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In the framework of mean-field approximation the dynamics of Bose—
Einstein condensates can be described by the hydrodynamic-like equations.
These equations are analyzed here with account of mutual interaction be-
tween condensate and non-condensate atoms. The Lagrange invariants and
freezing-in invariants of such a system have been found. This allows to get
some necessary conditions for creation of an atom laser with controlled pa-
rameters of the beam. Particularly, the atom laser beam can carry quite
well defined angular momentum. This can be practically realized in the
most simple case, when the vorticity of condensate appears to be a freezing-
in field. The optimal conditions for a source mode regime are found.

PACS numbers: 03.75.Fi, 05.30.Jp, 47.37.--q

1. Introduction

One of the youngest, but very rapidly developing field of modern low tem-
perature physics is the problem of trapped Bose gases at very low temper-
atures, when Bose—Einstein condensation occurs. For recent reviews of this
topic in general see Refs. [1-4]|. In last few years a considerable progress
has been achieved in the understanding of the dynamics of Bose-Einstein
Condensates (BEC) both at 7= 0 [1] and at finite temperatures [2, 5, 10].
However, many questions yet remain in the latter case (see discussion in [11]).
To realize the full potential of recent developments in BEC physics, and to
analyze adequately the data of the experiments in a quantitatively meaning-
ful manner, a detailed understanding of the BEC dynamics in all its aspects
is required.

(563)
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A detailed investigation of the dynamics (and, particularly, collective
processes) of BEC at various temperatures is extremely important in view
of the possible applications of unique features of such systems. In all like-
lihood the most intriguing experimental project associated with trapped
atomic gases is the so-called “atom laser” or, in other words, highly coherent
atomic beam generator [12,13] (for a review see also [4]). The proposed
experimental configurations should satisfy a number of basic criteria in or-
der to be called an atom laser. Of course, the high phase coherence of
atomic beam is required first of all. However, the highly dispersive nature
of the BEC suggests that the spatial focusing and stability of cross section
of a BEC beam will present possibly more of a problem than encountered in
the process of focusing laser light [14]. Very recently the quasi-continuous
atom laser has been constructed [15]. Furthermore, the same group demon-
strated the successful atom optical manipulation, such as reflection, focusing
and the beam storage in a resonator [16] (however, see the earlier successful
works [41,42] based on rather different principle). Thus, another interest-
ing task appears, namely how to create the atom laser with well controlled
characteristics. Solution of such a problem can bring atom laser closer to be
a useful tool in various potential applications. The present paper solves one
of the problems in this direction. Particularly, we consider the possibility
for atom laser beam to carry the predesigned angular momentum.

The paper is organized as follows. In Section 2 the quasi-hydrodynamic
approach to a trapped Bose-gas below the BEC transition temperature is
considered. Section 3 is devoted to the description of the method for con-
struction of Lagrange invariants and freezing-in fields by means of the gauge
transformation of the BEC quasi-hydrodynamic equations. The applica-
tions of such invariants to the creation of atom laser beam with predesigned
parameters are considered in Section 4.

2. Quasi-hydrodynamic equations for the condensate atoms

The starting point in description of BEC is the usual Heisenberg equation
of motion for the quantum field operator 9 (r, %)
Ip(r, 1)

MT = [@(r,t),?—l}

_ {_%A+U<trap><r)}¢<r,t>+g\«/3<r,t)\ brt), (1)

where U(®2P) () is the confining potential, the explicit form of which is
not essential for us here. In equation (1) we assumed s-wave short-range
interatomic interaction with a strength ¢ = 4mah?/m (a is the effective
scattering length). As usually, set
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1/)(T,t) = @(’I‘,t) + 'l/?(’l",t) ) (2)

where @(r,t) = (4(r, 1)), ¥(r,t) is the non-condensate field operator. Tak-
ing an average of equation (1) with respect to a broken symmetry non-
equilibrium ensemble, we come to the equation for the condensate wave
function [10]

dolr,t) _ p° (trap) N
dt = { QmA +U (r) + gne(r,t) + 2gn(r,t) ¢ &(r,t)

ih

+gr(r, )8 (r, 1) + (™ (r, )P (r, 1) (r, 1)) (3)

where n.(r,t) = |®(r,t)|? is the local density of atoms in the condensate,

fi(r,t) = (* (r, )i (r,1) (4)

is the non-equilibrium non-condensate density. Equation (4) involves also
the anomalous non-condensate density m(r,t) = (¢(r,t)9(r,t)) and the
three-field correlation function ([¢)(r,¢)|2¢(r,t)). The appearance of the last
two terms in (3) is a consequence of Bose broken symmetry in the system.

