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Low and high energy properties of the pion are reviewed in the frame-
work of chiral quark models. Particular emphasis is put on the simplest
version of the SU(2) NJL model as prototype. The role of gauge invari-
ance in this kind of calculations is stressed. The results are used as initial
conditions for perturbative QCD evolution equations. At leading order the
quark model scale is pg ~ 320MeV as determined from the pion distribution
functions and the pion distribution amplitudes.
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1. Introduction and motivation

The structure and dynamics of hadrons is known to be a difficult problem
because the underlying QCD theory in terms of quark and gluon degrees of
freedom is actually very complicated [1]. There are, however, well known
situations where some helpful simplifications take place.

At high energies asymptotic freedom sets in, and perturbative QCD be-
comes applicable. The renormalization group equations allow, on the basis
of the Operator Product Expansion (OPE), to relate hadronic matrix ele-
ments of quark and gluon operators at different scales [2]. There are many
situations where this scale dependence has been predicted and in some cases
tested, particularly in the study of high energy inclusive [3] and exclusive
processes [4], but perturbative QCD says nothing about the value of these
matrix elements at a given scale.
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At very low energies, spontaneous chiral symmetry breaking of the QCD
Lagrangian dominates, and the would-be Goldstone bosons in the massless
quark limit become the lightest states in the hadronic spectrum. They are
naturally identified with the pion, and it can be shown that at low energies
the interaction among pions becomes weak. Actually, at energies of the
order of the pion mass, Chiral Perturbation Theory (ChPT) can be applied,
in terms of low energy constants which correspond to certain QCD Green’s
functions, and many successful results have been found [5,6]. The values of
the low energy constants cannot be computed themselves from ChPT.

As the previous considerations suggest, one may try to exploit chiral
symmetry to study pion properties not only at low but also at high energies
both in exclusive or inclusive channels. From a theoretical viewpoint, =
mesons are particularly distinguished hadrons, since most of their low energy
properties follow the patterns dictated by the chiral symmetry. Actually, we
do not expect to understand the properties of any hadron better than the
pion, as Chiral Perturbation Theory suggests. Recent studies have shown,
for instance, that ChPT can be applied to compute chiral corrections of
hadronic matrix elements contributing to the deep inelastic scattering [7] (in
much the same way as chiral corrections are computed for w7 scattering).
However, nothing is said about the value of those matrix elements in the
chiral limit.

The calculation of pion matrix elements of quark and gluon operators
contributing to the high energy exclusive and inclusive processes requires
some non-perturbative method. Along these lectures it will be shown how
this can be done with the help of low energy chiral quark models, which ac-
count for spontaneous chiral symmetry breaking, supplemented with QCD
evolution equations, which automatically implement QCD logarithmic ra-
diative corrections.

Chiral Quark Models share with QCD several features, mainly chiral
symmetry (realized in the Goldstone phase) and explicit quark degrees of
freedom. As we will see below they are useful since they can make quanti-
tative predictions which, in many cases, agree rather well with experiment.
Unfortunately, there is not a unique model, but many and almost as many
versions as authors working in the field. So, for practical reasons we will be
using the Nambu-Jona-Lasinio model [8] for quark degrees of freedom [9].
It turns out that, when dealing with low energy properties of the pion, model
details seem rather irrelevant, so most people have not paid particular atten-
tion to their different versions. This seems not to be the case for properties
which are extracted from high energy inclusive and exclusive processes where
the model details and/or their different versions turn out to produce quite
different results.

Given the fact that QCD is a theory with quarks and gluons, one obvious
question one should ask is what is the scale at which a (chiral) quark model
is naturally defined taking into account that its only explicit degrees of
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freedom are quarks. So far, we only know of one possible quantitative answer
[10,11], namely the adequate scale is defined by requiring that quarks carry
all momentum of the hadron. In a field theoretical chiral quark model this
is a trivial statement, because there are no explicit gluons. This assumption
seems consistent with QCD in perturbation theory since it turns out that the
gluon contribution to the energy-momentum tensor becomes smaller as the
running scale goes down until it eventually vanishes. The remaining quark
contribution can be separated into sea (flavor singlet) and valence (flavor
non-singlet) pieces. The precise value suggested by perturbative calculations
is in the range, ;. = 300-350 MeV. Of course, the separation of the gluon, sea-
quark and valence-quark momentum fractions is not a renormalization group
invariant operation. Thus, if such a matching procedure between QCD and
the chiral quark is meaningful, it depends on the particular renormalization
scheme.

2. Low energy models from high energies

QCD is an asymptotically free theory, which means that the universal
coupling constant among quarks and gluons becomes small as the renor-
malization scale goes to infinity, and hence perturbation theory becomes
applicable. For definiteness, we use LO evolution for the running strong
coupling constant [3],

47 1
= (%) ) 0

with By = 11CA/3 — 2N /3, Cao = 3 and Ny being the number of active
flavors, which we take equal to three. We take for concreteness Aqcp =
226 MeV, which for p = 2GeV yields @ = 0.32 [12]. In perturbative QCD
calculations, «/2r is the expansion parameter. Renormalization group in-
variance requires a very specific dependence for any set of observables, O on
the scale

O() = U (s 110)O(pro) » (2)

where U(p, o) is a linear matrix operator, fulfilling cocycle properties typ-
ical of evolution equations,

Up1, p2)U(p2, p3) = Ulpa, p3) (3)
Ulp,p) = 1. (4)
In the limit pu, 4’ — oo the operators are explicitly calculable in perturbation

theory. Obviously, conserved quantities do not depend on the evolution
scale.
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A particularly interesting operator in QCD is the energy-momentum
tensor 08 which due to Poincare invariance is a conserved quantity and
hence renormalization invariant. Its matrix element between pion states

fulfills
(m]0°F|m) = 2p°pP . (5)

For the QCD Lagrangian the energy momentum tensor can be separated
into three contributions [3]

0°% = 027 + 055 +00%s (6)

where 6% ,0,5 and 0°% . are the gluon, quark-singlet and quark-non-singlet
G q, L],NS
(or valence) contributions respectively fulfilling

(70|, = 20°0°Gh (),
(025Im) ] = 2p°pP S (n)
)

; (7)

where G1(p), S1(p) and Vi(p) are the gluon, sea quark and valence quark
momentum fractions of the pion. In Deep Inelastic Scattering (DIS) it can
be shown (3] that if ¢;(z, 1), ¢;(x, ) and G(z, ) represent the probability
density of finding a quark, antiquark and gluon, respectively, with momen-
tum fraction z at the scale p (u? = @2 in DIS), then one has

(m02Rslm) e = 29" Vi (u

1
Gi() = / drxGz, ). (8)
Si(p) = [ dewS(ap), (9)

Vi(p) = dzzV(z,p) (10)

O\H O\H =}

where, for 77, V = uy — Gy + dy —dy and S = vy — Uy — dy + d. These
momentum fractions depend on the scale, u, and fulfill the momentum sum
rule

Vi(p) + S1(p) + Gi(p) =1 (11)
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as a consequence of the energy-momentum tensor conservation. In pertur-
bation theory it is verified that due to radiative corrections G1(u) and Sq(p)
decrease as the scale p goes down. On the contrary, the non-singlet contri-
bution to the energy momentum tensor evolves as

Vi) _ (el )%NS/?BO
Vi(po)  \a(po)

where v)5/28) = 32/81 for Np = N, = 3. The value of Vi(u) has been
extracted from the analysis of high energy experiments. In Ref. [13] it was
found that at Q? = 4GeV? valence quarks carry 47% of the total momentum

fraction in the pion, e.g., for 7+,

Vi={(2(ur —lr +dr —dr)) =047£0.02 at  p*=4GeV?. (13)

(12)

?

