matrix element (r|5j7|K) in the vacuum saturation approximation

has the following form:
K* (1))

(o |(iL)
= L (e +26,)(n ()] 15d|0) (0|55l K (k)

QCD
12

- %(C, +2¢4) (—ip" fr) (ks fr0) - (99)

From the above expressions we found the amplitude for the K+ — 7T+
decay (with ¢ =k — p):
qua — 7’
Kry 3\/§
xeu(q) | (pk) + p"(a0k) — F(pg) | (100)

Taking the kaon at rest and performing the phase-space integrations,

from the gauge-invariant amplitude MS}?%,

1
e Gy VJsVudfﬂng(cf + 20+)

1 i} 1
> Munl = g€ GHVE Vil F2 R e + 204"

spins

x |G(pk)? — 2k (pk) (pa) + Fk(pa)” — (a0k)*p?], (101)
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we obtain the following expression for the branching ratio:

BRSqa(KJr — 7T+’)/) = 7'K+F(KJr — ty)

TR+« 1

m m2 3 m2 2 3 m2 2 3

K T s 07\2 s i7\2
e () <1__) o (12 72) 30

i<j

(102)

The QCD corrections turn out not to be of particular importance for
our charged decay mode K+t — wtv. However, the neutral decay mode
K° — 7% is suppressed by a factor of (c_ —2cy)?/2(c_ + 2¢4)? relative to
the charged one, owing to isospin and to the QCD corrections.

To maximize the branching ratio due to the effect of non-commutativity
we assume that the square bracket in the above expression takes the value
of 2. We are taking experimentally known quantities such as masses: m .+,
Mg+, Mmp+ and mp+, mean lives: 7r+, Tp+ and 7+, CKM matrix elements:
|Vudl, |Vus| and |Veq|, and pseudoscalar meson decay constants: fr+, fr+
and fp+ from the Particle Data Group [67]. We find the CKM matrix
element |V,| = 0.0037 in recently published BaBar results [101]. Finally,
we are using decay constants fp+ = 215 MeV and fp+ = 186 MeV from
recent lattice calculations reported in Ref. [102]. The branching ratio for
KT — 7T~ as a function of the non-commutative scale Ayc is:

1
BR(K' — nty) ~0.8 x 1075 i (103)
NC

while the other interesting modes could easily be found from the following
ratios:

BR(K' — nty) : BR(D§ — ') : BR(D' — n"y) : BR(BT — 779)
=1:240:0.20:0.01. (104)

A very interesting is the D; — w1 decay, since it dominates over the other
modes, because of the absence of the CKM suppression. The branching
ratios for BT — (K+, D")y modes are very small.

For the non-commutativity scale of 0.10, 0.25, 0.50, 1.0 TeV we have
found values of the branching ratio BR(K+ — n) ~ 0.8x 10714, 2x 10716,
1.3 x 10717, and 0.8 x 1078, respectively.

All the above statements are of course true only in the static-quark ap-
proximation.
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2.2.3. Gauge invariance and the K — 7w+ decay in SM

To show the correctness of our estimate of the BR(K — 7y) within the
NCSM we will next prove that the amplitude for K — 7y decay vanishes in
the SM because of the electromagnetic gauge condition.
There are two contributions to the amplitude A(K — 7y)|sum:
(P) the amplitude arising from the FCNC (1-loop penguin diagrams)
Fig. 1. AP*"&(K — 7y)|sm,

(T) the amplitude coming out of tree diagrams
Fig. 9: A"®(K — 7y)|sum,
so that we have

A(K = my)|sm = AP"8 (K — 7)|sm + A"(K — my)|sm - (105)
The proof that A(K — 7y)|sm = 0 proceeds in the following steps:
(1) We write the SM penguin contributions to the free quark amplitude.

(2) The five free quark diagrams with a photon coming out of quark legs
and the photon out of the W propagator, from Fig. 9, contribute to
the SM tree amplitude. We estimate those diagrams in the 't Hooft—
Feynman gauge using the standard argument for the Feynman propa-

gator,
kM kY
1 _gl'l‘lj+ m2 . g[JJ/
d'z Al :/d4 d'k Wt = S (106
/ A (@, m) ’ (2m)t k2 —mi, ¢ miy, (106)

(3) Next we hadronize the SM free quark amplitudes by sandwiching the
interaction (four-quark) operator, between the time-independent state-
vectors (m | and |[K ). This corresponds to the well known Heisenberg
picture [103].

