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Using Bohm’s quantum mechanics, a wide class of related two-parameter
dynamical systems is proposed and their general properties are briefly dis-
cussed, in particular, a possibility of chaotic solutions. When the sys-
tems are reduced to a one-parameter family of equations then they are all
proved to be completely integrable and integrals of the motion are found
in an explicite form. The proposed class of dynamical systems can be cast
into the form of Hamiltonian equations forced by a time-dependent non-
Hamiltonian, periodic in time, disturbance. A systematic way of generating
dynamical systems of this kind is also discussed.

PACS numbers: 05.45.+b, 03.65.—w

1. Introduction

A dynamical system is understood as a set of ordinary nonlinear differ-
ential equations of the first order, v = » = F(r,t,c), where the variables ¢
are called control parameters. The set of equations represents a conservative
system if V -v =0 or a dissipative one if V - v < 0. The most widely dis-
cussed low-dimensional dynamical systems with chaotic behaviour are the
Lorenz [1] and Réssler [2] models and the Duffing [3] and Van der Pol [4]
oscillators. The latter pair belongs to the class of so-called forced dynamical
systems. All the systems are intrinsically inequivalent since, among other
things, they cannot be deformed into each other.

In what follows we shall derive a class of equivalent conservative systems
forced by a non-Hamiltonian, periodic in time, perturbation. Their inter-
esting feature is that for the consecutive members of the class separatrices
of growing complexity can be observed. Then, even a small perturbation
leads to a chaotic behaviour manifested by the increasing in value largest
Lyapunov exponents.
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The velocity field formula we shall use here is that given by the Bohmian
mechanics [5] or equivalently by the hydrodynamical formulation of nonrel-
ativistic quantum mechanics [6]. In one-particle case described by the wave
function 9 (r,t) = R(r,t)exp[(i/h)S(r,t)] it reads as
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where 9 is a solution of the time-dependent Schrédinger equation.

Trajectories following from the guidance formula (1) were utilized in nu-
merous applications as important as: a description of the delayed-choice
experiment on the basis of two-slit interference [7], the measurement prob-
lem in quantum mechanics [8], the geometric phase [9,10], calculations of
tunneling times [11], the quantum cosmology [12], the problem of identical
motion in classical and quantum description [13,14] or correlations in the
motion of identical particles [15,16].

There is also a large group of papers (see e.g. [17-21]) devoted to the
study of properties of dynamical systems derivable from Eq.(1). One should
remember, however, that the trajectories of Eq.(1) form a highly non-classical
velocity field, contrary to the purely classical trajectories discussed in the
usual dynamical systems, like those mentioned above. We should also em-
phasize that the Bohmian systems are neither conservative nor dissipative
and their generic feature is that the phase space volumes are not conserved
by the flow, i.e. V - v is not generally equal to zero. Instead, we can ex-
pect [22] vanishing of limz_, fOTV -vdr. The systems are additionally
much more difficult to deal with than any other usual ones. It follows from
the shape of Eq. (1) and from the fact that wave functions usually have
nodes and the vortices around them are quantized [23,24].

Until quite lately, the problem of whether a “simple” system of equa-
tions, belonging to a known class of dynamical systems, can be constructed
via Eq. (1) and properly chosen wave functions, was long unsolved. Very
recently, we were successful [25] in creating a model of conservative sys-
tem (V - v = 0), with some disturbance periodic in time, which manifested
chaotic behaviour and the properties of the classical forced dynamical sys-
tems that we were looking for.

The question underlying the present paper, is how unique is that model
and whether our method of deriving it can be generalized, so as to obtain
similar ones. We shall show below that the model is the simplest member [26]
of a family of forced Bohmian dynamical systems, the only one known so
far for causal trajectories. Our previous study [25] suggests using for this
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purpose the wave function in the following special form:

N

Ql}N(‘IL‘a Y, t) = eiit¢0(I)¢0(y)+eiit(N+l) Z ank¢n($)¢k(y), N = ]-7 2a )
(nSh=)

(2)
where 19 and 1); stand for the ground and excited states of oscillator in one
dimension, and henceforth the dimensionless units are introduced such that
h=1,m=1and w = 1. The normalization constant of 9y (z,y,t) is omit-
ted since it plays no role in further considerations. Two spatial coordinates
in equation (2) are enough to get a set of two non-autonomous equations
from (1) which in accordance with the celebrated Poincaré—Bendixson theo-
rem is a necessary condition for chaotic solutions to exist. Our wave function
(2) is composed of two stationary states, the second one with N + 1-fold de-
generacy, and energies £y =1 and Fo = N + 1, respectively. Note, the sum
in (2) is over n» and k such that n + k= N.

