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LOCAL INVARIANTSIN EFFECTIVE HYDRODYNAMICS OF TRAPPEDDILUTE-GAS BOSE�EINSTEIN CONDENSATESAlexander V. ZhukovInstitute of Physi
s, A
ademia Sini
a, NankangTaipei 11529, Taiwan(Re
eived May 7, 2001; revised version re
eived O
tober 15, 2001)In the framework of mean-�eld approximation the dynami
s of Bose�Einstein 
ondensates 
an be des
ribed by the hydrodynami
-like equations.These equations are analyzed here with a

ount of mutual intera
tion be-tween 
ondensate and non-
ondensate atoms. The Lagrange invariants andfreezing-in invariants of su
h a system have been found. This allows to getsome ne
essary 
onditions for 
reation of an atom laser with 
ontrolled pa-rameters of the beam. Parti
ularly, the atom laser beam 
an 
arry quitewell de�ned angular momentum. This 
an be pra
ti
ally realized in themost simple 
ase, when the vorti
ity of 
ondensate appears to be a freezing-in �eld. The optimal 
onditions for a sour
e mode regime are found.PACS numbers: 03.75.Fi, 05.30.Jp, 47.37.+q1. Introdu
tionOne of the youngest, but very rapidly developing �eld of modern low tem-perature physi
s is the problem of trapped Bose gases at very low temper-atures, when Bose�Einstein 
ondensation o

urs. For re
ent reviews of thistopi
 in general see Refs. [1�4℄. In last few years a 
onsiderable progresshas been a
hieved in the understanding of the dynami
s of Bose�EinsteinCondensates (BEC) both at T = 0 [1℄ and at �nite temperatures [2, 5, 10℄.However, many questions yet remain in the latter 
ase (see dis
ussion in [11℄).To realize the full potential of re
ent developments in BEC physi
s, and toanalyze adequately the data of the experiments in a quantitatively meaning-ful manner, a detailed understanding of the BEC dynami
s in all its aspe
tsis required. (563)



564 A.V. ZhukovA detailed investigation of the dynami
s (and, parti
ularly, 
olle
tivepro
esses) of BEC at various temperatures is extremely important in viewof the possible appli
ations of unique features of su
h systems. In all like-lihood the most intriguing experimental proje
t asso
iated with trappedatomi
 gases is the so-
alled �atom laser� or, in other words, highly 
oherentatomi
 beam generator [12, 13℄ (for a review see also [4℄). The proposedexperimental 
on�gurations should satisfy a number of basi
 
riteria in or-der to be 
alled an atom laser. Of 
ourse, the high phase 
oheren
e ofatomi
 beam is required �rst of all. However, the highly dispersive natureof the BEC suggests that the spatial fo
using and stability of 
ross se
tionof a BEC beam will present possibly more of a problem than en
ountered inthe pro
ess of fo
using laser light [14℄. Very re
ently the quasi-
ontinuousatom laser has been 
onstru
ted [15℄. Furthermore, the same group demon-strated the su

essful atom opti
al manipulation, su
h as re�e
tion, fo
usingand the beam storage in a resonator [16℄ (however, see the earlier su

essfulworks [41, 42℄ based on rather di�erent prin
iple). Thus, another interest-ing task appears, namely how to 
reate the atom laser with well 
ontrolled
hara
teristi
s. Solution of su
h a problem 
an bring atom laser 
loser to bea useful tool in various potential appli
ations. The present paper solves oneof the problems in this dire
tion. Parti
ularly, we 
onsider the possibilityfor atom laser beam to 
arry the predesigned angular momentum.The paper is organized as follows. In Se
tion 2 the quasi-hydrodynami
approa
h to a trapped Bose-gas below the BEC transition temperature is
onsidered. Se
tion 3 is devoted to the des
ription of the method for 
on-stru
tion of Lagrange invariants and freezing-in �elds by means of the gaugetransformation of the BEC quasi-hydrodynami
 equations. The appli
a-tions of su
h invariants to the 
reation of atom laser beam with predesignedparameters are 
onsidered in Se
