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LOCAL INVARIANTSIN EFFECTIVE HYDRODYNAMICS OF TRAPPEDDILUTE-GAS BOSE�EINSTEIN CONDENSATESAlexander V. ZhukovInstitute of Physis, Aademia Sinia, NankangTaipei 11529, Taiwan(Reeived May 7, 2001; revised version reeived Otober 15, 2001)In the framework of mean-�eld approximation the dynamis of Bose�Einstein ondensates an be desribed by the hydrodynami-like equations.These equations are analyzed here with aount of mutual interation be-tween ondensate and non-ondensate atoms. The Lagrange invariants andfreezing-in invariants of suh a system have been found. This allows to getsome neessary onditions for reation of an atom laser with ontrolled pa-rameters of the beam. Partiularly, the atom laser beam an arry quitewell de�ned angular momentum. This an be pratially realized in themost simple ase, when the vortiity of ondensate appears to be a freezing-in �eld. The optimal onditions for a soure mode regime are found.PACS numbers: 03.75.Fi, 05.30.Jp, 47.37.+q1. IntrodutionOne of the youngest, but very rapidly developing �eld of modern low tem-perature physis is the problem of trapped Bose gases at very low temper-atures, when Bose�Einstein ondensation ours. For reent reviews of thistopi in general see Refs. [1�4℄. In last few years a onsiderable progresshas been ahieved in the understanding of the dynamis of Bose�EinsteinCondensates (BEC) both at T = 0 [1℄ and at �nite temperatures [2, 5, 10℄.However, many questions yet remain in the latter ase (see disussion in [11℄).To realize the full potential of reent developments in BEC physis, and toanalyze adequately the data of the experiments in a quantitatively meaning-ful manner, a detailed understanding of the BEC dynamis in all its aspetsis required. (563)



564 A.V. ZhukovA detailed investigation of the dynamis (and, partiularly, olletiveproesses) of BEC at various temperatures is extremely important in viewof the possible appliations of unique features of suh systems. In all like-lihood the most intriguing experimental projet assoiated with trappedatomi gases is the so-alled �atom laser� or, in other words, highly oherentatomi beam generator [12, 13℄ (for a review see also [4℄). The proposedexperimental on�gurations should satisfy a number of basi riteria in or-der to be alled an atom laser. Of ourse, the high phase oherene ofatomi beam is required �rst of all. However, the highly dispersive natureof the BEC suggests that the spatial fousing and stability of ross setionof a BEC beam will present possibly more of a problem than enountered inthe proess of fousing laser light [14℄. Very reently the quasi-ontinuousatom laser has been onstruted [15℄. Furthermore, the same group demon-strated the suessful atom optial manipulation, suh as re�etion, fousingand the beam storage in a resonator [16℄ (however, see the earlier suessfulworks [41, 42℄ based on rather di�erent priniple). Thus, another interest-ing task appears, namely how to reate the atom laser with well ontrolledharateristis. Solution of suh a problem an bring atom laser loser to bea useful tool in various potential appliations. The present paper solves oneof the problems in this diretion. Partiularly, we onsider the possibilityfor atom laser beam to arry the predesigned angular momentum.The paper is organized as follows. In Setion 2 the quasi-hydrodynamiapproah to a trapped Bose-gas below the BEC transition temperature isonsidered. Setion 3 is devoted to the desription of the method for on-strution of Lagrange invariants and freezing-in �elds by means of the gaugetransformation of the BEC quasi-hydrodynami equations. The applia-tions of suh invariants to the reation of atom laser beam with predesignedparameters are onsidered in Setion 4.2. Quasi-hydrodynami equations for the ondensate atomsThe starting point in desription of BEC is the usual Heisenberg equationof motion for the quantum �eld operator  ̂(r; t)i~� ̂(r; t)�t = h ̂(r; t); Ĥi= �� ~22m�+ U (trap)(r)�  ̂(r; t) + g��� ̂(r; t)���2 ̂(r; t) ; (1)where U (trap)(r) is the on�ning potential, the expliit form of whih isnot essential for us here. In equation (1) we assumed s-wave short-rangeinteratomi interation with a strength g = 4�ah2=m (a is the e�etivesattering length). As usually, set