Downwards LO evolution yields that for a given reference scale, g,

Vi(o) =1, G1(po) + S1(po) = 0. (14)

The scale ug so defined is called the quark model point for obvious reasons.
At LO the scale turns out to be

po = 313720 MeV . (15)

This is admittedly a rather low scale, but one can still hope that the typi-
cal expansion parameter a(ug)/2m ~ 0.34 £ 0.04 makes perturbation theory
meaningful. Since such an approach was first suggested [10] that is all one
can do for the moment!. There are more uncertainties to Eq. (15). For
instance, if the point for the quark model is defined by G1(ug) = 0, then at
LO the scale is pug ~ 350MeV. The determination of ug given by Eq. (15) is
model independent. In these lectures we will show how this determination
not only leads to a successful description of non-singlet pionic parton distri-
bution functions in certain versions of the chiral quark model, but also that
the number is in quantitative agreement with other determinations.

3. Chiral symmetry and chiral quark models

For the SU(2) up and down quarks, chiral symmetry is the invariance of
the QCD Lagrangian under the transformations [6]

o) (), (16)
o) = “Ty(a) (17)
o) = T, (18)

! Actually, in the case of the nucleon these low scales produce negative gluon densities,
if one takes Vi(p = 2GeV) = 0.40 and hence violate positivity of parton distribution
functions as well as unitarity of structure functions [14,15].
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where ¢(z) represent Dirac spinor fields with Ng = 2 flavors and N, colors
where 7 are the isospin Pauli matrices. As a consequence of this symmetry
there exist baryon, vector and axial Noether currents

JE(z) = q(z)y*q(z), Baryon current (19)
J(z) = (j(m)fy“;—aq(x), Vector current (20)
JVNz) = (j(m)fy“'yg,%q(x), Axial current (21)

respectively. Conservation of the Vector Current (CVC) and Partial Con-
servation of the Axial Current (PCAC) imply that

ouJh(z) = 0, (22)
O Jy(z) = 0, (23)
Opdy " (x) = mq(z) ivsmaq(z) (24)

with m denoting the average current quark mass (we neglect isospin break-
ing effects). A chiral quark model is any chirally invariant dynamical field
theoretical model containing only explicit quark degrees of freedom and ful-
filling the conservation laws (22), (23) and (24). Unfortunately, there is
no such a thing as the chiral quark model. This is probably the reason
why there exists a proliferation of models with many variants. Regardless
of their differences all these models are characterized by the three ways of
chiral symmetry breaking in QCD: explicit, spontaneous and anomalous.
These are non trivial requirements, which imply constraints on the regu-
larization methods in local models or equivalently on the high energy be-
havior of non-local models. In fact non-local models have been preferred
because they provide a more natural explanation of the anomalous 70 — v
decay rate [16], but the calculations are cumbersome. In addition, they
are formulated in Euclidean space and their extrapolation to compute ma-
trix elements contributing to high energy processes is subtle as it is on the
lattice. For instance, the calculation of structure functions requires either
a continuation of the non-local model to Minkowki space or the determina-
tion of some moments in the Euclidean region and subsequent reconstruc-
tion of the parton distribution. While the first possibility turns out to be
extremely difficult to explore, the second alternative cannot be used to pin
down the £ — 1 which depends on the asymptotic behavior of the moments.
On the contrary, local models, although less realistic, require specifying
a suitable regularization which may be directly formulated in Minkowski
space.
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3.1. NJL Lagrangian

For the purpose of our discussion we think it is useful to review the
SU(2) NJL model [8,9]. This model has extensively been used in the past
and there exist many reviews on the subject. So, although we aim at a self-
contained discussion of pion properties, our presentation will be necessarily
sketchy in order to provide the main ideas. Nevertheless, we will stress those
points where differences with other authors become important. The NJL
Lagrangian in Minkowski space is given by [8,9]

Lx = 76~ mla+ 5 (@) + @isa)?) (25)
where ¢(z) is a Dirac spinor field with N, = 3 colors and Ny = 2 flavors,
G is the coupling constant with dimension [G] = M2 and m the average
mass of the current up and down quarks (~ 7MeV at the scale u ~ 1 GeV).
With the exception of the term with the current quark mass m, this La-
grangian is invariant under the Ug(1) ® SU(2)g ® SU(2), chiral group, with
a U(1)p ® SU(2)y subgroup. Thus, the currents (19), (20) and (21), and
their conservation laws (22), (23) and (24) are satisfied, as in QCD. A con-
sequence of Poincaré invariance is the conservation of the energy momentum
tensor

0 = LG (0 40" a - gL, (26)
which only contains quark degrees of freedom. Thus, we expect in this model
that for any hadron, and in particular for the pion

(m|0H|m) = 2pH'p"”. (27)

Since the coupling constant, GG, has a negative energy dimension, the La-
grangian (25) above is not renormalizable by power counting and it is usu-
ally interpreted as a theory with a finite cut-off, which we generically denote
by A. This means that results depend crucially on the value of A and some
fine tuning will be invoked. The need of a cut-off is not a serious problem
from a physical point of view because we know that at high energies, much
above the cut-off, the effective interaction should be replaced by the un-
derlying QCD interactions in terms of explicit quarks and gluons. Roughly
speaking, this feature is present in more sophisticated chiral quark models
with non-local interactions.

The real problem derived from the high-energy suppression has to do
with the fact that we want to preserve the symmetries of the Lagrangian,
namely gauge and chiral symmetry, without removing the cut-off by taking
the limit A — oo, i.e. keeping the high energy suppression. This implies
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that not every regularization, although it may accommodate some particular
prejudices, may be considered as suitable. This point will be illustrated
below. A full discussion on regularization methods in the NJL model can
be found in Ref. [17].

In these lectures we will work, as usual, in the one-quark loop approx-
imation. This is equivalent to the leading order of the large N. expansion,
taking GN. = constant. In this way we comply not only with chiral sym-
metry constraints, but also with large N, requirements. The study of higher
orders in a 1/N, expansion can be traced from Refs. [18-20].

3.2. Pauli-Villars regularization

In a cut-off theory most of the discussion is related to the regulariza-
tion, and hence gets a bit technical. We will use throughout these lectures
the Pauli-Villars (PV) regularization method [21] which has already been
used for several applications in the NJL model, like ChPT [22], finite tem-
perature [23], solitons [24], structure functions |25,27,28|, correlation func-
tions [26] and distribution amplitudes [29]. To our knowledge this is the
most reliable regularization method of the NJL model so far fulfilling many
desirable features, among others preserving gauge invariance and working
directly in Minkowski space (see the recent discussion in Ref. [28]). The
only difference with the standard PV method of QED is that in the NJL
model this type of regularization is applied at the constituent quark mass
level (see below). It is surprising that given the advantages of the method,
it has been used so few times as compared with other methods such as Eu-
clidean O(4) cut-off or Schwinger’s Proper Time. A potential disadvantage
of the method is that it provides a negative spectral strength due to the
PV subtractions, and thus positivity of some physical quantities, like form
factors or distribution functions might not be fulfilled. Although this is not
excluded, in all the calculations presented, we explicitly see that this is not
the case.