(4) We apply Lorentz decomposition of the relevant hadronic matrix el-
ement in the penguin amplitude and use the vacuum saturation ap-
proximation and PCAC in the tree amplitude evaluations.

(5) We assume that the meson is described within the valence quark ap-
proximation and that quark and antiquark are collinear, each carrying
a half of the meson momenta.

(P) From Fig. 1, i.e. from the first equation in Section 1.2 for a real
photon we have

AP (K — my)|sm
=1Gy <7r+(p)| (deUquVSL + msJU;quSR) |K+(k)> GM(Q) . (107)
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Next we use the Lorentz decomposition of the 0y, operator matrix element
and find

(nF (p)|dowq”s| KT (k) €(q) = (kupy — kupu) 0” €"(q) £(¢?)
= (kq) (qu€"(a)) f(¢*) =0, (108)

which means that AP*"8: (K — 7y)|sm = 0.

(T) We start to calculate the diagram with a photon coming out of the
W propagator, Fig. 9. After a trivial integrations over the delta functions,
the amplitude reads

2 - aTt
Ao = —ie V2 Vot (b, )Ya (1 = 15)ba(pa) L5
4 miy,
g’p
x[(@ = P)vgur + (P = k) ugrv + (b — @) 9] -
B w
Xts(ps)vs (L — ¥5)Yu; (Pu;) € (q) - (109)

Momentum conservation: k = ps + pu,, p = pg+ pu;, k = p+ ¢, and the
assumptions (3)—(5) gives:

2
. . m
Al = —ieV2Gr frfi Vusvudm—; (gu€"(q)) = 0. (110)
w
Next, we estimate the free-quark amplitude from the diagram where the

photon is coming out of the antiquark s leg, Fig. 9. After a trivial integration
we find

2 _ vT
ATl = g ViVt (a0 = 9 atra)y
) Bspsyy P2 A T (pa) €(a). (111)

(pg—Q)2 —mg g

Using the assumption (3)-(5), from the above denominators we obtain a
factor 1/(kq)m?,. Using Dirac algebra identities to reduce v, (¥s — o)V,
term, and assumptions (4), with the help of definitions kq = pq = (k%2 —p?)/2
and (01577, (1 — v5)1u; [ KT (k)) = 0, we obtain the following amplitude

Vit 22 (ke (q)) (112)

Atree|SM =i e\/_GF fﬁfK us ud k

The amplitude coming from the second initial leg is:

Alsm = 248 |sm. (113)
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The amplitudes from the outgoing quark—antiquark pair are
Alsm = 247%|su
=2 * kp 1
= i VA0 fofi ViVua Due (@) (114)
Summing up the above four contributions, we have

: kip
(Au, + As + Au, + Ag)anr = ieV2GE fr K Vity “dk P (que(q)) = 0 (115)

which finally gives
AT(K — my)|sm = (Aw + Ay, + A5 + Ay, + Ag)ay; =0. (116)

By this, we prove our statement that the amplitude for K — 7wy decay
vanishes in the SM, because of the electromagnetic gauge condition, i.e.

A(K — m)|sm = AP (K — ) |sm + A™(K — 7y)|sm = 0. (117)

2.3. Non-commutative Abelian gauge theories

In the last part of these lectures we discuss a possible mechanism for ad-
ditional energy loss in stars induced by space-time non-commutativity. The
mechanism is based on neutrino—antineutrino coupling to photons, which
arises quite naturally in non-commutative Abelian gauge theory [104].

We are interested in an effective model of particle physics involving neu-
trinos and photons on non-commutative space-time. More specifically we
need to describe the scattering of particles that enter from an asymptoti-
cally commutative region into a non-commutative interaction region. We
shall focus on a model that satisfies the following requirements:

(i) Non-commutative effects are described perturbatively. The action is
written in terms of assymptotic commutative fields.

(ii) The action is gauge-invariant under U(1)-gauge transformations.

(#3i) Tt is possible to extend the model to a non-commutative electroweak
model based on the gauge group U(1) x SU(2).