tion 4.2. Quasi-hydrodynami
 equations for the 
ondensate atomsThe starting point in des
ription of BEC is the usual Heisenberg equationof motion for the quantum �eld operator  ̂(r; t)i~� ̂(r; t)�t = h ̂(r; t); Ĥi= �� ~22m�+ U (trap)(r)�  ̂(r; t) + g��� ̂(r; t)���2 ̂(r; t) ; (1)where U (trap)(r) is the 
on�ning potential, the expli
it form of whi
h isnot essential for us here. In equation (1) we assumed s-wave short-rangeinteratomi
 intera
tion with a strength g = 4�ah2=m (a is the e�e
tives
attering length). As usually, set
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tive : : : 565 ̂(r; t) = �(r; t) + ~ (r; t) ; (2)where �(r; t) = h ̂(r; t)i, ~ (r; t) is the non-
ondensate �eld operator. Tak-ing an average of equation (1) with respe
t to a broken symmetry non-equilibrium ensemble, we 
ome to the equation for the 
ondensate wavefun
tion [10℄i~d�(r; t)dt = �� ~22m�+ U (trap)(r) + gn
(r; t) + 2g~n(r; t)��(r; t)+ g ~m(r; t)��(r; t) + gh ~ +(r; t) ~ (r; t) ~ (r; t)i ; (3)where n
(r; t) = j�(r; t)j2 is the lo
al density of atoms in the 
ondensate,~n(r; t) = h ~ +(r; t) ~ (r; t)i (4)is the non-equilibrium non-
ondensate density. Equation (4) involves alsothe anomalous non-
ondensate density ~m(r; t) = h ~ (r; t) ~ (r; t)i and thethree-�eld 
orrelation fun
tion hj ~ (r; t)j2 ~ (r; t)i. The appearan
e of the lasttwo terms in (3) is a 
onsequen
e of Bose broken symmetry in the system.The earlier approa
hes to the equation (3) were based on the assumptionthat all atoms are in the 
ondensate. In this 
ase the so-
alled Gross�Pitaevskii [17℄ equation appears:i~d�(r; t)dt = �� ~22m�+ U (trap)(r) + gn
(r; t)��(r; t) ; (5)whi
h 
an be 
onveniently rewritten in terms of the lo
al 
ondensate densityn
(r; t) = j�(r; t)j2 (6a)and lo
al velo
ity v
(r; t) = ~mr�(r; t) : (6b)Here �(r; t) is the phase of the 
ondensate wave fun
tion�(r; t) =pn
(r; t) exp (i�(r; t)) : (7)It should be noted that the analogous nonlinear Shrödinger equation 
anbe obtained quite rigorously in the 
ase of high density, but weak enoughpoint intera
tion [18℄. However, in that 
ase the physi
al sense of � is not
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lear enough. So, using (6) and (7), we 
an present equation (5) as the setof two following equations�n
�t +r(n
v
) = 0 ; (8a)� ��t + (v
r)� v
 = �r�0m ; (8b)where �0 = � ~22m�pn
pn
 + U (trap)(r) + gn
(r; t) :It is remarkable that equations (8) are hydrodynami
 looking. This fa
t issomewhat 
onfusing on the fa
e of it. Really, equations similar to (8) whereobtained phenomenologi
ally to des
ribe a super�uid 
omponent of liquidhelium [19, 20℄ whi
h is a strongly intera
ting many-parti
le system. Never-theless, we should keep in mind that in Bose�Einstein 
ondensed state wedeal with the single 
ondensate wave fun
tion �(r; t), whi
h allows a stronganalogy with the order parameter in super-�uids1.The next step is to extend the pre
eding analysis to �nite tempera-tures where there is a large fra
tion of atoms outside of the 
ondensate. Inthis 
ase we need two equations to be used. While the 
ondensate wavefun
tion 
an be des
ribed as earlier by the Gross�Pitaevskii equation, thedistribution fun
tion of the non-
ondensate atoms obeys a kineti
 equation,whi
h must take into a

ount the 
ollisions of both types: non-
ondensateatoms with ea
h other and their intera
tion with a 
ondensate. The quiterigorous derivation of the 
orresponding 
ollision integrals 
an be found inAppendix A of paper [10℄. After some mathemati
s we 
ome to the 
orre-sponding hydrodynami
-like equations�n
�t +r(n
v
) = � (r; t) ; (9a)� ��t + (v
r)�v
 = �r�m ; (9b)where � (r; t) = �Z d3p(2�~)3 J [f(p; r; t)℄ : (10)1 Note, there is no 
omplete mi
ros
opi
 theory of super-�uids until now. We only knowthat the dynami
s of super�uid 
omponent in super-�uids 
an be well des
ribed bythe hydrodynami
 equations similar to (8).