In the NJL model this method has been used mainly within the context
of the bosonization or auxiliary field method (see e.g. Ref. [24]), but at the
one loop level and for the processes we are considering here, it corresponds
to the following replacement under the momentum integral:

1 1 Fr+ M kn+ M
DY - DY 28
fr — M kN—M%zi:cz{k%—M2—A? k]?V—MQ—Az?} (28)

¢; and A; are the same suitable coefficients for all one loop graphs, fulfilling
c¢o = 1 and Ag = 0 and chosen in such a way as to make one loop integrals
finite. In the graphs with an odd number of Dirac ~5’s the regulator has to
be removed at the end of the calculation.
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In the NJL there appear quadratic and logarithmic ultraviolet diver-
gences. To illustrate the method let us consider the integral

[ dYk 1
I= —Z/Wm, (29)

which is quadratically ultraviolet divergent, as can be seen by integrating
first over ko component (using Feynman’s M? — M? — i0" prescription)
and then over the k component. Using the PV subtractions, it becomes

. d*k 1
Ipy = —i Zci a1 (30)

Evaluating the integral by any method, one sees that at least the following
two conditions are required to render the one loop Feynman integrals finite

ZCZ’ZO, ZCZ’A?ZO. (31)

Thus, at least two subtractions are needed. Solving the system of equations
in terms of A; and As provides two unknown parameters. To reduce them
to only one the coincidence limit Ay — Ay = A is taken yielding the rule

Yol (4]) = f(0) = f(4%) + A2 f1(4%). (32)

1

This calculation already illustrates a very general feature of the PV method,
calculations may be done directly in Minkowski space, and there is no need
to go to Euclidean space. This is a computational advantage in the study of
high energy processes as we will see below. To simplify the notation we will
implicitly assume the use of such a regulator in what follows.

3.8. Chiral symmetry breaking

To illustrate the method let us consider the Dyson—Schwinger equation
for the quark propagator, S(p), (see Fig. 1).

= +

Fig. 1. Schwinger-Dyson equation for the quark propagator. The thick line repre-
sents the full propagator, whereas the thin line stands for the free quark propagator.
The full blob is the irreducible two particle amplitude.
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4
S(p) = So(p) + S(p) (—i) / %ﬁ [S(K)G) So(p) (33)

where S(p) and Sy(p) are the full and free quark propagators, respectively.
G is the four-point kernel, which in the lowest order approximation becomes
the coupling constant and can be taken out of the integral. Thus the full
propagator acquires a constant self-energy, X(p) = M. Computing the
Dirac, flavor and color traces one gets the so-called gap equation in the
convenient form

M (1 — 4GNpN.I) =m, (34)

where Eq. (30) is understood for the integral I. For m = 0 there are two
solutions (the Wigner alternative)

e Wigner phase. Corresponding to M = 0.
e Goldstone phase. M # 0 and hence
1 =4GNgpN.I , (35)

which is called the gap equation in the limit m — 0 because it provides
a gap of width 2M in the quark spectrum.

For m # 0 the gap equation is Eq. (34) and one has to choose the solution
which goes to Eq. (35) for m — 0.

3.4. Quark condensate
In the chirally broken phase, one has a quark condensate ((§q) = (Gu+dd))
'k 1 M—-m
i) = (—)Tr | =8 2 gN.MI=-——_" 4y,
(@0) = (=0T [ g = 8N, k0. 30)
The standard accepted value from QCD sum rules [30] is (gq), = (uu +

dd), = —2(240 = 10MeV)? at the scale 4 = 1 GeV. At the leading order in
the QCD evolution one has

(da) () \
qqu:<au> 0 g 37
(@0 \alpo)) T 37
If we use the scale of Eq. (15) we get an enhancement factor ~ 2 and hence
(@9) 4y = —(380 & 20MeV)? . (38)

According to our point of view it is this value that should be compared to
the model calculation, and not to the one at u = 1 GeV. Of course, one may
argue that LO evolution is not sufficient to go to such low scales. All we can
do to check the consistency of the approach is to provide, as we do below,
other determinations of the scale pg.
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3.5. The pion as quark—antiquark bound state

In the spontaneously broken phase, the constituent quark mass, M # 0.
As a consequence of Goldstone’s theorem there must exist massless pseu-
doscalar particles, which one identifies with the pions. This can actually
be obtained by solving the Bethe—Salpeter equation in the pseudoscalar—
isovector channel for quark—antiquark scattering (see Fig. 2) and checking

Fig.2. Bethe-Salpeter equation for quark—antiquark scattering. The square blob
represents the two particle irreducible quark—antiquark potential, and the round
blob is the full T-matrix. The lines correspond to constituent quarks (thick lines

in Fig. (1)).

that there is a bound state pole which becomes massless as the current quark
mass goes to zero, m — 0. In the lowest order approximation, where the
kernel is approximated by a constant, the Bethe-Salpeter amplitude for 7+
becomes

Topiys = (75T+)a7 (’75T+)55 t(P), (39)
where ¢(P) is a number depending only on the total momentum, given by

4
UP) =G+ G(i) [ ™ b s =

In writing the polarization operator, a particular choice of momentum rout-
ing has been made, but in a gauge invariant regularization such as PV, one
may safely shift the integration variable by any amount of the external mo-
mentum P. Euclidean O(4) cut-offs do not preserve this property. Using
the PV regulators one gets

t(p)~" = G™' = 8N.I + 4N p’F (p?) , (41)

HP).  (40)

where I is defined by Eq. (29) and the one-loop function, F(p?), is given by

dk 1 1
F(p*) = (—i : 42
(p7) = ( z)/(27r)4k2—M2(k—p)2—M2 (42)
Using the Feynman trick for the two propagators, this function can be rewrit-
ten as

1
FW)Z/MFWJL (13)
0
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where
d*k 1
2m)4 (k2 — M2 + 2(1 — 2)p? + ie]?

Ft.a) = (=) [ -

1 2 2 2
= —Wzi:cilog [M? + A — z(1 — z)p?] . (44)
In the chiral limit, m = 0, the gap equation (35) can be used, and the
first terms in the r.h.s. cancel, producing a massless quark—antiquark bound
state. However, for p?> > 4M?, the function F(p?), and hence the t-matrix,
develops an imaginary part indicating a lack of confinement. For m2 < 4M?

we get a deeply bound state, and thus hope confinement not to be essential.
For M = 300MeV one has m2/(4M?) ~ 0.06.

For a finite quark mass we have a pole at p? = m2,
GﬂM = 4N m2F (m2) . (45)

The pion coupling of a composite pion state to a quark—antiquark pair is
given by the residue of the ¢t-matrix at the pion pole (see Fig. 3)

Fig.3. Pion pole contribution to the Bethe—Salpeter quark—antiquark scatter-
ing amplitude. The small solid blob represents the Bethe—Salpeter pion quark—
antiquark amplitude. Solid lines are constituent quarks.

dtfl 2 d 2F 2
dp?  Ip2=m2 dp? p=m2
So that the composite canonically quantized pion propagator is
t(p? 1
) =), (0 = m2). (47)

-2 2 27
g7rqq b —mz
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3.6. Pion weak decay

Using the bound state solution of the Bethe-Salpeter equation for the
pion, one can compute the pion weak decay defined as

(OLTR°(0) |7 (p)) = i frpH 6™ (48)
yielding (see Fig. 4)
fr =ANMgrgoF (m?2) (49)
and thus
naafn = M) (50)
m2F(m2)]

which, in the chiral limit yields the Goldberger—Treiman relation at the
quark level, grqqfr = M. Combining Eqs. (36), (45) and (49) one gets

“la) =2 () 51)
gwqqf ™

which at the lowest order in the chiral expansion becomes the well known

Gell-Mann—Oakes—Renner relation.