Loal Invariants in E�etive : : : 565 ̂(r; t) = �(r; t) + ~ (r; t) ; (2)where �(r; t) = h ̂(r; t)i, ~ (r; t) is the non-ondensate �eld operator. Tak-ing an average of equation (1) with respet to a broken symmetry non-equilibrium ensemble, we ome to the equation for the ondensate wavefuntion [10℄i~d�(r; t)dt = �� ~22m�+ U (trap)(r) + gn(r; t) + 2g~n(r; t)��(r; t)+ g ~m(r; t)��(r; t) + gh ~ +(r; t) ~ (r; t) ~ (r; t)i ; (3)where n(r; t) = j�(r; t)j2 is the loal density of atoms in the ondensate,~n(r; t) = h ~ +(r; t) ~ (r; t)i (4)is the non-equilibrium non-ondensate density. Equation (4) involves alsothe anomalous non-ondensate density ~m(r; t) = h ~ (r; t) ~ (r; t)i and thethree-�eld orrelation funtion hj ~ (r; t)j2 ~ (r; t)i. The appearane of the lasttwo terms in (3) is a onsequene of Bose broken symmetry in the system.The earlier approahes to the equation (3) were based on the assumptionthat all atoms are in the ondensate. In this ase the so-alled Gross�Pitaevskii [17℄ equation appears:i~d�(r; t)dt = �� ~22m�+ U (trap)(r) + gn(r; t)��(r; t) ; (5)whih an be onveniently rewritten in terms of the loal ondensate densityn(r; t) = j�(r; t)j2 (6a)and loal veloity v(r; t) = ~mr�(r; t) : (6b)Here �(r; t) is the phase of the ondensate wave funtion�(r; t) =pn(r; t) exp (i�(r; t)) : (7)It should be noted that the analogous nonlinear Shrödinger equation anbe obtained quite rigorously in the ase of high density, but weak enoughpoint interation [18℄. However, in that ase the physial sense of � is not



566 A.V. Zhukovlear enough. So, using (6) and (7), we an present equation (5) as the setof two following equations�n�t +r(nv) = 0 ; (8a)� ��t + (vr)� v = �r�0m ; (8b)where �0 = � ~22m�pnpn + U (trap)(r) + gn(r; t) :It is remarkable that equations (8) are hydrodynami looking. This fat issomewhat onfusing on the fae of it. Really, equations similar to (8) whereobtained phenomenologially to desribe a super�uid omponent of liquidhelium [19, 20℄ whih is a strongly interating many-partile system. Never-theless, we should keep in mind that in Bose�Einstein ondensed state wedeal with the single ondensate wave funtion �(r; t), whih allows a stronganalogy with the order parameter in super-�uids1.The next step is to extend the preeding analysis to �nite tempera-tures where there is a large fration of atoms outside of the ondensate. Inthis ase we need two equations to be used. While the ondensate wavefuntion an be desribed as earlier by the Gross�Pitaevskii equation, thedistribution funtion of the non-ondensate atoms obeys a kineti equation,whih must take into aount the ollisions of both types: non-ondensateatoms with eah other and their interation with a ondensate. The quiterigorous derivation of the orresponding ollision integrals an be found inAppendix A of paper [10℄. After some mathematis we ome to the orre-sponding hydrodynami-like equations�n�t +r(nv) = � (r; t) ; (9a)� ��t + (vr)�v = �r�m ; (9b)where � (r; t) = �Z d3p(2�~)3 J [f(p; r; t)℄ : (10)1 Note, there is no omplete mirosopi theory of super-�uids until now. We only knowthat the dynamis of super�uid omponent in super-�uids an be well desribed bythe hydrodynami equations similar to (8).



Loal Invariants in E�etive : : : 567J [f(p; r; t)℄ is the ollision integral orresponding to the ollisions betweenondensate and non-ondensate atoms, whih funtionally depends on thedistribution funtion f(p; r; t) of exited atoms. So, funtion � (r; t) isthe harateristi rate of the atoms exhange between ondensate and non-ondensate. New hemial potential � in equation (9b) is now de�ned bythe relation� = � ~22m�pnpn + U (trap)(r) + gn(r; t) + 2g~n(r; t) ; (11)where ~n(r; t) = �Z d3p(2�~)3 f(p; r; t)is the density of non-ondensate atoms. Equations (9) desribe the dynamisof BEC like an �e�etive �uid� with varying density. Term � (r; t) play therole of inhomogeneous and nonstationary soure.3. Hydrodynami invariantsAs we realized in the previous setion the evolution of BEC in the frameof reasonable approximations an be desribed by the equations, whih aresimilar to the hydrodynami ones. Classial equations of ideal liquid havequite a number of invariants. Exept of ordinary integral invariants there areloal invariants as well. The Lagrange invariants and freezing-in invariantsare most important ones. Lagrange invariants are onserved along the �liquidpartiles� trajetories, while the freezing-in invariants are used in refereneto the �elds frozen into a liquid, i.e. the orresponding physial quantity(�eld) vanishes in a frame whih moves with the �uid. In papers [21�23℄a wide lass of invariants was found. Furthermore, the authors of Refs.[21, 22℄ proposed the method of obtaining new invariants on the basis ofalready known. The reent paper [24℄ was devoted to onstrution of theinvariants of super�uid hydrodynami equations by means of their gaugetransformation [25℄. This method is very attrative beause after the gaugetransformation the presene of many additional invariants beomes obvious.The idea of gauge transformation [24, 25℄ an be modi�ed to be helpfulin our ase, i.e. BEC dynamis. Really, the loal ondensate veloity isde�ned by the equation (6). If we wish the ondensate wave funtion to besingle-valued, then the bypassing along vortex line must lead to the hangeof a phase by the integer of 2�. To be so, we should do a ut. If the leap ofphase on the bank of ut is proportional to a new funtion, say u, then wean do the following gauge transformationv = �r� +r�+ u ; (12)