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tive : : : 567J [f(p; r; t)℄ is the 
ollision integral 
orresponding to the 
ollisions between
ondensate and non-
ondensate atoms, whi
h fun
tionally depends on thedistribution fun
tion f(p; r; t) of ex
ited atoms. So, fun
tion � (r; t) isthe 
hara
teristi
 rate of the atoms ex
hange between 
ondensate and non-
ondensate. New 
hemi
al potential � in equation (9b) is now de�ned bythe relation� = � ~22m�pn
pn
 + U (trap)(r) + gn
(r; t) + 2g~n(r; t) ; (11)where ~n(r; t) = �Z d3p(2�~)3 f(p; r; t)is the density of non-
ondensate atoms. Equations (9) des
ribe the dynami
sof BEC like an �e�e
tive �uid� with varying density. Term � (r; t) play therole of inhomogeneous and nonstationary sour
e.3. Hydrodynami
 invariantsAs we realized in the previous se
tion the evolution of BEC in the frameof reasonable approximations 
an be des
ribed by the equations, whi
h aresimilar to the hydrodynami
 ones. Classi
al equations of ideal liquid havequite a number of invariants. Ex
ept of ordinary integral invariants there arelo
al invariants as well. The Lagrange invariants and freezing-in invariantsare most important ones. Lagrange invariants are 
onserved along the �liquidparti
les� traje
tories, while the freezing-in invariants are used in referen
eto the �elds frozen into a liquid, i.e. the 
orresponding physi
al quantity(�eld) vanishes in a frame whi
h moves with the �uid. In papers [21�23℄a wide 
lass of invariants was found. Furthermore, the authors of Refs.[21, 22℄ proposed the method of obtaining new invariants on the basis ofalready known. The re
ent paper [24℄ was devoted to 
onstru
tion of theinvariants of super�uid hydrodynami
 equations by means of their gaugetransformation [25℄. This method is very attra
tive be
ause after the gaugetransformation the presen
e of many additional invariants be
omes obvious.The idea of gauge transformation [24, 25℄ 
an be modi�ed to be helpfulin our 
ase, i.e. BEC dynami
s. Really, the lo
al 
ondensate velo
ity isde�ned by the equation (6). If we wish the 
ondensate wave fun
tion to besingle-valued, then the bypassing along vortex line must lead to the 
hangeof a phase by the integer of 2�. To be so, we should do a 
ut. If the leap ofphase on the bank of 
ut is proportional to a new fun
tion, say u
, then we
an do the following gauge transformationv
 = �r� +r�+ u
 ; (12)
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tion. Gauge of the �elds should be done by theequation for r� �r� and by the initial 
onditions. After the substitutionof equation (12) into (9b) we get� ��t + (v
r)�u
i = � ��xi ��+ ��t (�� �)�� (v
r) � ���xi � ���xi��u
j �v
j�xi +�v
j + ��xj (� � �)� �v
j�xi : (13)It 
an be easily tested that if the gauge fun
tion obeys the following equation� ��t + (v
r)� (� � �) = �� 12v2
 ; (14)then equation (13) be
omes� ��t + (v
r)�u
i = �u
j �v
j�xi : (15)The gauge of �eld u
 is determined by equation (14) and by the initial 
ondi-tion for � or u
. The s
alar produ
t of the �eld u
 and the �ux line elementÆl behaves like a mass element, whi
h is 
onserved along any traje
tory [24℄.Dire
t test shows that � ��t + (v
r)� (u
Æl) = 0 : (16)So, the quantity u
Æl is the Lagrange invariant. It should be notedthat in this 
ase the vorti
ity w = rotv
 be
omes freezing-in �eld [26℄.Using the analogy with super�uid hydrodynami
s we believe that in BECrotv
 = 0 everywhere ex
ept the axes of vorti
es. So, we 
ome to thefollowing 
on
lusion: if there were vorti
