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FORCED DYNAMICAL SYSTEMS DERIVABLEFROM BOHMIAN MECHANICSAdam J. MakowskiInstitute of Physis, Niholas Copernius UniversityGrudzi¡dzka 5, 87-100 Toru«, Polande-mail: amak�phys.uni.torun.pl(Reeived Otober 1, 2001; revised version reeived Deember 10, 2001)Using Bohm's quantummehanis, a wide lass of related two-parameterdynamial systems is proposed and their general properties are brie�y dis-ussed, in partiular, a possibility of haoti solutions. When the sys-tems are redued to a one-parameter family of equations then they are allproved to be ompletely integrable and integrals of the motion are foundin an expliite form. The proposed lass of dynamial systems an be astinto the form of Hamiltonian equations fored by a time-dependent non-Hamiltonian, periodi in time, disturbane. A systemati way of generatingdynamial systems of this kind is also disussed.PACS numbers: 05.45.+b, 03.65.�w1. IntrodutionA dynamial system is understood as a set of ordinary nonlinear di�er-ential equations of the �rst order, v = _r = F (r; t; ), where the variables are alled ontrol parameters. The set of equations represents a onservativesystem if r � v = 0 or a dissipative one if r � v < 0. The most widely dis-ussed low-dimensional dynamial systems with haoti behaviour are theLorenz [1℄ and Rössler [2℄ models and the Du�ng [3℄ and Van der Pol [4℄osillators. The latter pair belongs to the lass of so-alled fored dynamialsystems. All the systems are intrinsially inequivalent sine, among otherthings, they annot be deformed into eah other.In what follows we shall derive a lass of equivalent onservative systemsfored by a non-Hamiltonian, periodi in time, perturbation. Their inter-esting feature is that for the onseutive members of the lass separatriesof growing omplexity an be observed. Then, even a small perturbationleads to a haoti behaviour manifested by the inreasing in value largestLyapunov exponents. (583)



584 A.J. MakowskiThe veloity �eld formula we shall use here is that given by the Bohmianmehanis [5℄ or equivalently by the hydrodynamial formulation of nonrel-ativisti quantum mehanis [6℄. In one-partile ase desribed by the wavefuntion  (r; t) = R(r; t) exp [(i=~)S(r; t)℄ it reads asv = _r = jj j2 = i~2m r � �  �r j j2 = 1mrS; (1)where  is a solution of the time-dependent Shrödinger equation.Trajetories following from the guidane formula (1) were utilized in nu-merous appliations as important as: a desription of the delayed-hoieexperiment on the basis of two-slit interferene [7℄, the measurement prob-lem in quantum mehanis [8℄, the geometri phase [9, 10℄, alulations oftunneling times [11℄, the quantum osmology [12℄, the problem of identialmotion in lassial and quantum desription [13, 14℄ or orrelations in themotion of idential partiles [15, 16℄.There is also a large group of papers (see e.g. [17�21℄) devoted to thestudy of properties of dynamial systems derivable from Eq.(1). One shouldremember, however, that the trajetories of Eq.(1) form a highly non-lassialveloity �eld, ontrary to the purely lassial trajetories disussed in theusual dynamial systems, like those mentioned above. We should also em-phasize that the Bohmian systems are neither onservative nor dissipativeand their generi feature is that the phase spae volumes are not onservedby the �ow, i.e. r � v is not generally equal to zero. Instead, we an ex-pet [22℄ vanishing of limT!1 R T0 r � vd� . The systems are additionallymuh more di�ult to deal with than any other usual ones. It follows fromthe shape of Eq. (1) and from the fat that wave funtions usually havenodes and the vorties around them are quantized [23, 24℄.Until quite lately, the problem of whether a �simple� system of equa-tions, belonging to a known lass of dynamial systems, an be onstrutedvia Eq. (1) and properly hosen wave funtions, was long unsolved. Veryreently, we were suessful [25℄ in reating a model of onservative sys-tem (r � v = 0), with some disturbane periodi in time, whih manifestedhaoti behaviour and the properties of the lassial fored dynamial sys-tems that we were looking for.The question underlying the present paper, is how unique is that modeland whether our method of deriving it an be generalized, so as to obtainsimilar ones. We shall show below that the model is the simplest member [26℄of a family of fored Bohmian dynamial systems, the only one known sofar for ausal trajetories. Our previous study [25℄ suggests using for this