568 A.V. Zhukovwhere � is a gauge funtion. Gauge of the �elds should be done by theequation for r� �r� and by the initial onditions. After the substitutionof equation (12) into (9b) we get� ��t + (vr)�ui = � ��xi ��+ ��t (�� �)�� (vr) � ���xi � ���xi��uj �vj�xi +�vj + ��xj (� � �)� �vj�xi : (13)It an be easily tested that if the gauge funtion obeys the following equation� ��t + (vr)� (� � �) = �� 12v2 ; (14)then equation (13) beomes� ��t + (vr)�ui = �uj �vj�xi : (15)The gauge of �eld u is determined by equation (14) and by the initial ondi-tion for � or u. The salar produt of the �eld u and the �ux line elementÆl behaves like a mass element, whih is onserved along any trajetory [24℄.Diret test shows that � ��t + (vr)� (uÆl) = 0 : (16)So, the quantity uÆl is the Lagrange invariant. It should be notedthat in this ase the vortiity w = rotv beomes freezing-in �eld [26℄.Using the analogy with super�uid hydrodynamis we believe that in BECrotv = 0 everywhere exept the axes of vorties. So, we ome to thefollowing onlusion: if there were vorties in the BEC initially and theinvariant uÆl is onserved, then there will be the given onserved vortiityin any frame moving with the �ux lines in future.The possible existene of vorties in BEC has been under extensive dis-ussion for a rather long time (see e.g. [28�34℄). And �nally, they werereently obtained in the experiments [35�39℄.In the next setion we onsider the onsequenes of this onlusion forpossible experimental realization of an atom laser.4. The stability of atom laser beamA number of atom laser shemes have been proposed during the last fewyears. Evident progress is already ahieved in the realization of pulsed lasersusing a matter-wave splitter based on radio frequeny (rf) transitions [15,40℄



Loal Invariants in E�etive : : : 569and optial Raman transitions [41,42℄. Suh shemes, however, have severalshortomings the main of whih is the di�ulties in ahieving a ontinuousre�lling. Another shemes, whih allow to reate the ontinuous wave atomlaser an be learly divided into two distint lasses: optial ooling [43�45℄and evaporative ooling [46�49℄. Both models are based, in priniple, on thesame idea: a soure supplies atoms to an upper-lying mode of an atom trap.This soure mode is oupled to the ground state mode (ondensate) via apartiular ooling mehanism. It is hoped that the marosopi populationin this ground state mode, or laser mode, an be built up and oupled tooutside world to produe the laser output. Independently, on partiularmodel, ooling proess or, in other words, proess of inrease of the atompopulation in the ground state mode must satisfy the main riterion: theunontrolled perturbation of ground state atoms should be minimal.I shall not limit myself to the frame of the partiular experiments (evensuessful, suh as [41, 42℄ or [15, 16℄). Below both the possible situationsare onsidered. 4.1. Continuous modelsIn the previous setion we found that the BEC an have Lagrange invari-ants. Let us assume that initially all atoms in the trap are in ondensate.So, equation (9a) ontains the quantity � (r; t) = �p(r; t), whih is justthe rate of pumping, i.e. the rate of inrease of the population in groundstate due to the ooling of atoms from upper-lying mode. Let us �nd theonditions for �p(r; t), under whih the pumping of the ground state modedoes not break the �ux lines (i.e. the all loal invariants remain to be on-served). As it follows from equation (15), uÆl is always a Lagrange invariant(see equation (16)) if the gauge ondition (14) is satis�ed. However, if the�ux lines are broken so that a vortiity hanges, then the ondition (14)is neessarily broken as well as uÆl beomes non-invariant. So, we ometo the simple onlusion: to onserve a given vortiity we must keep theregime of pumping to be suh one to do the ondition (14) being always valid.Obviously, the most simple requirement is � = �, or as it follows from equa-tion (14) �(r; t) = 12v2 (r; t) : (17)Furthermore, this requirement automatially means that u = v and theinvariant vvÆl ontains the veloity itself.For simpliity onsider the situation, when the veloity of laser modehanges only in given diretion. In this ase, using equations (9a), (11), and(17), we obtain