Egs. (49) and (46) are usually employed to fix the parameters in the
broken phase, taking for f, = 92MeV and m, = 139.6MeV. For a given
constituent quark mass, M, one can compute the cut-off A. The gap equa-
tion allows to determine the coupling constant G. For instance, using the PV
regularization given by Eq. (32), for M = 280MeV one obtains A = 871MeV
and (gq) = —(290MeV)3. From this number one may deduce that, since it
resembles the numerical value of the condensate at the scale u = 1GeV, the
model scale is around 1GeV. Of course, the numerical values may change
in a different version of the PV scheme (like e.g. with A; # As, or adding
more terms in the sum). Fortunately, as we will see below, the results for
some high energy properties are insensitive to the choice of parameters, up
to unimportant chiral corrections.

Fig.4. Pion (dashed line) weak decay into an axial current (wavy line). The solid
blob represents the Bethe—Salpeter pion quark—antiquark amplitude. Solid lines
are constituent quarks.
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3.7. Pion wave function

In principle, the Bethe—Salpeter pion—quark—antiquark wave function is
given by (we take mT)

i i
xp(k) = oo (= 9raq 57 ) e (52)
preE=a ) p
but PV regularization has to be understood because, at least formally,
b= ) [ o (o T 53

and the integral is logarithmically divergent if Eq. (52) is taken literally.
This problem is typical in chiral quark models and has been the cause of
much confusion. Regularization is only easily applied at the level of closed
quark lines?. We will see more of this later, but it has always been a weak
point in quark-loop calculations. One obvious choice to regularize open lines
is to enforce consistency with the closed lines, although at first sight this
procedure looks a bit arbitrary. Another possibility to open a regularized
quark line, but starting from a closed quark line, is to consider a physical
process involving photons and pions in the high energy limit and extract the
leading power behavior. Prominent examples which will be analyzed below
are deep inelastic scattering from which the pion structure functions can be
deduced in the Bjorken limit or the pion transition v* — 7v-form factor in
the limit of high photon virtualities and fixed photon asymetry from which
the pion distribution amplitude may be derived.

3.8. Pion electromagnetic form factor

The pion electromagnetic form factor is probably the simplest case where
one can illustrate some of the points we want to make. For a charged pion
7T = ud the electromagnetic form factor is defined as

(mt ()T 0) |7 (p)) = eIS™ (', p) = (p" + p™)eF™ (¢%) (54)

and can be computed using Fig. 5. For on-shell pions and in the chiral limit

the result is rather simple

_ AN.M?F(q%)
E ’

2 This is actually a good reason to use bosonization schemes; there the concept of an
open quark line does not appear.

F () (59)
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Fig.5. Electromagnetic pion form factor in the NJL model. The closed loops are

Pauli—Villars regularized. Wavy lines are photons, solid lines are constituent quarks
and dashed lines composite pions.

where F(p?) is given by Eq. (42). The pion form factor is obviously properly
normalized, F£™(0) = 1, as it should be due to the gauge invariance of the
Pauli-Villars regularization. The mean-square pion radius reads

dFem(qQ) N, M?
2\em __ ™ — ¢ , S
(ria = =6 dg> =0 4n?f2 zi:Cz M? 4+ A2°

(56)

a result explicitly depending on the regularization. Numerically one has
a reduction of about 25% for M = 300MeV due to the finite cut-off effect,
((r2)em)1/2 = (0.58 fm) x 0.75 = 0.50 fm, to be compared with the experi-
mental number, 0.66 fm. Two points are worth stressing here. Firstly, it is
clear that the finite cut-off corrections go in the wrong direction. On the
other hand, one should not expect a perfect agreement with the experimen-
tal number, since one expects a sizeable contribution from the pion loops
(1/N, corrections in the model), as suggested by ChPT [5]. There is a way
one can get rid of the cut-off corrections; one can simply split the charge
contribution at ¢> = 0, which should be one, and compute the difference
using a unregularized quark loop. This is equivalent to write down a once
subtracted dispersion relation for F£™(¢?). For the unregularized quark loop
only, one has the asymptotic behavior for ¢> = —oo

FZ™(q*) ~ log <—qu> : (57)

without power corrections. For the PV regularized NJL model, at high
Euclidean momentum one has instead a cut-off independent relation, which
is a pure power correction?,

Ve
PFE(g?) = — 2;‘12‘9 ~ 0.34 GeV? (58)

for M = 300MeV and the PV method, Eq. (32). Up to the measured mo-
mentum transfers, —2 GeV? < ¢> < —6GeV? this value is very similar to
the experimental average number 0.38 +0.04 [31]. However, it is in principle

3 For a Euclidean O(4) cut-off one gets a logarithmic behavior log(Q?/4%)/Q> [33].
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not clear whether this number should directly be compared to experiment,
without taking into account QCD radiative corrections. Another point of
view is to reject the validity of the model to such high energies, matching
instead to the known QCD result at LO [32] (see also Ref. [4])

CF(q%) — 16ma(—q%) f2, (59)

which for ¢ = —4GeV2 yields, 0.13, a too small value as compared to the
experimental one*. We may identify both coefficients at the model scale, o,
yielding the result

a(po) _ M, 0<QQ> 0
27 a 6u4772f; ' (61)

In this relation we have stressed the fact that also the constituent quark
mass is fixed at the model scale, pg. Actually, we may use relations (61) and
(15) to get

M,,, = 300 + 80MeV . (62)

Although this value should be considered a crude estimate it provides a rea-
sonable value for the constituent quark mass at the model scale. Conversely,
if we assume M = 300MeV then a(uo)/(27) ~ 0.5+£0.2, a compatible value
with the momentum fraction estimate.

4. Pion distribution functions

4.1. Deep inelastic scattering

Inclusive lepton—hadron scattering is described in terms of the hadronic
tensor, W, (p, q), and can be obtained from the imaginary part of the for-
ward Compton amplitude for virtual photons as follows [11]

1 auq
Woelpd) = Il 0) = Wi(esp- ) (g0 + %5 )

Wa(q?,p-q) p-q pq
+ 2 Py — ?QM v — ?CJV , (63)

™

4 Actually, this expression can be obtained from

z(l—z

—Q*FE™(—Q?) — 167a (Q%) f2 </ i 222 Q) ) (60)

with @ (z,u) the pion distribution amplitude at the scale u, when the asymptotic
wave function, ¢ (z,00) = 6z(1 — ) is substituted [4] (see also below).
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where
Tulpa) =i [ d'acs® ()T {5 @ IO} sG) . (60

Here, m%, =p? is the mass of the pseudoscalar meson and ¢ is the momentum of
the virtual photon. In the Bjorken limit, one obtains [11] (z=—¢%/(2pq)),

Wl(xaQ2) _>F1(:E)a (65)
W2($aQ2) _>F2($)a (66)

where the Callan-Gross relation Fy(z) = 2zF)(z) is fulfilled, as a conse-
quence of the spin 1/2 nature of quarks. The structure function is given by

1

Fi(z) =3 Y- e ai(z) + ail=). (67)

i=u,d

where e, = 2/3 and e; = —1/3 are the quark charges and ¢;(z) and ¢;(z)
are the momentum fraction distribution of the different quark species.

Introducing Light Cone (LC) coordinates z = (¢¥,27,#,) with z* =
7% & 23 the analysis of Ref. [11] yields

Fi(z) = Z'/Mtr [Q%*x(p,k)}

i) T @ne : (68)

kt+ :p+:mﬂl‘

where Q = diag(ey, eq) is the charge operator and the forward quark—target
scattering amplitude is defined

x(p k) = —i / 4 €€F (plT{q(€)7(0)} ) - (69)

X(p, k) corresponds to the unamputated vertex. Eq. (68) holds under the
assumption of scaling and finiteness in the Bjorken limit.