As we have already argued in these lectures the action of such an effective
model differs from the commutative theory essentially by the presence of
star products and Seiberg-Witten maps. The Seiberg-Witten maps are
necessary to express the non-commutative fields 1/1, A that appear in the
action and that transform under non-commutative gauge transformations,
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in terms of their asymptotic commutative counterparts 1 and A,. The
coupling of matter fields to Abelian gauge bosons is a non-commutative
analogue of the usual minimal coupling scheme. Neutrinos do not carry a
U(1) (electromagnetic) charge and hence do not directly couple to Abelian
gauge bosons (photons) in a commutative setting. In the presence of space-
time non-commutativity, it is, however, possible to couple neutral particles
to gauge bosons via a star commutator. The relevant covariant derivative is

D) = dyp —ieA, x4+ iehx A, (118)

with a coupling constant e. Here one may think of the non-commutative
neutrino field ¢ as having left charge +e¢, right charge —e and total charge
zero. From the perspective of non-Abelian gauge theory, one could also say
that the neutrino field is charged in a non-commutative analogue of the ad-
joint representation. Physically such a coupling of neutral particles to gauge
bosons is possible because the non-commutative background is described
by an antisymmetric tensor 0# that plays the role of an external field in
the theory. The photons do not directly couple to the “bare” commutative
neutrino fields, but rather modify the non-commutative background. The
neutrinos propagate in that background.

The action for a neutral fermion that couples to an Abelian gauge boson
in a non-commutative background is [104]:

S = /d4$ ({Z*mﬂﬁﬂi— mQ?J\* J) ) (119)

Here ) = 4 + €07 A, 0,9 + O(6?) and A, = A, + 67 A, [9,A, — 19,4,] +
O(6#?) is the Abelian NC gauge potential expanded by the SW map.
To first order in #, the action reads

S = [ ds {Fliv 0, - m (1 +e0™ A4

+iedH” [(auz/_’)Au’Yp(apT/J) - (apl/_})Au’Yp(aM/’) + &(auAp)'Yp(aﬂ/})} } .
(120)

Integrating by parts, this can also be written in a manifestly gauge-invariant
way as

- 1
S = / d*ze) [Mau —m (14 eb"A,,) —ieA,, <§aﬂ”yﬂap + 0”’)7“8,))] .
The above action represents the tree-level point-like interaction of the pho-

ton and neutrinos. We could also call it “the background field anomalous-
contact” interaction.
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2.3.1. The plasmon decay to neutrino—antineutrino pairs

To obtain the “transverse plasmon” decays in the stars on the scale of non-
commutativity, we start with the action determining the yvv interaction. In
a stellar plasma, the dispersion relation of photons is identical with that of
a massive particle [105-107]

= E',% - q,2y = %2)1 (121)
with wp being the plasma frequency.

From Eq. (120) we extract, for the left-right massive neutrinos, the fol-
lowing Feynman rule for the v(q) — v(k")7(k) vertex in momentum space:

Tt (i) = ie3 (15 95) [ (@0R)y" + (K —2m,)a — g+ ] (122)

R

In the case of massless neutrinos the Feynman rule reads:

F(“L)(w?fy) =iet(LF 75)0" kygr, 0" =047 + 60" TyH 4+ 07Hy". (123)
R

Here g, I'" = 0 explicitly shows the electromagnetic gauge invariance of the
above vertices.

From the gauge-invariant amplitude M., in momentum space for plas-
mon (off-shell photon) decay to the left and/or right massive neutrinos in
the NCQED, we find:

5 o~
S Mool =462 (¢ = 2m) (J2a? - (ao)?) 4 B2 - T [ 20
pol.

In the rest frame of plasmon-medium we have

L. E2 2L . E2
¢ =B (0% = > (M) = - Ef = b, (125)
i=1 NC ;=1 NC

6
_ a W m2
r =__2 1—4—%
Ont = Zay() = 28 B4ty 2

3

(c)?| .(126)
i,j=1
i<j

Sl
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In the all above calculations we have used the notation:
= 10" qu[* = (0" 0.)(0p”")T = = (0" 0,) (040",

3 3
9 ) . 2 .
67 =0"0,,=(0%) = ——( S (") = (¢9)? | = (Eg Bg).(m)
ANC i=1 i,j=1 ANC

i<j
In the above expression we parametrize the cg;’s by introducing the angles
characterizing the background 6*" field of the theory:

Col = cosa, Cgo =sina cosfB, co3 =sina sinf, (128)

where « is the angle between the Eg field and the direction of the incident
beam, i.e. the photon axes. The angle /3 defines the origin of the ¢ axis. The
co;'s are not independent; in pulling out the overall scale Axc we can always
impose the constraint 23:1 (c")? = 1. Here we consider three physical cases:
a =0, /4, w/2, which for § = 7/2 satisfy the imposed constraint. This
parametrization provides a good physical interpretation of the NC effects.