The plan of our paper is as follows. In Section 2 we derive equations of the
motion for the non-trivial and yet as simple as possible wave functions, show
their integrability and transform the system to a Hamiltonian autonomous
one. In Section 3 we then introduce some perturbations to the integrable
equations and show the way of creating systems with growing degree of
chaoticity in their solutions. Finally, the conclusions are given in Section 4.

2. Integrable systems

The case we shall study first is a set of two non-autonomous equations
which can be formally proved to be integrable. To this end, the 1D oscillator
wave functions are used and thus equation (2) can be written as

N
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(3)
where Hj(z) is the Hermite polynomial of order j. If the free expansion
coefficients an_j are all real then the equations resulting from (1) are
obviously integrable. The situation is much more interesting if at least one
of the coefficients for a given N, is chosen as an imaginary quantity. Then,
one can always adjust ay_’s in such a way to have the sum in (3) equal
to

N
> an kpHy k(@) He(y) = a” (z +iy)".
k=0
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This can be proved with the help of an integral representation of the Hermite
polynomials [27]. For example, for N = 1 this is the case for a;g = (1/2)a
and ag; = ia/2, and for N = 2, we have agy = a?/4, age = —a?/4, a1 =
ia?/2, and so on.

Now, we can write the function (3) in the polar form and its phase

g ton—"! sint + a™VrNsin [(N + 1)t — Ny
= —tan
N cost+ aNrN cos[(N + 1)t — Ny

(4)
is then used in Eq. (1). As a result, we get
 —a"Nr¥ " Hsin[Nt — (N — 1)¢] + a"r" sinp}
[cos Nt + aNrN cos Ng]? + [sin Nt + aNrY sin Ng]?’
aV NrN¥N—Hcos [Nt — (N — 1)) + a7V cos p}

o 5
Y [cos Nt + aNrN cos Ng]? + [sin Nt + aVrN sin N]?’ (%)

where 72 = 22 + y? and ¢ = tan" ! (y/z). The dynamical system (5) has a

single control parameter, represented by «, and it can be proved to be com-
pletely integrable. The simplest way to do that is using the transformation
x =rcosD, y =rsinD with D = N(¢t — ¢). Thus, the non-autonomous
equations (5) can be simplified to the autonomous ones and no chaotic so-
lutions are possible in this case.

Equations (5) have two interesting features: a constant of the motion
exists

Cy =My —a®N In My — 20V cos[N(t — )] + a*N (r? = 2V)  (6)

for an arbitrary integer N > 1, where My = 14+a?Vr2VN42a™N r cos [N (t—¢)],
and the phase space volume is conserved, i.e., di/dx+dy/dy = 0. The latter
property is a consequence of the fact that there must be ASy = 0 which in
the 2D space has a general solution Sy (z,y,t) = fn(z+1iy,t) +gn(z —iy,t)
for arbitrary functions fy and gy of their arguments. R

We can also find a function H(z,y,t) such that & = —0H/dy and
y = OH/dz. Tt has a simple form of H(x,y,t) = (1/2)In My. More-
over, we can propose a transformation which transforms the conservative
non-autonomous system (5) to a Hamiltonian autonomous one. It has the
following form

X =pcosa, Y =psina, (7)
with
2 = X24+Y? = My,

sin Nt + Tm 2V 4 (Y
) = tan

= Nt —tan™! — = by. (8
“ an (cosNt—i—RezN X)’ ¢ = az+iby. (8)
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In the new variables with b = a, equations (5) take the form of a Hamiltonian
system

i 2
X = —NY<1—N—‘2‘>,
p

. Na?

= —N+NX<1——‘;> (9)
p

derivable from the Hamiltonian

N 1
H=(X*+Y?) ~ o N?a’In (X* + V?) - NX. (10)

Again, of course, the phase space volume is conserved, i.e., now we have
dX /dX 4+ dY /dY = 0. For each N the set (9) has a pair of fixed points

1 P
Y1 = 0, X1 25(1—{— 1+4Na2),
1
Y =0, Xo= 5(1 — V14 4Na?), (11)

the first always being the elliptic fixed point and the second a hyperbolic
one. The relative separation between the points is growing with the number
of the degenerate states used in (3). We can also find separatrices for the
particular values of N. Denoting H(Y = 0,X = X3) = Hg we have the
required equation

N 1
HS_E(X2+Y2)+§N2a21n(X2+Y2)+NX=0- (12)

3. Non-integrable perturbed systems

The main conclusion we can draw from the previous section is that the
one-parameter dynamical systems proposed here are all completely inte-
grable. The simplest generalization of the above approach, leading to non-
integrable equations and hence possibly to chaos, is introducing a second
control parameter, say b.