+0(UQ)

Fig.6. The Compton amplitude in the Bjorken limit and its relation with the
quark-target scattering in the parton model. The high and low energy contribu-
tions are also explicitly displayed.
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Logarithmic scaling violations due to perturbative QCD radiative correc-
tions [3], relate in a linear fashion the leading twist contribution to structure
functions at a given reference scale, pg, to the scale of interest, p, (in DIS
one takes Q% = u?)

Fl(muu‘) = U(NaMO)Fl(:L‘aNU) ) (70)

where Eq. (4) is satisfied for the linear matrix integral operator U. Asymp-
totically, QCD predicts [3]

2
i i

ol @) = 2011 (5, Q%) = 5 m 1y

3(z). (71)

Actually, the pion structure functions cannot be measured directly since
there are no pion targets. Instead, the parton structure of the pion has
been analyzed [13] and a simple parameterization at Q> = 4GeV? has been
given. The valence quark distributions extracted in Ref. [13] from Drell-
Yan experiments [34] seem well determined, whereas the gluon distribution
as obtained from the analysis of prompt photon emission data [35] is less
well determined. A recent analysis [36] of the ZEUS dijet data seems to
favor the gluon distributions of Ref. [13]. This is why, in determining the
low—energy scale of our model, we use the valence momentum fraction of
47% found in Ref. [13] at 4GeV? instead of 40 % found in Ref. [52,53] using
some additional assumptions [54].

The results found long ago [37] and usually adopted in DIS calculations are
the so-called counting rules. They establish that there is a relation between
the asymptotic behavior of the electromagnetic pion form factor for large
Euclidean momenta and the structure function behavior as x — 1, namely

F7™(¢%) ~ 1/ ()", Fi(z) ~ (1 —z) . (72)

In QCD F®™(g¢?) has a logarithmic radiative correction, Eq. (59) so we may
take n ~ 1, which implies F'(z) ~ 1—2z. Although it is not clear at what scale
u the counting rules are valid, recent investigations based on quark—hadron
duality confirm the exponent n ~ 1 for F(z) at u ~ 2GeV [38].

4.2. Spectator model and quark loop calculations

The spectator model is a very simple model where one can illustrate
the source of the problems in this kind of calculations and the relation of
gauge invariance and normalization. Actually, in the case of the pion such
a model corresponds to a unregularized NJL calculation. The spectator
model consists of replacing the full sum of intermediate states in the soft
piece of the Compton amplitude by a spectator particle, which for the pion
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has quark quantum numbers [39]. All what is required to do the calculation
is to know the mgg-coupling. We take a pseudoscalar coupling as follows

F#qq = _’757-ag7rqq . (73)

At the level of the Compton scattering amplitude it corresponds to the well-
known hand-bag diagram. Straightforward calculation of the unregularized
structure function yields in the Bjorken limit

1 4Ncg72r
Fi(z,Q%) — 2 (ez + €3) (47)21”
M? — z(1 — z)m?2 m2x(1—1x)
X {—log [ oz +M2—m(1—x)m%} , (T4)

which is a scaling violation quite different from those found in QCD. Actu-
ally, we get Fy(x,00) = oo instead of Eq. (71). Scaling can be restored by
attaching a form factor to the mwqq vertex or putting a O(4) cut-off in the
loop. No solution is really free of problems, since either gauge invariance is
violated or extra singularities are introduced.

At the level of the quark—target scattering amplitude the spectator pic-
ture corresponds to a single constituent quark in an intermediate state. The
result for a pseudoscalar coupling is

1
Fi(z) = 3 (ez + 63

4Ncg72rqq d2kL kﬁ_ + M?
) [ 7 (1)
& (2) (k% + M? — z(1 — z)m?2]
However, we see that the integral in k| is actually logarithmically divergent.
This only reflects the fact that for the unregularized quark loop the sepa-
ration between soft and hard processes involved in the Bjorken limit takes
place at kf_ ~ Q2. Obviously a form factor for the vertex or a transverse
cut-off, |k, | < A (both Q? independent), may be introduced yielding a finite

result.

BJ Struck quark

= + 0(UQ)

Spectator quark

Fig.7. Spectator model. The sum over intermediate states in the soft hadronic
contribution is replaced by a single quark state.
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Thus, we learn in this particular model that the connection between the
Compton amplitude and the quark—target scattering formulas is only justi-
fied provided everything is finite. So, some high energy suppresion should
be applied, with the help of a regularization. The problem is that we expect
to do it in a gauge invariant manner, since after all we are dealing with an
electromagnetic process.

4.8. PDF calculation from the Compton amplitude

In the PV regularized NJL model, the gauge invariant forward virtual
Compton scattering amplitude is given the sum of the hand-bag diagram,
the crossed contribution and the ym — 7 — 7y involving the off-shell
electromagnetic pion form factor (see Fig. (8)). Actually, it can be shown
that in the Bjorken limit only the hand-bag contribution survives, since the
crossed and pion off-shell contributions are higher twist. This result has
been obtained in Refs. [25,27] and turns out to coincide with applying PV
regularization, Eq. (31), to Eq. (74). The result is

1 d
Fy (iE) = 5 (6121, + 63) 4Ncg72rqqm m?rF(m?ra .’L')] ) (76)

where the function F(p?, z) is given by Eq. (44). Taking nt for definiteness,
one gets in the chiral limit

Upr (2) = dypt (z) =1, 0<z<l1. (77)
This gives the following result for the valence-quark distribution function

Viz)=2, 0<z<l. (78)

W S

Fig.8. Gauge invariant Compton amplitude in the NJL model. The closed loops
are Pauli—Villars regularized. Wavy lines are photons, solid lines are constituent
quarks and dashed lines composite pions.
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As we see the result is independent of the PV regulators and has proper sup-
port, normalization and fulfills the momentum sum rule. Moreover, Eq. (78)
is consistent with chiral symmetry, in the sense that it has been obtained
taking explicitly into account the boson Goldstone nature of the pion. The
result has also been obtained within the NJL model imposing a transverse
cut-off [40] upon the quark-target amplitude (75).

Eq. (78) disagrees with other quark loop calculations. If Eq. (64) is
used with a four-dimensional cut-off [41] or Eq. (68) is used with Lepage—-
Brodsky regularization [40] in the NJL model, different shapes for the quark
distributions are obtained. The null-plane [42], NJL model [41], spectator
model [39] and the recent quark loop [48] calculations also produce different
results. In all cases, the use of momentum dependent form factors or non-
gauge invariant regularization make the connection between Eq. (64) and
Eq. (68) doubtful and, furthermore, spoil normalization. The results based
on a quark loop with momentum dependent quark masses [49,50] seem to
produce a non-constant distribution.