Fored Dynamial Systems Derivable from Bohmian Mehanis 585purpose the wave funtion in the following speial form: N (x; y; t) = e�it 0(x) 0(y)+e�it(N+1) NXn;k=0(n+k=N)ank n(x) k(y); N = 1; 2; � � � ;(2)where  0 and  j stand for the ground and exited states of osillator in onedimension, and heneforth the dimensionless units are introdued suh that~ = 1, m = 1 and ! = 1. The normalization onstant of  N (x; y; t) is omit-ted sine it plays no role in further onsiderations. Two spatial oordinatesin equation (2) are enough to get a set of two non-autonomous equationsfrom (1) whih in aordane with the elebrated Poinaré�Bendixson theo-rem is a neessary ondition for haoti solutions to exist. Our wave funtion(2) is omposed of two stationary states, the seond one with N +1-fold de-generay, and energies E1 = 1 and E2 = N +1, respetively. Note, the sumin (2) is over n and k suh that n+ k = N .The plan of our paper is as follows. In Setion 2 we derive equations of themotion for the non-trivial and yet as simple as possible wave funtions, showtheir integrability and transform the system to a Hamiltonian autonomousone. In Setion 3 we then introdue some perturbations to the integrableequations and show the way of reating systems with growing degree ofhaotiity in their solutions. Finally, the onlusions are given in Setion 4.2. Integrable systemsThe ase we shall study �rst is a set of two non-autonomous equationswhih an be formally proved to be integrable. To this end, the 1D osillatorwave funtions are used and thus equation (2) an be written as N (x; y; t) = e�(1=2)(x2+y2)�e�it + e�it(N+1) NXk=0 aN�k;kHN�k(x)Hk(y)�;(3)where Hj(z) is the Hermite polynomial of order j. If the free expansionoe�ients aN�k;k are all real then the equations resulting from (1) areobviously integrable. The situation is muh more interesting if at least oneof the oe�ients for a given N , is hosen as an imaginary quantity. Then,one an always adjust aN�k;k's in suh a way to have the sum in (3) equalto NXk=0 aN�k;kHN�k(x)Hk(y) = aN (x+ iy)N :



586 A.J. MakowskiThis an be proved with the help of an integral representation of the Hermitepolynomials [27℄. For example, for N = 1 this is the ase for a10 = (1=2)aand a01 = ia=2, and for N = 2, we have a20 = a2=4, a02 = �a2=4, a11 =ia2=2, and so on.Now, we an write the funtion (3) in the polar form and its phaseSN = � tan�1� sin t+ aNrN sin [(N + 1)t�N'℄os t+ aNrN os [(N + 1)t�N'℄� (4)is then used in Eq. (1). As a result, we get_x = �aNNrN�1fsin [Nt� (N � 1)'℄ + aNrN sin'g[osNt+ aNrN osN'℄2 + [sinNt+ aNrN sinN'℄2 ;_y = aNNrN�1fos [Nt� (N � 1)'℄ + aNrN os'g[osNt+ aNrN osN'℄2 + [sinNt+ aNrN sinN'℄2 ; (5)where r2 = x2 + y2 and ' = tan�1 (y=x). The dynamial system (5) has asingle ontrol parameter, represented by a, and it an be proved to be om-pletely integrable. The simplest way to do that is using the transformationx = r osD, y = r sinD with D = N(t � '). Thus, the non-autonomousequations (5) an be simpli�ed to the autonomous ones and no haoti so-lutions are possible in this ase.Equations (5) have two interesting features: a onstant of the motionexistsCN =MN � a2N lnMN � 2aNrN os [N(t� ')℄ + a2N (r2 � r2N ) (6)for an arbitrary integer N � 1, whereMN=1+a2Nr2N+2aNrN os [N(t�')℄,and the phase spae volume is onserved, i.e., d _x=dx+d _y=dy = 0. The latterproperty is a onsequene of the fat that there must be �SN = 0 whih inthe 2D spae has a general solution SN (x; y; t) = fN (x+ iy; t)+gN (x� iy; t)for arbitrary funtions fN and gN of their arguments.We an also �nd a funtion ~H(x; y; t) suh that _x = �� ~H=�y and_y = � ~H=�x. It has a simple form of ~H(x; y; t) = (1=2) lnMN . More-over, we an propose a transformation whih transforms the onservativenon-autonomous system (5) to a Hamiltonian autonomous one. It has thefollowing form X = � os�; Y = � sin�; (7)with�2 = X2 + Y 2 =MN ;� = Nt� tan�1 ( sinNt+ Im zNosNt+Re zN ) = tan�1�YX�; z = ax+ iby: (8)