To this end, we shall represent the whole sum over & in (3) as

N

> an kpHy k(@) He(y) = Gn(az + iby)
k=0

with two real constants a and b. Unfortunately, this time, when a # b, the
coefficients ay_j ; cannot in any way be adjusted to have Gy (az + iby)
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equal to (az + iby)". Instead, it is possible to obtain:

G1 = az + iby,
1
Gy = (azx + iby)? + §A, A =b—a?,
3
Gs = (az + iby)® + §A(a$ + iby),
3
Gy = (az +iby)* + 3A(azx + iby)? + ZAQ. (13)

We were not able to find a general formula for G. However, the next
members of the set (13) can be obtained with a little effort.
Now, the phase Sy of the function (3)

Sn(z,y,t)=—tan"" <Sint +ReGnsin[t(N +1)] = Im Gy cos[t(N + 1)])
N\L, Y, L) ==

cost+ReGpycos[t(N +1)] + Im Gy sin[t(N + 1)]

(14)
generates with the help of (1) the following non-integrable dynamical sys-
tems:

i = On [(sjnNt+ImGN)(ReGN)I — (cosNt+ReGN)(ImGN)z],
N

Y = Q—[(sinNt—i—ImGN)(ReGN)y - (cosNt—i—ReGN)(ImGN)y],
N

(15)

where the subscripts z and y denote derivatives of the market expressions
with respect to these variables, and

Qn = (sin Nt + Tm Gy)? + (cos Nt + Re G ). (16)

Equations (15) and (16) hold not only for G n’s listed in (13) but generally
for the quantities with all integers N > 1.

One may cast (15) into the form of conservative equations perturbed by
some periodic time-dependent contributions. This is a very tedious task for
the particular functions Gy (ax +iby). Nevertheless, it can be done with the
help of the transformation (7), where now p and « should read as:

Pt =X +Y?=Q,

1 (sinNt+ImGy 4 (Y
= Nt —tan™' =t — ). 17
“ an <cosNt+ReGN) an X (17)
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Equations (17) and (8) are equivalent to each other in two cases: for any
integer N > 1 when b = a, and for b # ¢ when N = 1. The transformation
(7) with both (8) or (17) is a canonical transformation only for N = 1
(precisely when p — —p/ab in (7)) and as such it does not change the
properties of the studied dynamical system. This point has been discussed
in detail in [25]. Hence, for N > 1 and b # a there is no need to derive
equations in the large X and Y coordinates. Therefore, we shall only write
down here the equations in the simplest case of N = 1. Then, using (17) or
(8) for N =1, we get from (7) and (15)

X 2 bQ bQ_ 2
X = _Y<1—“ i )+ 2 <Xsin2t—Ycos2t),
2p 2p
X 2 b? b?_ 2
Y = _1+X<1—0‘;;2 )— 2p2“ <Xcos2t+Ysin2t). (18)

For the particular functions G, N > 1, equations for X and Y will all have
the similar structure with, however, much more complicated perturbation
terms. Their common feature is that all the equations will have for b = a
the form of (9) and that can be proved with the help of equations (17).

Fig.1. Contour map of the period ¢ = 27 of the orbits from (6) or (15) with
a=b=1and N =1.

In order to show that solutions of (15) may exhibit deterministic chaos
three maps of the period Nt = 27 have been prepared for N = 1,2,3 and
b = a. In the simplest case of N = 1, we can clearly observe in figure 1
the homoclinic orbit crossing itself in a hyperbolic point. The position of an
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elliptic fixed point can easily be traced out in the middle of the large loop of
the orbit. With the growing values of N increasing complexity of (15) results
in an appearance of additional hyperbolic fixed points and the separatrices
get more sophisticated in shape. This can be observed in figure 2 for N = 2
and in figure 3 for N = 3.

3
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Fig.2. As in figure 1 but for N = 2 and 2¢ = 27. One hetero- and one homoclinic
orbits are clearly visible.
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Fig.3. As in figure 1 but for N = 3 and 3¢t = 27. One can find here two different
separatrices encircling elliptic fixed points.