The earlier approaches to the equation (3) were based on the assumption
that all atoms are in the condensate. In this case the so-called Gross—
Pitaevskii [17] equation appears:

r 2
z’hd@iﬁ, ) _ {_h_A + UMW) (1) 4 g (, t)} B(r,t), (5)

2m

which can be conveniently rewritten in terms of the local condensate density

ne(r,t) = [@(r, 1) (6a)
and local velocity
h
(r,t) = —Vo(r,t). b
velr,t) = - V0(r,1) (61)

Here O(r,t) is the phase of the condensate wave function

&(r,t) = /nc(r,t) exp (i6(r,t)) . (7)

It should be noted that the analogous nonlinear Shrodinger equation can
be obtained quite rigorously in the case of high density, but weak enough
point interaction [18]. However, in that case the physical sense of @ is not
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clear enough. So, using (6) and (7), we can present equation (5) as the set
of two following equations

on,
ot

+ V(neve) = 0, (8a)

{%wL(ch)}vc = Vv, (8b)

where

Lo = _ﬁﬂ + U(trap)

2m \/ne

It is remarkable that equations (8) are hydrodynamic looking. This fact is
somewhat confusing on the face of it. Really, equations similar to (8) where
obtained phenomenologically to describe a superfluid component of liquid
helium [19,20] which is a strongly interacting many-particle system. Never-
theless, we should keep in mind that in Bose—FEinstein condensed state we
deal with the single condensate wave function @(r,t), which allows a strong
analogy with the order parameter in super-fluids’.

The next step is to extend the preceding analysis to finite tempera-
tures where there is a large fraction of atoms outside of the condensate. In
this case we need two equations to be used. While the condensate wave
function can be described as earlier by the Gross—Pitaevskii equation, the
distribution function of the non-condensate atoms obeys a kinetic equation,
which must take into account the collisions of both types: non-condensate
atoms with each other and their interaction with a condensate. The quite
rigorous derivation of the corresponding collision integrals can be found in
Appendix A of paper [10]. After some mathematics we come to the corre-
sponding hydrodynamic-like equations

(r) + gne(r,t) .

one
5 + V(nov.) = I'(r,t), (9a)
0 Vu
{E + (UCV)}UC = -, (9b)
where
3
rrt) = = [ Gt d ot (10)

! Note, there is no complete microscopic theory of super-fluids until now. We only know
that the dynamics of superfluid component in super-fluids can be well described by
the hydrodynamic equations similar to (8).
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J[f(p,r,t)] is the collision integral corresponding to the collisions between
condensate and non-condensate atoms, which functionally depends on the
distribution function f(p,r,t) of excited atoms. So, function I'(r,t) is
the characteristic rate of the atoms exchange between condensate and non-
condensate. New chemical potential p in equation (9b) is now defined by
the relation

A
- Ve + UMW) () 1 gn(r,t) + 2g7i(r, 1) , (11)

where
3
i) = = [ Gep o)

is the density of non-condensate atoms. Equations (9) describe the dynamics
of BEC like an “effective fluid” with varying density. Term I'(r,t) play the
role of inhomogeneous and nonstationary source.

3. Hydrodynamic invariants

As we realized in the previous section the evolution of BEC in the frame
of reasonable approximations can be described by the equations, which are
similar to the hydrodynamic ones. Classical equations of ideal liquid have
quite a number of invariants. Except of ordinary integral invariants there are
local invariants as well. The Lagrange invariants and freezing-in invariants
are most important ones. Lagrange invariants are conserved along the “liquid
particles” trajectories, while the freezing-in invariants are used in reference
to the fields frozen into a liquid, i.e. the corresponding physical quantity
(field) vanishes in a frame which moves with the fluid. In papers [21-23]
a wide class of invariants was found. Furthermore, the authors of Refs.
[21, 22] proposed the method of obtaining new invariants on the basis of
already known. The recent paper [24] was devoted to construction of the
invariants of superfluid hydrodynamic equations by means of their gauge
transformation [25]. This method is very attractive because after the gauge
transformation the presence of many additional invariants becomes obvious.