4.4. PDF calculation in light cone coordinates

Perhaps the simplest way to obtain PDF for the pion in the NJL model
is by using the pion Bethe-Salpeter propagator. The probability distribu-
tion is defined through the pion expectation value of the number operator
corresponding to a quark of a given species. Taking into account the proper
normalization factors one gets at the pion pole the following expression for
the probability distribution of finding a valence quark with momentum frac-
tion z and transverse momentum k n

V(e k) = /de(p, R : (79)

2 kt=mrz,p2=ms,

where the Bethe—Salpeter normalization in the Pauli-Villars regularization
scheme is

D(p,k) = 4Nc7:g72rqq

. (80)

pZ=m2

4] e 1 1
dp? P - "k2— M2 A2 +ie (k—p)2— M2 — A?+ie
Introducing light cone variables
1
Et=k0+k, Kk =k'—Fk, d%k= §dk+dk—d2kL . (81)

Employing the definition (79) one finds
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1 - 2iNcgrgq [dk*dk™ 1
_Vﬂ'(x’kJ_) = - Sl /
2 fr (2m)* z(1 —z)
Z 0kt —xp™) 1
de j _ k2 + M2+ A2 +i0+ 1 2+ M2 A2 viot [

—Mr — mx(l—x) o MrT
where the location of poles in the £~ variable has been explicitly displayed.
For x > 1 or < 0 both poles are above and below the real axis, respectively,
and hence the integral vanishes in either case. For 0 < z < 1 the integral
yields

1 4Ngzqq d 1
“Vi(z, k)= ——289 7 L yp? ; . (82
2 (2,k1) 1673 dm?2 {m“ ;Cz k2 +m2+ A2 —m2z(1—z) } (82

Notice that, due to the Pauli—Villars subtractions, we have the asymptotic
behavior in the transverse momentum £k,

ANeGrgq 3; cidl
1673 kS

%VW(I,kL) N (83)

This guarantees the convergence of the £k integral without introducing a
transverse cut-off. Thus, the Pauli-Villars regulators automatically provide
a (gauge-invariant) form of a transverse cut-off. Integrating the transverse
momentum we get the PDF

JVelo) = [ dhgVala o) (84)

= 4N, [m2F(m2, )], (85)

d
gfrqqd 2
which is the result found in Ref. [25] (see also Eq. (75) above). In the
chiral limit, m,; = 0, one can use the Goldberger—Treiman relation for the
constituent quarks, grgqfr = M. Then f2 = 4N.M?F(0), which gives the
very simple formulas

1 AN, M? 1

P ak = )

gVeln kL) = Temp Z B A2 M2 (86)
1
SVale) = 1. (87)
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In the chiral limit V; (z, k 1) becomes trivially factorizable, since it is inde-
pendent of x. A remarkable feature is that the last relation, Eq. (87), is
independent of the PV regulators.

The light cone interpretation has been pursued (see e.g. [42] and refer-
ences therein) and more recently [40,67] within a LC quantization. In these
cases transverse cut-off’s were introduced, a posteriori. As we have shown
above this is not necessary in the PV regularization.

4.5. QCD evolution

Due to radiative corrections, parton distribution functions evolve loga-
rithmically with scale through the DGLAP equations [3]. Non-singlet (or
valence) distribution functions are easily evolved in terms of their Mellin
moments. For 77 = ud one defines

V(z) = u(z) — a(z) + d(z) — d(=) (88)
and takes (we assume chiral limit for simplicity)®
1
o Vr(z, o) =1. (89)

At leading order, evolution reads

1
0/ "o = (0

where the anomalous dimension is

V(1)

NS /280 !
) [ eV, o0
0

NS = 20 3+;—4n§:11 (91)
T T TAVF (nt1)(n+2) k|’

with Cp = 4/3. Taking n as a complex number, which also requires an
analytical continuation of both V(1) and vY°, Eq. (90) can be inverted
using

V(w, ) = / D V). (92)

% For non experts it may sound unnatural to take the high energy, Q* — oo, limit in
a model and use it as initial condition for QCD evolution at a low scale po. The point
is that if the quark model scales, the asymptotic behavior can be separated according
to increasing power corrections in 1/Q2 in a twist expansion. The anomalous dimen-
sions relevant for QCD evolution of structure functions are only known for the lowest
orders of such an expansion, but not for the full structure function. Using Eq. (89)
as initial condition automatically complies with the asymptotic result of Eq. (71).
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where ¢ has to be chosen as to leave all the singularities on the left hand side
of the contour. The result for the pion valence PDF found in Ref. [25] at LO
and [28] at NLO is displayed in Fig. 9 at u?> = Q* = 4GeV? compared with
phenomenological analysis for the pion [13]. As one can see, the agreement
is quite impressive. Despite the fact that a(ug)/(27) ~ 0.3 the differences
between LO and NLO turn out to be small.

05 T T

XUy (1) GRV-99  +
X uval?x) SMRS-92 o
X Uyg (X) LO

PionTm XU

val XUy (ONLO =-mso

x P(x, Q%)

X

Fig.9. Valence distributions in the pion at Q* = 4GeV? at LO [25] and NLO [28]
compared with phenomenological analysis for the pion SMRS92 [13], GRV99 [53].
We take (zV), = 0.47 at Q> = 4GeV? [13].

It is interesting to analyze these results in the light of the counting rules,
Eq. (72), of Ref. [37], as was already done in Ref. [55]. Using the inverse
Mellin formula, Eq. (92), it can be shown that, if V(z,ue) — C(1 — z)V
then

N_iCp a(p)

V(z,p) = C(l—x)"  Po "o g1, (93)

The value of the additional contribution to the exponent is a weakly de-
pending function for g > 1GeV. For the pion we find, using Eq. (15),

V(z,2GeV)—=2(1 — )20 2 51, (94)

which is consistent with the counting rules and the phenomenological anal-
ysis [13], after evolution. A more detailed account of the sea and gluon
distribution functions at LO and NLO and also for K and »n mesons can be
found in Ref. [28].
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5. Pion distribution amplitude

5.1. Pion transition form factor

The matrix element for the v* — 7% transition form factor is defined

(.91 @2) = Euwap 4765 Froy (001, 02) (95)

where Fryy(p,q1,q2) is the 70 electromagnetic transition form factor [4].
Two QCD results apply for this transition form factor. In the chiral limit
and for on-shell pions, p? = 0, and photons, ¢ = ¢3 = 0, corresponding to
the 7 — 2y decay one gets the normalization condition

1

Fry1(0,0,0) = InZf, (96)
which is the standard result expected from the chiral anomaly. The definition
of the leading twist contribution to the Pion Distribution Amplitude (PDA),

¢r(z), from the transition form factor is

hm Q? Fryqy (P a1 g2)

Q2— %:_(145“’) QQ,qu_ (1;“’) QQ
Afx or(z)
= dp—27"7 97
Nc/xl—w(2x—1)’ (97)
0

where w = (¢2 — ¢3)/(¢? + ¢3) is the photon asymmetry, —1 < w < +1,
which is kept finite when taking the limit > — co. It can be shown that in
the parton model the PDA can be computed by

or(z) = /d%ﬂ,,(x,iﬂ), (98)

where the pion light-cone wave function (pseudoscalar component) is defined
as the low-energy matrix element [43-45]

- 1 2 . -
Ur(z, kL) = _i;/f_ /dﬁ_d2&6z(2x_l)§ prbk

x (rt (p)la(€ 1)y 5d(0)]0), (99)

where p* = m, and 5| = 0,. An important relation found in Ref. [4] reads

1
N,
fir [ dote(.0.) = Fro 0,0,0)7. (100)
0
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Radiative logarithmic corrections to the pion distribution amplitude can be
easily implemented through the QCD evolution equations [4], which yield
for Q% — oo the asymptotic wave function of the form

on(z,00) = 62(1 — ). (101)

Moreover, the pion transition form factor has been recently measured by
the CLEO collaboration [56] and a theoretical analysis of PDA based on
these data and light-cone sum rules has been undertaken [57], showing that
at Q = 2.4GeV PDA is neither asymptotic, nor possesses the structure
proposed in early works [58].

The pion distribution amplitude has been evaluated with QCD sum
rules [59], in standard [60] (only the second é-moment) and transverse lat-
tice approaches [61-63], and in chiral quark models [64-72]. In chiral quark
models the results are not always compatible to each other, and even their
interpretation has not always been the same. While in some cases there are
problems with chiral symmetry and proper normalization [64,65,69], in other
cases [66—72] it is not clear how to associate the scale at which the model is
defined, necessary to define the starting point for the QCD evolution. The
fact that several calculations [64,65,67-71] produce a PDA strongly resem-
bling the asymptotic form suggests that their working scale is already large,
and the subsequent QCD evolution becomes unnecessary, or numerically in-
significant. This also tacitly assumes that these models already incorporate
the QCD radiative corrections.

