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It is shown that the isomorphism between the generalized Moyal algebra
and the matrix algebra follows in a natural manner from the generalized
Weyl quantization rule and from the well known matrix representation of
the annihilation and creation operators.

PACS numbers: 03.65.Ca

This short note is motivated by Merkulov’s paper “The Moyal product
is the matrix product” [1], where the canonical isomorphism between the
Moyal algebra and an infinite matrix algebra has been found.

Here we are going to show how the results of previous works [2-4] and the
well known in quantum mechanics [5,6] representation of the position z and
the momentum p operators lead to isomorphisms between various x-algebras
and infinite matrix algebra.

First remind the basic theorems [3,4].

Let P[[z,p, h]] be the C linear space of all formal power series of z, p and
h where (z,p) € R x R are the coordinates of the phase space I' = R x R
and £ is a real parameter (the deformation parameter). The phase space
I' =R x R is endowed with usual symplectic form

w=dpANdq. (1)

(575)
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Let also ﬁ[[f, D, h]] be an associative algebra over C of the formal power
series of Z, p, hl. The self-adjoint operators Z and p act in a Hilbert space
H and satisfy the commutation relation

[,p] :== 2p — pz = ihl. (2)

As usual, 1 denotes the unity operator. ﬁ[[f, D, k)] is the enveloping
algebra of the Heisenberg—Weyl algebra generated by Z, p, hl.
The following theorem holds [3,4]

Theorem 1 There exists a vector space isomorphism

W, : Pllz,p, K] — P[5, 1],

such that
N min(m,n)
(Z) Wg(l) = ]" Wg(pmxn) = Z g(manas)hsi)\m_si\n_s}
s=0

m,n €N, m+n#0, g(mmn,s)eC, g(mmn0) =1,
(it) ihWy({z, A}p) = [2,Wy(A)] . W, ({p, A}p) = [0, W,(A)] ,

for every A € P[lz,p,h]], with {-,-}, denoting the Poisson bracket.
Moreover, every isomorphism Wy : P[[z,p,h]] — ﬁ[[?ﬂ\,ﬁ, h]] satisfies
the conditions (i) and (ii) if and only if

(—=1)° m!n! ds f(y)

st(m—s)!(n—s)! dys y:O’

(3)

g(m,n,s) =

where f(y) = 3. fry*, fo =1, is a formal series independent of . [ |
k=0

(Of course, one can easily recognize in the conditions (77) of Theorem 1, the
modified Dirac quantization rules.)
Then, the second theorem reads [4]

Theorem 2 Let Wy : P[[z,p, i]] — P[[Z, P, h]] be the vector space isomor-

phism defined in Theorem 1.
Then for any A, B € P|[x,p, h]]

Wy (A) Wy (B) =W, (Axy B), (4)
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where

A%y B = a [(ad) x (aB)],

R o2 02 i o2
“m <_h3x<9p) =/ <_h3x<9p) P {5 <_h3x8p)} ©)

and “«” stands for the usual Moyal product
1h$=
AxB = Aexp{;P}B, (6)
— 0A0B 0AJOB
P {4, Blp or dp  Op Oz

It can be also shown that W, (A) is a symmetric operator for every real
A € P[[z,p,h]] if and only if, the formal series @ = a(y) = f (y) exp {3y}
is real.

In terms of o we have

i\* m!n! (20)"
g(m’"’s):<§> (m — ) (n — 9! = 1% )

where oy are defined by
o
aly) =Y ayf,  ap=1. (8)
k=0

Now we introduce the well known in quantum mechanics operators, @
(“the annihilation operator”) and its Hermitian conjugate a! (“the creation
operator”) such that

1
azﬁ(aua), ﬁ:m(af—a),
[a,af] ~1. 9)

It is an easy matter to show that

1 2 1 1 1 2
Zv\:exp{g(ﬂ) }exp{zag}bﬁexp{—162}exp{—§ (ﬁ) },
~ 1 /.42 1 2
p:exp{g(aT) }exp{ 1
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Therefore, one can define an algebra isomorphism
L = P[[#,p, k)] — Pla', —ifa, h]],

by
L(z)=a' and L (p) = —iha. (11)
Consequently, by Theorem 1 and Theorem 2 we obtain the algebra isomor-
phism
LoW, : P|z,p,h]] — P[[a', —ika, h]],

min(m,n) s
m,ny _ (=h)°min!  d*f(y) s ()P
LOWg (p x ) = sz:(:) 3!(m—3)!(n—3)! dy$ o (_’Lﬁa) (a ) ,

(LoWy(A))(LoWy(B)) = LoW,(AxyB),
A,B € Pllz,p,h]]. (12)

Now, employing the standard matrix representation of @ and a' [5,6]

01 0 0

R 00 V2 0

a——a= 0 0 0 \/g
0 0 0
1 0 0

al— af = 0 vV2 0 .. (13)
0 0 V3 0

and substituting the matrices a and a! instead of @ and @, respectively, into
(12) one finds the algebra isomorphism T/I’7g between the generalized Moyal
algebra (P[[z,p, ], *,) and the matrix algebra P[[a’, —ifa, h]].