es in the BEC initially and theinvariant u
Æl is 
onserved, then there will be the given 
onserved vorti
ityin any frame moving with the �ux lines in future.The possible existen
e of vorti
es in BEC has been under extensive dis-
ussion for a rather long time (see e.g. [28�34℄). And �nally, they werere
ently obtained in the experiments [35�39℄.In the next se
tion we 
onsider the 
onsequen
es of this 
on
lusion forpossible experimental realization of an atom laser.4. The stability of atom laser beamA number of atom laser s
hemes have been proposed during the last fewyears. Evident progress is already a
hieved in the realization of pulsed lasersusing a matter-wave splitter based on radio frequen
y (rf) transitions [15,40℄
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tive : : : 569and opti
al Raman transitions [41,42℄. Su
h s
hemes, however, have severalshort
omings the main of whi
h is the di�
ulties in a
hieving a 
ontinuousre�lling. Another s
hemes, whi
h allow to 
reate the 
ontinuous wave atomlaser 
an be 
learly divided into two distin
t 
lasses: opti
al 
ooling [43�45℄and evaporative 
ooling [46�49℄. Both models are based, in prin
iple, on thesame idea: a sour
e supplies atoms to an upper-lying mode of an atom trap.This sour
e mode is 
oupled to the ground state mode (
ondensate) via aparti
ular 
ooling me
hanism. It is hoped that the ma
ros
opi
 populationin this ground state mode, or laser mode, 
an be built up and 
oupled tooutside world to produ
e the laser output. Independently, on parti
ularmodel, 
ooling pro
ess or, in other words, pro
ess of in
rease of the atompopulation in the ground state mode must satisfy the main 
riterion: theun
ontrolled perturbation of ground state atoms should be minimal.I shall not limit myself to the frame of the parti
ular experiments (evensu

essful, su
h as [41, 42℄ or [15, 16℄). Below both the possible situationsare 
onsidered. 4.1. Continuous modelsIn the previous se
tion we found that the BEC 
an have Lagrange invari-ants. Let us assume that initially all atoms in the trap are in 
ondensate.So, equation (9a) 
ontains the quantity � (r; t) = �p(r; t), whi
h is justthe rate of pumping, i.e. the rate of in
rease of the population in groundstate due to the 
ooling of atoms from upper-lying mode. Let us �nd the
onditions for �p(r; t), under whi
h the pumping of the ground state modedoes not break the �ux lines (i.e. the all lo
al invariants remain to be 
on-served). As it follows from equation (15), u
Æl is always a Lagrange invariant(see equation (16)) if the gauge 
ondition (14) is satis�ed. However, if the�ux lines are broken so that a vorti
ity 
hanges, then the 
ondition (14)is ne
essarily broken as well as u
Æl be
omes non-invariant. So, we 
ometo the simple 
on
lusion: to 
onserve a given vorti
ity we must keep theregime of pumping to be su
h one to do the 
ondition (14) being always valid.Obviously, the most simple requirement is � = �, or as it follows from equa-tion (14) �(r; t) = 12v2
 (r; t) : (17)Furthermore, this requirement automati
ally means that u
 = v
 and theinvariant vvÆl 
ontains the velo
ity itself.For simpli
ity 
onsider the situation, when the velo
ity of laser mode
hanges only in given dire
tion. In this 
ase, using equations (9a), (11), and(17), we obtain
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�t +�p(r; t) +r(p2n
evsU (trap)(r)+g(n
 + 2~n)� ~22m�pn
pn
 )=0 ;(18)where ev = v
=jv
j. Result (18) gives the 
onne
tion between experimen-tally 
ontrollable quantities n