5.2. PDA calculation for the unreqularized quark loop

Since v* — w07 is an abnormal parity process, the standard procedure in
the NJL model is not to regularize it because this is the only way to preserve
the anomaly (see also Ref. [33,73])). Straightforward calculation yields the
result
d'k 1 1 1
2m)4 k2—M?2 (k—q1)2—M? (k—q2)%2 — M?% "~

(102)

1
F7r'y’y(p7 QIan) = 897rqu2/(

In the chiral limit gr¢qfr — M and for on-shell pions, p? =0, and photons,
q? = ¢ = 0, corresponding to the 7° — 27y decay one gets

8M?21 d*k 1 1
F7r’y’7(0a070) = /

(2m)4 (k2 — M2)3  4n2f,’
which agrees with the chiral anomaly expectations, Eq. (96). This result is
the main motivation for not introducing an explicit cut-off in the abnormal
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parity processes. In order to compute the the high momentum behavior,
we use the Feynman trick in the two propagators containing ¢; and ¢, and
shift the integrating variable. For on-shell massless 7¥, p? = 0, we get

o 8M2/ k1
YT ] @n)t (k2 - M2)?
1
1 1
X — d . 104
:/ T ten (A= 0)p) = I (104
0

The Q? — oo limit can be taken yielding (see Eq. (97))

(i, Q) — — et [MQ —a(l = ajm,
s ?

(4’ e R

where a finite pion mass has been reinserted. Thus, the prescription not to
regularize the abnormal parity vertex does not agree with the factorization
result found in a parton model approach. Instead, there appear scaling vi-
olations, which do not correspond to those expected from QCD evolution,
contradicting the asymptotic result, Eq. (101). This problem is of a simi-
lar nature as the one found in the discussion of the spectator model after
Eq. (74), and similar remarks concerning gauge invariance apply here.

Fig. 10. Transition form factor in the NJL model. The closed loop is Pauli—Villars
regularized. Wavy lines are photons, solid lines are constituent quarks and dashed
lines composite pions.

5.83. PDA calculation from the transition form factor

To achieve factorization, it is necessary to effectively cut-off the trans-
verse momentum, 4.e., we have to be able to make Q2 larger than any scale
in the loop. This is not consistent with integrating in & up to infinity®.

6 If we formally take the limit we get an expression looking like Eq. (97) with, ¢x(2) = 1
but with the unregularized form of f2 (see Eq. (49). To achieve Eq. (97) with the
regularized definition of f2 some regularization must be introduced.
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If we introduce PV regulators”, we get

16 M2 1 d*k 1

2

Fyey2(P, q15 G2) | reg. — i
Q Yy (P q1 Q2)|eg - fr Ei:cz/(%r)‘l (kQ—MQ—A?)Q

1
1
_— 1
y /dxl_w(zx_l), (106)
0

which, using Eq. (49) and (97) corresponds to (after inclusion of a finite m,)

o) = 4NcMg;ﬂF<m3r, z), (107)

™

where F(p?, z) is given in Eq. (44). ¢, (z) depends only on x and is properly
normalized (see Eq. (49)). In the chiral limit one gets

or(z) =1 0<z<1, (108)

independently of the regulators. However, if we PV regularize the vertex
there is a violation of the anomaly, since

1 M?
Fwyy(O, 0, 0)|reg = M XZ: Cim . (109)

For typical values of the parameters one finds a 25% reduction in the am-
plitude which means a 40% reduction in the width for 7° — ~v. Such
a result was also found in Ref. [33] using a Euclidean O(4) cut-off. Thus, in
the present framework we have to choose between preserving the anomaly
and not obtaining factorization or vice versa, i.e. violating the anomaly and
reproducing factorization.

There is a subtlety in the previous reasoning, because the prescription of
not regularizing the abnormal parity contribution to the action really means
that the result is conditionally convergent and can be given unambiguously
if one insists on maintaining vector gauge invariance [73]. A practical way to
implement this fact is to introduce a gauge invariant regulator and remove
it at the end of the calculation. The triangle graph is linearly divergent,
and thus a regularization must be introduced. If one insists on preserving
vector gauge invariance the regulator must preserve that symmetry, but then
the axial current is not conserved generating the standard chiral anomaly.

" This regularization guarantees that the momentum routing is irrelevant. The Eu-
clidean O(4) cut-off of Ref. [66, 71] requires a very special momentum routing after
regularization; a different momentum routing with the same cut-off would produce
finite cut-off contributions to their results.



Pion Structure at High and Low Energies in . .. 4471

The obvious question arises whether the limit Q> — oo must be taken before
or after removing the cut-off by sending it to infinity. If one takes the
sequence Q? > A% — oo, the results of Ref. [71] produce a constant PDA,
in agreement with our low energy calculation.

5.4. PDA calculation in light-cone coordinates

The pion distribution amplitude is defined through

~ 2
faptor(z) = / %5 (kT —ap™) TY[XP(k)W’M%} , (110

where the PV regularized form the pion BS wave function, Eq. (52), is under-
stood. Formally, in momentum space, Eq. (99) corresponds to integration
over the quark momenta in the loop integral used in the evaluation of f,
Eq. (49), but with kT = pTz = m,z and k; fixed. Thus, with the PV
method and after working out the Dirac traces, we have to compute

- 2iN Mg dktdk™ 6 (kT — zp™
gpﬂ'(IakL) == Irag / 4 (2 _p )
fr (2m)* m2z(1 —x)
1 1
x> ¢ - - , (111)
. kY +M2+A54i0% K+ M2 AR 40t
T my(l—1x) a My

where, again, the location of poles in the £~ variable has been explicitly
displayed. This integral coincides with that found when computing the PDF
(see Eq. (82)). Evaluating the £~ integral gives the pion LC wave function
in the NJL model with the PV regularization:

AN.M grqq 1

Uy (2, k1) = ¢; . (112)
1673 f EJ: jkf_—i—/l?—l—MQ—x(l—x)er

For m, # 0 it is non-factorizable in the k| and z variables. As a consequence
of the PV condition with two subtractions one has, for large k|
AN M Grgq 3; CiA}

1673 fr kS 7

Ve(z, k1) — (113)

which gives a finite normalization and a finite second transverse moment

1
(E2) :/d%ﬁ/d oz, k) )k (114)
0
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Integrating with respect to k£, reproduces the pion distribution amplitude of
Eq. (107). In the chiral limit, m, = 0, one can use the Goldberger-Treiman
relation for the constituent quarks, greqfr = M, yielding in addition to
Eq. (108) the very simple formulas

Vel k1) = 3 Vala 1), (115)
M({qq)
2f2

where Vi (z, k) is given by Eq. (86). Note that these relations are indepen-
dent of the PV regulators.

One aspect of regularization should be analyzed here. According to pre-
vious studies [4], the value of the LC wave function in the chiral limit is
fixed at k| = 0, by the chiral anomaly, Eq. (100). In the PV regularized
NJL model this is not the case, since

(K1) = — (116)

1
N, 4N,M? 1
x| dr¥r(z, = F(0,0,0)— = i—5——— . (11
f/x (r,00) = F(0,0,0)™ 167r3f7r§i:CA?+M2 (117)
0

The first two terms in this equation indicate the consistency of our calcula-
tions between the transition form factor and the low energy matrix element,
but confirms the anomaly violation we have referred to above.