The idea of gauge transformation [24,25] can be modified to be helpful
in our case, i.e. BEC dynamics. Really, the local condensate velocity is
defined by the equation (6). If we wish the condensate wave function to be
single-valued, then the bypassing along vortex line must lead to the change
of a phase by the integer of 2m. To be so, we should do a cut. If the leap of
phase on the bank of cut is proportional to a new function, say w., then we
can do the following gauge transformation

ve=-VO0+Va+u, (12)
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where « is a gauge function. Gauge of the fields should be done by the
equation for VO — Va and by the initial conditions. After the substitution
of equation (12) into (9b) we get

{2+ =~ fu+ Sa-0) - o) [52 - 2]

ov 0 0ve;

— Ucj aCJ +{ch+%j(0—a)} 8:;: . (13)
It can be easily tested that if the gauge function obeys the following equation

0 15
—a)=p— = 14
{5+ @ }o-a=n-ge2, (14

then equation (13) becomes
0 0ve;

{2+ o) o= —u, 55 (15)

The gauge of field u, is determined by equation (14) and by the initial condi-
tion for 6 or u.. The scalar product of the field u. and the flux line element
0l behaves like a mass element, which is conserved along any trajectory [24].
Direct test shows that

{Bat (v, V)} (wedl) = 0. (16)

So, the quantity w.0l is the Lagrange invariant. It should be noted
that in this case the vorticity w = rotv. becomes freezing-in field [26].
Using the analogy with superfluid hydrodynamics we believe that in BEC
rotv, = 0 everywhere except the axes of vortices. So, we come to the
following conclusion: if there were vortices in the BEC initially and the
invariant w6l is conserved, then there will be the given conserved vorticity
in any frame moving with the flux lines in future.

The possible existence of vortices in BEC has been under extensive dis-
cussion for a rather long time (see e.g. [28-34]|). And finally, they were
recently obtained in the experiments [35-39].

In the next section we consider the consequences of this conclusion for
possible experimental realization of an atom laser.

4. The stability of atom laser beam

A number of atom laser schemes have been proposed during the last few
years. Evident progress is already achieved in the realization of pulsed lasers
using a matter-wave splitter based on radio frequency (rf) transitions [15,40]
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and optical Raman transitions [41,42]. Such schemes, however, have several
shortcomings the main of which is the difficulties in achieving a continuous
refilling. Another schemes, which allow to create the continuous wave atom
laser can be clearly divided into two distinct classes: optical cooling [43-45]
and evaporative cooling [46-49]. Both models are based, in principle, on the
same idea: a source supplies atoms to an upper-lying mode of an atom trap.
This source mode is coupled to the ground state mode (condensate) via a
particular cooling mechanism. It is hoped that the macroscopic population
in this ground state mode, or laser mode, can be built up and coupled to
outside world to produce the laser output. Independently, on particular
model, cooling process or, in other words, process of increase of the atom
population in the ground state mode must satisfy the main criterion: the
uncontrolled perturbation of ground state atoms should be minimal.

I shall not limit myself to the frame of the particular experiments (even
successful, such as [41,42| or [15,16]). Below both the possible situations
are considered.

4.1. Continuous models

In the previous section we found that the BEC can have Lagrange invari-
ants. Let us assume that initially all atoms in the trap are in condensate.
So, equation (9a) contains the quantity I'(r,t) = vp(r,t), which is just
the rate of pumping, i.e. the rate of increase of the population in ground
state due to the cooling of atoms from upper-lying mode. Let us find the
conditions for v,(r,t), under which the pumping of the ground state mode
does not break the flux lines (i.e. the all local invariants remain to be con-
served). As it follows from equation (15), w0l is always a Lagrange invariant
(see equation (16)) if the gauge condition (14) is satisfied. However, if the
flux lines are broken so that a vorticity changes, then the condition (14)
is necessarily broken as well as w0l becomes non-invariant. So, we come
to the simple conclusion: to conserve a given wvorticity we must keep the
regime of pumping to be such one to do the condition (14) being always valid.
Obviously, the most simple requirement is 6 = «, or as it follows from equa-
tion (14)

e t) = Sod(r,t). (17)

Furthermore, this requirement automatically means that u, = v, and the
invariant v, 6l contains the velocity itself.