, ~n, �p(r; t), and U (trap)(r). Of 
ourse, thisequation should further be solved numeri
ally for parti
ular experimental
on�gurations. Note that, of 
ourse, the relation (18) does not solve allproblems of atom laser beam stability, but it gives very useful tool for mak-ing a 
hoi
e of the parameters of experimental setup. If the 
ondition (18) issatis�ed, then at least the problem of angular momentum transfer is solvedin the frame of the made approximations.4.2. Pulsed modelsHere we 
onsider the models of pulsed (not 
ontinuously re�lled) atomlaser on the example of rf-transition s
heme [15, 16, 40℄. In this s
heme theoutput 
oupler in
ludes resonant mono
hromati
 radio frequen
y �eld trans-ferring atoms in some hyper�ne state F from the trapped into untrappedmagneti
 sublevels. In the 
ase of 23Na atoms F = 1, so that s = �1 
orre-sponds to the trapped state, s = 0 and s = 1 
orresponds to the untrappedand the repelled sublevels, respe
tively, (here F is the total angular momen-tum, s is the magneti
 quantum number). Equation (5) now be
omes [50℄i~d ~�s(r; t)dt = �� ~22m�+ ~s!rfU (trap)s (r) + gns(r; t)� ~�s(r; t)+ ~
Xs0 (Æs;s0+1 + Æs;s0�1) ~�s0(r; t) ; (19)where in rotating wave approximation~�s(r; t) = e�is!rfth ̂s(r; t)i; s; s0 2 f�1; 0;+1g ; (20) ̂s(r; t) is the quantum �eld operator for atoms belong the sublevel withgiven s, !rf is the frequen
y of applied resonant rf �eld, ns = j ~�sj2. The
oupling 
onstant ~
 = g�Bohr jBjp2 (21)refers to the Rabi frequen
y due to the rf �eld. For a small 
oupling strengththe pro
ess of atoms leaking out of the resonan
e points is faster than theRabi os
illations. So, we further negle
t the 
oupling into state s = +1 sin
e
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tive : : : 571it is proportional to 
4. Using su
h approximation and writing the relation(7) for ea
h sublevel s we get for the density of atoms in a laser beam n0the following relation, analogous to the formula (9a):�n0�t +r(n0v0) = 2
pn
n0 sin(�
 � �0); (22)where n
 � n�1. Equation (22) has a 
lear physi
al sense: variation of theatom beam density os
illates due to the di�eren
es of the 
ondensate andbeam phases.Equation similar to (9b) looks� ��t + (v0r)� v0 = �r~�0m ; (23)where~�0 = � ~22m�pn0pn0 + U (trap)0 (r) + gn0(r; t) + ~
rn
n0 
os(�
 � �0) (24)is the new 
hemi
al potential. From equations (17), (22), (23), and (24) weeasily obtain the 
ondition similar to (18):�n0�t +r(p2n0evsU (trap)0 (r)+gn0(r; t)� ~22mrpn0pn0 +~
rn
n0 
os(�
��0))= 2
pn0n
 sin(�
 � �0) : (25)Note, as it 
an be seen from the 
ondition (25) the temporal 
hange of thebeam atoms population depends on the phase di�eren
e (�
 � �0), whi
h isdetermined by the frequen
y !rf .Dire
t 
omparison of the formulae (18) and (25) shows that the out
ome(i.e. laser beam itself) in the 
ontinuous 
ase 
an be stabilized easier thanin the pulsed regime.In 
on
lusion, using the quasi-hydrodynami
 approximations we havefound the lo
al invariants of Bose�Einstein 
ondensate in trapped alkaligases. Parti
ularly we obtained the Lagrange invariant, whi
h ensures thevorti
ity to be a freezing-in �eld. The obtained results 
an be dire
tly appliedto the 
reation of highly 
oherent atomi
 beam generators (atom lasers) withwell 
ontrolled angular momentum. Both the pulsed laser and laser with
ontinuous re�lling are 
onsidered. The optimal 
onditions for the pumpingmodes have been found (again for the both s
hemes).
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