This is a clear deficiency of the NJL model and its regularization pro-
cedure, and we do not know of any convincing way of avoiding this prob-
lem in this model®. Nevertheless, it can be shown that it is possible to
write down a chiral quark model based on the concept of spectral reg-
ularization [51] where the proper anomaly is reproduced and the results
or(z, po) = Vi(z, po)/2 = 1 still hold [46].

5.5. QCD evolution

The leading-twist PDA requires the inclusion of radiative logarithmic
corrections through the QCD evolution [4]|. For the pion distribution ampli-
tude this is done in terms of the Gegenbauer polynomials, by interpreting
our low-energy model result as the initial condition. In the chiral limit

QDW(IMU*O) =1. (118)

8 In the Euclidean version of the model the accepted regularization prescription is to
regularize the real part of the action (normal parity processes) and not to regularize
the imaginary part of the action (abnormal parity processes) [73]. Such a prescription
agrees with the anomaly but does not agree with factorization and produces instead
Eq. (105).
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Then, the LO-evolved distribution amplitude reads [4]

oo !/

pr(z,p) = 62(1—2)y  Cp*(2x — Dan(p), (119)

n=0

where the prime indicates summation over even values of n only. The matrix
elements, a, (1), are the Gegenbauer moments given by

_ 2 2n+3 Ot(,u) 771;15/(250)
““”"50H4xn+m<amw>
1
x [ dsCY 20— 1)ipn (o, ). (120)
0

with Cz/ 2 denoting the Gegenbauer polynomials, and 73> > 0 is given by
Eq. (91). From Eq. (118) one gets immediately

1

[5G 20 — 1)pn 0. Q) = 1. (121)
0

Thus, for a given value of 1 we may predict PDA. To determine the initial
scale po, or, equivalently, the evolution ratio r = a(Q)/a(Qo) Ref. [29] uses
the result of Ref. [57], where it is found a2(2.4GeV) = 0.12 £ 0.03. Using
this input, one gets

po = 313750MeV . (122)

Within uncertainties, this result is compatible with the values obtained from
the momentum fraction analysis, Eq. (15) and the pion electromagnetic form
factor, Eq. (61). The result for the pion distribution amplitude obtained in
Ref. [29] is shown in Fig. 11 for Q = 2.4GeV and reflecting the uncertainties
from Ref. [57]. After evolution the results closely resemble those found in
the transverse lattice [61-63]. The analysis of the end point behavior yields,
after evolution, the estimate

o (2, 1) — 8¢ <4% In Oft((:o)) n 1) ~ 1252, (123)

for x — 0. Here ((s) = > o2, n ° is the Riemann zeta function and the

numerical value corresponds to take pu = 2.4GeV. The value obtained in
Ref. |29] for the second é-moment (¢ =2z — 1) is:
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1
€ = /dac or(2,Q = 2.4GeV) (22 — 1)?
0

= 0.040 £ 0.005, (124)

to be compared with (¢2) = 0.06 + 0.02 obtained in the standard lattice
QCD for Q =1/a = 2.6 £0.1 GeV [60].

2 . ;
r=0.09 ——
r=0.21 -

6x 1 x As mptotic Result
b (X, nltlal condition
15
04
\><; 1
s 2 2
Q" =5.8GeV
05 r
0 3 L L 1 1
0 0.2 0.4 0.6 0.8 1
X

Fig.11. The pion distribution amplitude in the chiral limit evolved to the scale
Q? = (2.4GeV)2. The two values for the evolution ratio r = a(Q)/a(Qo) reflect
the uncertainties in the values of Ref. [57] based on an analysis of the CLEO
data. We also show the unevolved PDA, ¢, (z,Qq) = 1, and the asymptotic PDA,
pr(x,00)=6x(1—x). We use, as suggested by the analysis of the DIS, a(Qo)=2.14
of Ref. [25], which corresponds to Qg = 313 MeV.

Based on the identities @ (x, o) = Vr(z, p0)/2 = 1 between the PDF
and the PDA in the chiral limit at the quark model scale a remarkable
integral relation between ¢ (z, ) and Vi (z, u)/2 has recently been derived
using LO evolution equations [29],

1
% - 1= /dyK(x,y)Vn(y,u), (125)

where the explicit expression for the scale independent kernel, K(z,y) is
given in Ref. [29]. Using this equation one can regard Fig. 11 as a predic-
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tion of the PDA in terms of the PDF parameterizations of Ref. [13] (see
Fig. 9). Using Eq. (125) one gets the following estimate for the leading twist
contribution to the pion form factor at LO

1

d =1.25+0.1 12
Tw1st 2 / :EGI 1 — I 5+0.10. ( 6)
0

Q*Fy- 71(Q)
2fx

The experimental value obtained in CLEO [56] for the full form factor is
Q*Fye 77(Q)/2fr = 0.83 £0.12 at Q* = 5.8GeV?2. Taking into account that
we have not included neither NLO effects nor an estimate of higher twist
contributions, the result is rather encouraging. Finally, using this estimate
for ¢, (z,Q) in the electromagnetic form factor, Eq. (60), one deduces an
enhacement

—Q’F™(-Q?) =0.20 £+ 0.03, Q% =5.8GeV?, (127)
Twist—2
which also brings the number closer to experimental number [31], although
it only accounts for half of its value ~ 0.38 & 0.04GeV?, perhaps due to
the lack of NLO or higher twists. At present this point seems not to be
understood and deserves further investigation.

6. Conclusions

Chiral quark models incorporate two essential features of QCD at low
energies: spontaneous chiral symmetry breaking and quark degrees of free-
dom. In addition, it can be made compatible with large N, counting rules,
and calculations in the leading order approximation have been undertaken
in the past. In these lectures we have focused and reviewed particular appli-
cations in a prototype chiral quark model, the Nambu-Jona-Lasinio model,
but many results extend trivially to other models. We have also restricted
to the pion because we do not expect a better theoretical understanding
of a hadron, including the fact that confinement is hoped not to play an
essential role.

A very important issue concerning the treatment of low energy models
is the existence of a high momentum suppression in the interaction. In the
NJL model this is done via a regularization method, which has to comply
with several properties, like gauge invariance and scaling in the high energy
limit, ¢.e. the absence of spurious logarithmic corrections. This allows to
clearly identify power corrections of pion observables.

These models make sense at a given low renormalization scale pg. Any
result for a given observable may be used to compute that observable at
a higher scale y through QCD evolution. In this way the correct behavior for
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QCD radiative corrections may be incorporated using the chiral quark model
as an initial condition for the evolution. Although radiative corrections are
only known perturbatively, there is a chance that the matching scale, pug,
makes perturbation theory meaningful. This is a weak point which can only
be addressed by computing higher order corrections to the model and higher
order corrections to the QCD evolution. Nevertheless, it is encouraging
that three different determinations of the scale based on matching to LO
perturbative QCD evolution and available experimental data yield within
uncertainties the scale o = 320MeV for Aqcp = 225MeV. Actually, using
this low scale the description of the distribution functions and distribution
amplitudes agrees remarkably well with phenomenological analysis.

Much of these lectures is based on common work and discussions with
R.D. Davidson, H. Weigel, L. Gamberg and W. Broniowski. I also thank
M. Praszalowicz for discussions. Finally, I wish to thank the organizers
for the kind invitation and the pleasant atmosphere. Support from DGES
(Spain) Project PB98-1367 and by the Junta de Andalucia is acknowledged.
Partial support from the Spanish Ministerio de Asuntos Exteriores and the
Polish State Committee for Scientific Research, grant number 07,/2001-2002
is also gratefully acknowledged.
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