For simplicity consider the situation, when the velocity of laser mode
changes only in given direction. In this case, using equations (9a), (11), and
(17), we obtain
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on . h? Ayn.
Ylte (trap) o —
ot +Vp(r7t)+v{\/§ncev\/U (r)+g(nc +27) o \/n—c } 0,

(18)
where e, = v./|v.|. Result (18) gives the connection between experimen-
tally controllable quantities n., 7, vp(r,t), and U(trap) (). Of course, this
equation should further be solved numerically for particular experimental
configurations. Note that, of course, the relation (18) does not solve all
problems of atom laser beam stability, but it gives very useful tool for mak-
ing a choice of the parameters of experimental setup. If the condition (18) is
satisfied, then at least the problem of angular momentum transfer is solved
in the frame of the made approximations.

4.2. Pulsed models

Here we consider the models of pulsed (not continuously refilled) atom
laser on the example of rf-transition scheme [15,16,40]. In this scheme the
output coupler includes resonant monochromatic radio frequency field trans-
ferring atoms in some hyperfine state F' from the trapped into untrapped
magnetic sublevels. In the case of 2*Na atoms F = 1, so that s = —1 corre-
sponds to the trapped state, s =0 and s = 1 corresponds to the untrapped
and the repelled sublevels, respectively, (here F' is the total angular momen-
tum, s is the magnetic quantum number). Equation (5) now becomes [50]

a1 = U (trap) -
ih 7 = { QmA + hswyUsg (r) + gns(r,t) ¢ Dy(r,t)
+h{? 2(55,5’4-1 + 55,5’—1)@5' (T‘, t) , (19)

S

where in rotating wave approximation

By(r,t) = e “riliho(r,1)), 5,8 € {-1,0,+1}, (20)

Qﬁs(r,t) is the quantum field operator for atoms belong the sublevel with
given s, wyr is the frequency of applied resonant rf field, ny = |®4|2. The
coupling constant

B
h= gNBohr% (21)

refers to the Rabi frequency due to the rf field. For a small coupling strength
the process of atoms leaking out of the resonance points is faster than the
Rabi oscillations. So, we further neglect the coupling into state s = +1 since
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it is proportional to £24. Using such approximation and writing the relation
(7) for each sublevel s we get for the density of atoms in a laser beam ng
the following relation, analogous to the formula (9a):

% + V('HIOUO) = 202/n:no sin(@c - 00), (22)

ot
where n, = n_;. Equation (22) has a clear physical sense: variation of the
atom beam density oscillates due to the differences of the condensate and
beam phases.
Equation similar to (9b) looks

{%JF(UOV)}%:—;, (23)

where

~ h2 A\/_ (trap)
o = 2m \/_ UO ( ) + gno( ) + h{2 ’n,_o COS(Q — 00) (24)

is the new chemical potential. From equations (17), (22), (23), and (24) we
easily obtain the condition similar to (18):

onyg (trap) h? V\/_ Ne
9 +V{\/§noev\/U0 (r)H-gno(r,t)— 3 \/n_o - cos(6.—6o)

= 20/ngn¢sin(f. — 6p) . (25)

Note, as it can be seen from the condition (25) the temporal change of the
beam atoms population depends on the phase difference (6. — ), which is
determined by the frequency ws.

Direct comparison of the formulae (18) and (25) shows that the outcome
(i.e. laser beam itself) in the continuous case can be stabilized easier than
in the pulsed regime.

In conclusion, using the quasi-hydrodynamic approximations we have
found the local invariants of Bose—Einstein condensate in trapped alkali
gases. Particularly we obtained the Lagrange invariant, which ensures the
vorticity to be a freezing-in field. The obtained results can be directly applied
to the creation of highly coherent atomic beam generators (atom lasers) with
well controlled angular momentum. Both the pulsed laser and laser with
continuous refilling are considered. The optimal conditions for the pumping
modes have been found (again for the both schemes).
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