Fored Dynamial Systems Derivable from Bohmian Mehanis 587In the new variables with b = a, equations (5) take the form of a Hamiltoniansystem _X = �NY�1� Na2�2 �;_Y = �N +NX�1� Na2�2 � (9)derivable from the HamiltonianH = N2 (X2 + Y 2)� 12N2a2 ln (X2 + Y 2)�NX: (10)Again, of ourse, the phase spae volume is onserved, i.e., now we haved _X=dX + d _Y =dY = 0. For eah N the set (9) has a pair of �xed pointsY1 = 0; X1 = 12(1 +p1 + 4Na2);Y2 = 0; X2 = 12(1�p1 + 4Na2); (11)the �rst always being the ellipti �xed point and the seond a hyperbolione. The relative separation between the points is growing with the numberof the degenerate states used in (3). We an also �nd separatries for thepartiular values of N . Denoting H(Y = 0;X = X2) = HS we have therequired equationHS � N2 (X2 + Y 2) + 12N2a2 ln (X2 + Y 2) +NX = 0: (12)3. Non-integrable perturbed systemsThe main onlusion we an draw from the previous setion is that theone-parameter dynamial systems proposed here are all ompletely inte-grable. The simplest generalization of the above approah, leading to non-integrable equations and hene possibly to haos, is introduing a seondontrol parameter, say b.To this end, we shall represent the whole sum over k in (3) asNXk=0 aN�k;kHN�k(x)Hk(y) = GN (ax+ iby)with two real onstants a and b. Unfortunately, this time, when a 6= b, theoe�ients aN�k;k annot in any way be adjusted to have GN (ax + iby)



588 A.J. Makowskiequal to (ax+ iby)N . Instead, it is possible to obtain:G1 = ax+ iby;G2 = (ax+ iby)2 + 12�; � = b2 � a2;G3 = (ax+ iby)3 + 32�(ax+ iby);G4 = (ax+ iby)4 + 3�(ax+ iby)2 + 34�2: (13)We were not able to �nd a general formula for GN . However, the nextmembers of the set (13) an be obtained with a little e�ort.Now, the phase SN of the funtion (3)SN (x; y; t)=�tan�1� sin t+ReGN sin [t(N + 1)℄� ImGN os [t(N + 1)℄os t+ReGN os [t(N + 1)℄ + ImGN sin [t(N + 1)℄�(14)generates with the help of (1) the following non-integrable dynamial sys-tems:_x = �1QN �(sinNt+ ImGN )(ReGN )x � (osNt+ReGN )(ImGN )x�;_y = �1QN �(sinNt+ ImGN )(ReGN )y � (osNt+ReGN )(ImGN )y�;(15)where the subsripts x and y denote derivatives of the market expressionswith respet to these variables, andQN = (sinNt+ ImGN )2 + (osNt+ReGN )2: (16)Equations (15) and (16) hold not only for GN 's listed in (13) but generallyfor the quantities with all integers N � 1.One may ast (15) into the form of onservative equations perturbed bysome periodi time-dependent ontributions. This is a very tedious task forthe partiular funtions GN (ax+ iby). Nevertheless, it an be done with thehelp of the transformation (7), where now � and � should read as:�2 = X2 + Y 2 = QN ;� = Nt� tan�1� sinNt+ ImGNosNt+ReGN � = tan�1�YX�: (17)