Denote F(™™) := (—iha)™ (aT)n . Simple calculations lead to the follow-
ing non vanishing elements of the matrices F(™™)  (m +n > 0)

(F(m’°)>j7j+m = (i)™ VGG +1) o G+m—1),

(F(Om)m,j = ViG+1)..(j+n-1),
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(F(m,n)) N = (—ih)™ (j + m —n)
Jitm—n

e (GAEm =D ViG+1D) . (j+m—n—1),

for m >n>0;

(Fmm) = (BTG )G m = 1)
2.3
(F(mm)) | = (=il (j+n—m)
Jtn—m,j
e (GAEn=DViG+Y) o (+n—m—1),
for n >m>0. (14)

Finally, we have

min(m,n)

—~ —h)*mlin!  d°
0" = Y e | 09
5= y=

This formula corresponds to Merkulov’s result but in slightly different rep-
resentation and in our case we deal with generalized Moyal products *,.

Examples

(1) The Moyal *-algebra
It is well known that this algebra is induced by the Weyl ordering of
operators [2—4]. In this case the operator @ = 1. Hence, by (5)

fly) = exp{—%y} — dsjy(sy) ‘yzo _ (_%)

and we get now (the index “g” is omitted)

W( m n) _ mi%m) (Zh)s mlin! F(m—s,n—s) (16)
P = = 2551 (m —s)!(n — s)! '

(compare with Merkulov’s result).
(2) The *(s)-algebra
This algebra follows from the standard ordering
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Here a(y) = exp {—%y} . Hence,
d* f (y)

_ s — (s s
fy) = exp {~iy} = d Ly (=4)" .
Consequently
min(m,n) NS
— (th)® mln! (m—s,n—
m,ny _ p(m—sn s) ) 1
Wit (p"2") ; sl(m —s)!(n—s)! (17

(3) The *(ast)-algebra
This is the algebra which follows from the anti-standard ordering

pr" — pE".
Now a(y) = exp {%y} Hence f(y) = 1 and it remains only one term with
s =01in (15).
Hence,

Wast (p"z") = plmm), (18)
(compare with Merkulov’s paper [1]).
(4) The *(gym)-algebra

Here we deal with the algebra generated by the symmetric ordering. So
one has a(y) = cos (y/2) . Therefore,

1 | ery| 1 N
Fl) =5 (1 e (i} ) = = Tl ).
Consequently
. min(m,n) NS )
Wsym (pmxn) — F(m,n) + Z (’lh) min: F(m—s,n—s). (19)

s=1 2(s!) (m —s)! (n — s)!

Finally we consider

(5) The *gj-algebra
This algebra follows from the Born—Jordan ordering.
Now a(y) = (sin(y/2))/(y/2). Therefore,

d’f(y)

1
= - a

1y

f(y)

(1 — exp {—zy}) =
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Hence,

W ( m n) _ mlﬂ(zmﬂ) (Zh)sm'n' F(m—s,n—s)
BWET L D) (m = 9 (n - 8)!

Final comments

The results presented here correspond to a generalization of the matrix
representation found by Merkulov [1]. However, as was pointed out to us
by Zachos, the idea of an isomorphism between Moyal and matrix algebras
has a long history which started with the distinguished work by Groenewold
[7] (see also [8]). Some new insight into this problem was given by Fairlie
and Zachos [9] and by Fairlie, Fletcher and Zachos [10]. But, of course, in
such a short note as ours, we are not able to deal with all these problems.
Some applications of a matrix representation of the Moyal algebra have been
discussed in our previous work [11].

We are indebted to Hugo Garcia-Compeédn for pointing out Merkulov’s
paper. This paper was partially supported by CONACYT and CINVESTAV
(México) and by the Polish State Committee for Scientific Research (KBN).
M. Przanowski thanks the staff of Departamento de Fisica at CINVESTAYV,
(México, D.F.) for warm hospitality.
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