570 A.V. Zhukov�n�t +�p(r; t) +r(p2nevsU (trap)(r)+g(n + 2~n)� ~22m�pnpn )=0 ;(18)where ev = v=jvj. Result (18) gives the onnetion between experimen-tally ontrollable quantities n, ~n, �p(r; t), and U (trap)(r). Of ourse, thisequation should further be solved numerially for partiular experimentalon�gurations. Note that, of ourse, the relation (18) does not solve allproblems of atom laser beam stability, but it gives very useful tool for mak-ing a hoie of the parameters of experimental setup. If the ondition (18) issatis�ed, then at least the problem of angular momentum transfer is solvedin the frame of the made approximations.4.2. Pulsed modelsHere we onsider the models of pulsed (not ontinuously re�lled) atomlaser on the example of rf-transition sheme [15, 16, 40℄. In this sheme theoutput oupler inludes resonant monohromati radio frequeny �eld trans-ferring atoms in some hyper�ne state F from the trapped into untrappedmagneti sublevels. In the ase of 23Na atoms F = 1, so that s = �1 orre-sponds to the trapped state, s = 0 and s = 1 orresponds to the untrappedand the repelled sublevels, respetively, (here F is the total angular momen-tum, s is the magneti quantum number). Equation (5) now beomes [50℄i~d ~�s(r; t)dt = �� ~22m�+ ~s!rfU (trap)s (r) + gns(r; t)� ~�s(r; t)+ ~
Xs0 (Æs;s0+1 + Æs;s0�1) ~�s0(r; t) ; (19)where in rotating wave approximation~�s(r; t) = e�is!rfth ̂s(r; t)i; s; s0 2 f�1; 0;+1g ; (20) ̂s(r; t) is the quantum �eld operator for atoms belong the sublevel withgiven s, !rf is the frequeny of applied resonant rf �eld, ns = j ~�sj2. Theoupling onstant ~
 = g�Bohr jBjp2 (21)refers to the Rabi frequeny due to the rf �eld. For a small oupling strengththe proess of atoms leaking out of the resonane points is faster than theRabi osillations. So, we further neglet the oupling into state s = +1 sine



Loal Invariants in E�etive : : : 571it is proportional to 
4. Using suh approximation and writing the relation(7) for eah sublevel s we get for the density of atoms in a laser beam n0the following relation, analogous to the formula (9a):�n0�t +r(n0v0) = 2
pnn0 sin(� � �0); (22)where n � n�1. Equation (22) has a lear physial sense: variation of theatom beam density osillates due to the di�erenes of the ondensate andbeam phases.Equation similar to (9b) looks� ��t + (v0r)� v0 = �r~�0m ; (23)where~�0 = � ~22m�pn0pn0 + U (trap)0 (r) + gn0(r; t) + ~
rnn0 os(� � �0) (24)is the new hemial potential. From equations (17), (22), (23), and (24) weeasily obtain the ondition similar to (18):�n0�t +r(p2n0evsU (trap)0 (r)+gn0(r; t)� ~22mrpn0pn0 +~
rnn0 os(���0))= 2
pn0n sin(� � �0) : (25)Note, as it an be seen from the ondition (25) the temporal hange of thebeam atoms population depends on the phase di�erene (� � �0), whih isdetermined by the frequeny !rf .Diret omparison of the formulae (18) and (25) shows that the outome(i.e. laser beam itself) in the ontinuous ase an be stabilized easier thanin the pulsed regime.In onlusion, using the quasi-hydrodynami approximations we havefound the loal invariants of Bose�Einstein ondensate in trapped alkaligases. Partiularly we obtained the Lagrange invariant, whih ensures thevortiity to be a freezing-in �eld. The obtained results an be diretly appliedto the reation of highly oherent atomi beam generators (atom lasers) withwell ontrolled angular momentum. Both the pulsed laser and laser withontinuous re�lling are onsidered. The optimal onditions for the pumpingmodes have been found (again for the both shemes).
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