Fored Dynamial Systems Derivable from Bohmian Mehanis 589Equations (17) and (8) are equivalent to eah other in two ases: for anyinteger N � 1 when b = a, and for b 6= a when N = 1. The transformation(7) with both (8) or (17) is a anonial transformation only for N = 1(preisely when � ! ��=ab in (7)) and as suh it does not hange theproperties of the studied dynamial system. This point has been disussedin detail in [25℄. Hene, for N > 1 and b 6= a there is no need to deriveequations in the large X and Y oordinates. Therefore, we shall only writedown here the equations in the simplest ase of N = 1. Then, using (17) or(8) for N = 1, we get from (7) and (15)_X = �Y�1� a2 + b22�2 �+ b2 � a22�2 �X sin 2t� Y os 2t�;_Y = �1 +X�1� a2 + b22�2 �� b2 � a22�2 �X os 2t+ Y sin 2t�: (18)For the partiular funtions GN , N � 1, equations for _X and _Y will all havethe similar struture with, however, muh more ompliated perturbationterms. Their ommon feature is that all the equations will have for b = athe form of (9) and that an be proved with the help of equations (17).
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Fig. 1. Contour map of the period t = 2� of the orbits from (6) or (15) witha = b = 1 and N = 1.In order to show that solutions of (15) may exhibit deterministi haosthree maps of the period Nt = 2� have been prepared for N = 1; 2; 3 andb = a. In the simplest ase of N = 1, we an learly observe in �gure 1the homolini orbit rossing itself in a hyperboli point. The position of an



590 A.J. Makowskiellipti �xed point an easily be traed out in the middle of the large loop ofthe orbit. With the growing values of N inreasing omplexity of (15) resultsin an appearane of additional hyperboli �xed points and the separatriesget more sophistiated in shape. This an be observed in �gure 2 for N = 2and in �gure 3 for N = 3.
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Fig. 2. As in �gure 1 but for N = 2 and 2t = 2�. One hetero- and one homoliniorbits are learly visible.
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Fig. 3. As in �gure 1 but for N = 3 and 3t = 2�. One an �nd here two di�erentseparatries enirling ellipti �xed points.



Fored Dynamial Systems Derivable from Bohmian Mehanis 591Now, one may generate here a haoti behavior even if the parameters aand b di�er slightly. To prove that we have alulated the largest Lyapunovexponents �N for three values of N for the orbits orresponding to theperturbed homolini onnetions presented in the above �gures. In eahase a = 1, b = 1:1 and the initial onditions are: x(0) = 2:46, y(0) = 0 forN = 1; x(0) = 2:3, y(0) = 0 for N = 2 and x(0) = 0:35, y(0) = 0 for N = 3.We have obtained �1 = 0:05, �2 = 0:07 and �3 = 0:13 and this is what weexpeted. Thus, the formation and break-up of a homo- and heterolinitrajetories seems to be the ause of haos for the proposed here lass ofdynamial systems. A more detailed desription of the onset of haos andthe whole route to it will possibly be determined after a systemati study ofa few members of the lass is onduted.4. ConlusionA proedure has been developed that shows a possible way of generatinga wide lass of dynamial systems. It is based on using the formula (1) andthen a suitably hosen wave funtion. In our study it is omposed of twostationary states, one of whih has to be at least double degenerate and someof the expansion oe�ients in (2) have to be imaginary quantities. Thanksto that, we an reate a set of integrable systems and a haoti behavior isexpeted when the systems are perturbed by periodi time-dependent termsresulting from introduing the seond ontrol parameter. We thus have atour disposal a lass of similar systems, the degree of haotiity of whih isto some extent ontrolable by the number of used degenerate states. Thepreliminary numerial results we have presented here seem to be interestingenough to study the proposed systems in more detail and systematially infuture.The lass of dynamial systems proposed here, is the only one derived sofar within the Bohmian mehanis for whih known properties of lassialfored systems an also be observed for the quantum Bohmian trajetories.Deriving of any similar model seems to be very di�ult, if possible at all,sine the hoie of  in Eq. (1) was a rather speial one, making our lassof systems to some extent unique. The model we have studied in detailreently [25℄ is the simplest (for N = 1) member of the large family ofmodels onsidered here.The author wishes to thank dr hab. P. Pepªowski for some numerialassistane. This work has been supported in part by the Polish State Com-mittee for Sienti� Researh (KBN) grant No. 2 P03B 121 16.
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