In the rest frame of the medium, the decay rate of a “transverse plasmon”,
of energy F., and for the left-left and/or right-right massless neutrinos, is
given by

I _ o (0% 1 gl
Ne(wl = vy P(Ly) = 4o 1B, (129)

The Standard Model (SM) photon-neutrino interaction at tree level
does not exist. However, the effective photon—neutrino—neutrino vertex
I''e(yvp) is generated through 1-loop diagrams, which are very well known
in heavy-quark physics as “penguin” diagrams. Such effective interactions
[108, 109] give non-zero charge radius, as well as the contribution to the
“transverse plasmon” decay rate. For details, see paper [108,109], includ-
ing the references there. Finally, note that the dipole moment operator
~ emprl/_)Vawl/)yAW , also generated by the “neutrino-penguin” diagram,
gives negligible contributions because of the smallness of the neutrino mass,
i.e. my ~ 1072 eV [110]. The corresponding SM result is [108]

_ G2 pl
FSM ('Ypl — I/LVL) = CV48 0y E_ (130)
For v, we have Cy = % + 2sin? Oy while for v, and v, we have Cy =

— %—FQ sin? fyy. Comparing the decay rates into all three left-handed neutrino
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families we thus need to include a factor of 3 for the NC result, while C%, ~
0.8 for the SM result [67]. Therefore, the ratio of the rates is

R = Zﬂavours I'ne (7p1 — Ly + VRDR) _ 620’
Zﬂavours JASY ('Ypl — VLDL) C‘%G%A4NC

(131)

A standard argument involving globular cluster stars tells us that any new
energy-loss mechanism must not exceed the standard neutrino losses by
much, see Section 3.1 in Ref. [111]. Put another way, we should approx-
imately require ® < 1, translating into

6202

1/4
W) ~ 81 GeV. (132)
vUF

ANC><

In the case of the absence of the sterile neutrinos (vg) in globular cluster
stars the scale of non-commutativity is approximately Axc > 68 GeV.

2.4. Discussion and conclusions on forbidden decays

At the beginning of our discussion and conclusions, a very important
comment is in order.

Extreme care has to be taken when one tries to compute matrix elements
in NCGFT. In our model, the in and out states can be taken to be ordinary
commutative particles. Quantization is straightforward to the order in 6 that
we have considered; the Feynman rules can be obtained either through the
Hamiltonian formulation or directly from the Lagrangian; a rather conve-
nient property of the action, relevant to computations, is its symmetry under
ordinary gauge transformations, in addition to non-commutative ones.

We propose decay modes that are strictly SM-forbidden, namely
Z = vy, K — 7y, ..., as a possible signature of non-commutativity. An
experimental discovery of Z — ~vy, K — @y, ..., decays would certainly
indicate a violation of the accepted SM and the definite appearance of new
physics. To determine whether such SM breaking is ultimately coming from
space-time non-commutativity or from some other source would require a
tremendous amount of additional theoretical and experimental work, and is
beyond the scope of the present work.

The structure of our main results for the gauge sector, Eqgs. (88) to (91),
remains the same for SU(5) and SU(3)c xSU(3), x SU(3)g GUTs that embed
the NCSM that is based on the SW map [91,112]; only the coupling constants
change. In the particular case of SO(10) GUTs there is no triple gauge boson
coupling [91]. This is due to the same Lorentz structure of the gauge boson
couplings Z~v and Zgg in our NCSM and in the above GUTs, understood
underlying theories for the NCSM. In the GUT framework, the triple-gauge
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couplings could be uniquely fixed. However, the GUT couplings have to be
evolved down to the TeV scale. This requires additional theoretical work,
and it is a subject for another study.

Note finally that the inclusion of other triple-gauge boson interactions
in 2 — 2 experiments sufficiently reduce available parameter space of our
model. This way it is possible to fix all the coupling constants from the NC
gauge sector.

To get some idea of the values, let us choose the central value of the
Z~y coupling constants |Kz,,| ~ 0.1 and assume that maximal non-com-
mutativity occurs at the scale of ~ 1 TeV. The resulting branching ratio for
our Z — vy decay would then be O(10~#), which is a reasonable order of
magnitude.

The dynamics of the SM forbidden flavour changing weak decays is
described in the framework of the so-called minimal NCSM developed by
the Wess group [89]. The branching ratios are roughly estimated within
the static-quark approximation. Despite the simplifications of the static-
quark approximation, we did obtain reasonable results, i.e. expected rates.
Namely, in the static-quark approximation many terms did not contribute
at all. An improved estimate, by inclusion of all those terms, would cer-
tainly increase our branching ratios. We do expect increasing to more than
one order of magnitude, which would then place BR(K+ — 7T ) closer to
today’s experimentally accessible range [113,114].