Forced Dynamical Systems Derivable from Bohmian Mechanics 591

Now, one may generate here a chaotic behavior even if the parameters a
and b differ slightly. To prove that we have calculated the largest Lyapunov
exponents Ay for three values of N for the orbits corresponding to the
perturbed homoclinic connections presented in the above figures. In each
case ¢ = 1, b = 1.1 and the initial conditions are: z(0) = 2.46, y(0) = 0 for
N =1; 2(0) = 2.3, y(0) =0 for N = 2 and z(0) = 0.35, y(0) =0 for N = 3.
We have obtained A1 = 0.05, Ao = 0.07 and A3 = 0.13 and this is what we
expected. Thus, the formation and break-up of a homo- and heteroclinic
trajectories seems to be the cause of chaos for the proposed here class of
dynamical systems. A more detailed description of the onset of chaos and
the whole route to it will possibly be determined after a systematic study of
a few members of the class is conducted.

4. Conclusion

A procedure has been developed that shows a possible way of generating
a wide class of dynamical systems. It is based on using the formula (1) and
then a suitably chosen wave function. In our study it is composed of two
stationary states, one of which has to be at least double degenerate and some
of the expansion coefficients in (2) have to be imaginary quantities. Thanks
to that, we can create a set of integrable systems and a chaotic behavior is
expected when the systems are perturbed by periodic time-dependent terms
resulting from introducing the second control parameter. We thus have at
our disposal a class of similar systems, the degree of chaoticity of which is
to some extent controlable by the number of used degenerate states. The
preliminary numerical results we have presented here seem to be interesting
enough to study the proposed systems in more detail and systematically in
future.

The class of dynamical systems proposed here, is the only one derived so
far within the Bohmian mechanics for which known properties of classical
forced systems can also be observed for the quantum Bohmian trajectories.
Deriving of any similar model seems to be very difficult, if possible at all,
since the choice of ¢ in Eq. (1) was a rather special one, making our class
of systems to some extent unique. The model we have studied in detail
recently [25] is the simplest (for N = 1) member of the large family of
models considered here.

The author wishes to thank dr hab. P. Peptowski for some numerical
assistance. This work has been supported in part by the Polish State Com-
mittee for Scientific Research (KBN) grant No. 2 P03B 121 16.



592 A.J. MAKOWSKI

REFERENCES

[1] E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[2] O.E. Rossler, Phys. Lett. A57, 397 (1976).

[3] G. Duffing, Erzwungene Schwingungen bei Verdinderlicher FEigenfrequenz,
Vieweg, Braunschweig 1918.

[4] B. Van der Pol, Phil. Mag. 2, 978 (1926).
[5] D. Bohm, Phys. Rev. 85, 166, 180 (1952).

[6] P.R. Holland, The Quantum Theory of Motion, Cambridge University Press,
Cambridge 1993.

[7] D.J. Bohm, C. Dewdney, B.H. Hiley, Nature 315, 294 (1985).
[8] C. Dewdney, Z. Malik, Phys. Rev. A48, 3513 (1993).
[9] G.G. de Polavieja, Phys. Lett. A236, 296 (1997).
[10] E. Sjoqvist, H. Carlsen, Phys. Rev. A56, 1638 (1997).
[11] W.R. McKinnon, C.R. Leavens, Phys. Rev. A51, 2748 (1995).
[12] J.A. de Barros, N. Pinto-Neto, M.A. Sagioro-Leal, Phys. Lett. A241, 229
(1998).
[13] A.J. Makowski, S. Konkel, Phys. Rev. A58, 4975 (1998).
[14] A.J. Makowski, Phys. Lett. A258, 83 (1999).
[15] E. Squires, S. Mackman, Phys. Lett. A185, 1 (1994).
[16] H.R. Brown, E. Sjoqvist, G. Bacciagaluppi, Phys.Lett. A251, 229 (1999).
[17] R.H. Parmenter, R.W. Valentine, Phys. Lett. A201, 1 (1995).
[18] S. Konkel, A.J. Makowski, Phys. Lett. A238, 95 (1998).
[19] G. Iacomelli, M. Pettini, Phys. Lett. A212, 29 (1996).
[20] S. Sengupta, P.K. Chattaraj, Phys. Lett. A215, 119 (1996).
[21] G.G. Polavieja, Phys. Rev. A53, 2059 (1996).
[22] H. Frisk, Phys. Lett. A227, 139 (1997).
[23] P.A.M. Dirac, Proc. Roy. Soc. A133, 60 (1931).
[24] J.O. Hirschfelder, C.J. Goebel, L.W. Bruch, J. Chem. Phys. 61, 5456 (1974).
[25] A.J. Makowski, P. Peplowski, S.T. Dembinski, Phys. Lett. A266, 241 (2000).
[26] A.J. Makowski, M. Frackowiak, Acta Phys. Pol. B32, 2831 (2001).

[27] LS. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, Aca-
demic Press, N.Y., Chapter 8.95, 1980.