The same increase should also take place for the B — K~ modes via 1-
loop non-commutative FCNC, i.e. via non-commutative penguin diagrams
[115]. Namely we know that penguin diagrams, in the case of B-meson
decays, have a number of advantages over the tree diagrams. Also the whole
B sector has advantages over the kaon sector:

(a) rate is proportional to m?% which cancels small mean life 75 and small
CKM matrix elements relative to kaons, i.e.
5 2
(TB mB|Vvt§Vvtb| )peng. ~ 1: (133)
- 7
(Tk mE}(|VJsVud|2)tree

(b) penguins do not suffer from relatively small CKM matrix elements;

(¢) in the non-commutative penguin diagrams from the charm and top
loops, one might expect large QCD effect, i.e. the logarithmic type,
~ [agIn(m?/m?)], of the rate enhancement, Fig. 10;

(d) note, however that the calculation of the non-commutative penguin
diagrams would be highly complicated, and would require a number
of additional studies, to deal in particular with UV and/or IR diver-
gences. There already is a lot in the literature concerning the problem
of (non-)renormalizability of the non-commutative gauge field theo-
ries [116].
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S /
e |

Fig.10. The NCSM linear #-dependent contributions to typical flavour-changing
diagrams. The first one arises from the point-like charged current NCSM inter-
actions, see for instance Fig. 9, while the second represents the flavour-changing
NCSM neutral-current, 1-loop transitions, i.e. the typical non-commutative pen-
guin diagram. The qi, ¢2, ¢; and ¢y are the same as in Fig. 9.

From the advantages described in (a) to (d), we conclude that some par-
ticular decay modes within the kaon and/or B meson sectors would receive
the contributions from non-commutative tree and from non-commutative
penguin diagrams of comparable size. This is very important for the ex-
perimentalists, since it shows implicitly that some decay modes could be
relatively large, that means closer than we expect to the experimentally ac-
cessible range.

The limit on the scale of non-commutativity from the energy loss in
stars depends on the requirement ® < 1 and from that point of view the
constraint Axc > 80 GeV, obtained from the energy loss in the globular
stellar clusters, represents the lower bound on the scale of non-commutative
gauge theories.

Concerning the forbidden decays, the experimental situation can be sum-
marized as follows:

(1) The joint effort of the DELPHI, ALEPH, OPAL and L3 Collaborations
[93] give us a hope that in not too much time all collected data from
the LEP experiments will be counted and analysed, producing tighter
bounds on triple-gauge boson couplings. Finally, note that the best
testing ground for studies of anomalous triple-gauge boson couplings,
before the start of the linear eTe™ collider there will be the LHC. See
for instance Ref. [117].

(2) The authors of Brookhaven Experiment E787 recently published a new
upper limit on the branching ratio BR(KT — 7Tv) < 3.6 x 1077
[113]. The E787 has been upgraded to a more sensitive experiment,
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E949, currently under way at the AGS. In this experiment it would be
possible to the push sensitivity to K™ — 77y by a quite large factor
if there were sufficient motivation to do so [114]. We hope that the
results of this research will convince the E949 Collaboration to go for
it.

(3) In the future machines the productions of 10'?, 103, and 10'*, BB,
DD, and KK pairs is expected , respectively.

(4) The sensitivity to the NC parameter ¥ could be in the range of the
next generation of linear colliders, with a c.m.e. around a few TeV.

(5) We hope that, in the near future, more sophisticated methods to ob-
serve and more accurate techniques to measure the energy loss in the
stellar clusters will produce even more restricted limits on R, some-
thing like ® < 1/10, and consequently a firmer bound on the non-
commutativity scale Anc.

In conclusion, both the hadron and the gauge sector of the NCSM
as well as the NCQED are excellent places to discover space-time non-
commutativity experimentally. We believe that the importance of a pos-
sible discovery of non-commutativity of space-time at very short distances
would convince particle and astroparticle physics experimentalists to look
for SM-forbidden decays in those sectors.

I would like to thank N.G. Deshpande, G. Duplanci¢, R. Fleischer,
Th. Miiller, M. Praszatowicz, V. Ruhlmann-Kleider, P. Schupp and J. Wess
for helpful discussions. This work was supported by the Ministry of Science
and Technology of Croatia under Contract No. 0098002.
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