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FORCED DYNAMICAL SYSTEMS DERIVABLEFROM BOHMIAN MECHANICSAdam J. MakowskiInstitute of Physi
s, Ni
holas Coperni
us UniversityGrudzi¡dzka 5, 87-100 Toru«, Polande-mail: amak�phys.uni.torun.pl(Re
eived O
tober 1, 2001; revised version re
eived De
ember 10, 2001)Using Bohm's quantumme
hani
s, a wide 
lass of related two-parameterdynami
al systems is proposed and their general properties are brie�y dis-
ussed, in parti
ular, a possibility of 
haoti
 solutions. When the sys-tems are redu
ed to a one-parameter family of equations then they are allproved to be 
ompletely integrable and integrals of the motion are foundin an expli
ite form. The proposed 
lass of dynami
al systems 
an be 
astinto the form of Hamiltonian equations for
ed by a time-dependent non-Hamiltonian, periodi
 in time, disturban
e. A systemati
 way of generatingdynami
al systems of this kind is also dis
ussed.PACS numbers: 05.45.+b, 03.65.�w1. Introdu
tionA dynami
al system is understood as a set of ordinary nonlinear di�er-ential equations of the �rst order, v = _r = F (r; t; 
), where the variables 
are 
alled 
ontrol parameters. The set of equations represents a 
onservativesystem if r � v = 0 or a dissipative one if r � v < 0. The most widely dis-
ussed low-dimensional dynami
al systems with 
haoti
 behaviour are theLorenz [1℄ and Rössler [2℄ models and the Du�ng [3℄ and Van der Pol [4℄os
illators. The latter pair belongs to the 
lass of so-
alled for
ed dynami
alsystems. All the systems are intrinsi
ally inequivalent sin
e, among otherthings, they 
annot be deformed into ea
h other.In what follows we shall derive a 
lass of equivalent 
onservative systemsfor
ed by a non-Hamiltonian, periodi
 in time, perturbation. Their inter-esting feature is that for the 
onse
utive members of the 
lass separatri
esof growing 
omplexity 
an be observed. Then, even a small perturbationleads to a 
haoti
 behaviour manifested by the in
reasing in value largestLyapunov exponents. (583)



584 A.J. MakowskiThe velo
ity �eld formula we shall use here is that given by the Bohmianme
hani
s [5℄ or equivalently by the hydrodynami
al formulation of nonrel-ativisti
 quantum me
hani
s [6℄. In one-parti
le 
ase des
ribed by the wavefun
tion  (r; t) = R(r; t) exp [(i=~)S(r; t)℄ it reads asv = _r = jj j2 = i~2m r � �  �r j j2 = 1mrS; (1)where  is a solution of the time-dependent S
hrödinger equation.Traje
tories following from the guidan
e formula (1) were utilized in nu-merous appli
ations as important as: a des
ription of the delayed-
hoi
eexperiment on the basis of two-slit interferen
e [7℄, the measurement prob-lem in quantum me
hani
s [8℄, the geometri
 phase [9, 10℄, 
al
ulations oftunneling times [11℄, the quantum 
osmology [12℄, the problem of identi
almotion in 
lassi
al and quantum des
ription [13, 14℄ or 
orrelations in themotion of identi
al parti
les [15, 16℄.There is also a large group of papers (see e.g. [17�21℄) devoted to thestudy of properties of dynami
al systems derivable from Eq.(1). One shouldremember, however, that the traje
tories of Eq.(1) form a highly non-
lassi
alvelo
ity �eld, 
ontrary to the purely 
lassi
al traje
tories dis
ussed in theusual dynami
al systems, like those mentioned above. We should also em-phasize that the Bohmian systems are neither 
onservative nor dissipativeand their generi
 feature is that the phase spa
e volumes are not 
onservedby the �ow, i.e. r � v is not generally equal to zero. Instead, we 
an ex-pe
t [22℄ vanishing of limT!1 R T0 r � vd� . The systems are additionallymu
h more di�
ult to deal with than any other usual ones. It follows fromthe shape of Eq. (1) and from the fa
t that wave fun
tions usually havenodes and the vorti
es around them are quantized [23, 24℄.Until quite lately, the problem of whether a �simple� system of equa-tions, belonging to a known 
lass of dynami
al systems, 
an be 
onstru
tedvia Eq. (1) and properly 
hosen wave fun
tions, was long unsolved. Veryre
ently, we were su

essful [25℄ in 
reating a model of 
onservative sys-tem (r � v = 0), with some disturban
e periodi
 in time, whi
h manifested
haoti
 behaviour and the properties of the 
lassi
al for
ed dynami
al sys-tems that we were looking for.The question underlying the present paper, is how unique is that modeland whether our method of deriving it 
an be generalized, so as to obtainsimilar ones. We shall show below that the model is the simplest member [26℄of a family of for
ed Bohmian dynami
al systems, the only one known sofar for 
ausal traje
tories. Our previous study [25℄ suggests using for this
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ed Dynami
al Systems Derivable from Bohmian Me
hani
s 585purpose the wave fun
tion in the following spe
ial form: N (x; y; t) = e�it 0(x) 0(y)+e�it(N+1) NXn;k=0(n+k=N)ank n(x) k(y); N = 1; 2; � � � ;(2)where  0 and  j stand for the ground and ex
ited states of os
illator in onedimension, and hen
eforth the dimensionless units are introdu
ed su
h that~ = 1, m = 1 and ! = 1. The normalization 
onstant of  N (x; y; t) is omit-ted sin
e it plays no role in further 
onsiderations. Two spatial 
oordinatesin equation (2) are enough to get a set of two non-autonomous equationsfrom (1) whi
h in a

ordan
e with the 
elebrated Poin
aré�Bendixson theo-rem is a ne
essary 
ondition for 
haoti
 solutions to exist. Our wave fun
tion(2) is 
omposed of two stationary states, the se
ond one with N +1-fold de-genera
y, and energies E1 = 1 and E2 = N +1, respe
tively. Note, the sumin (2) is over n and k su
h that n+ k = N .The plan of our paper is as follows. In Se
tion 2 we derive equations of themotion for the non-trivial and yet as simple as possible wave fun
tions, showtheir integrability and transform the system to a Hamiltonian autonomousone. In Se
tion 3 we then introdu
e some perturbations to the integrableequations and show the way of 
reating systems with growing degree of
haoti
ity in their solutions. Finally, the 
on
lusions are given in Se
tion 4.2. Integrable systemsThe 
ase we shall study �rst is a set of two non-autonomous equationswhi
h 
an be formally proved to be integrable. To this end, the 1D os
illatorwave fun
tions are used and thus equation (2) 
an be written as N (x; y; t) = e�(1=2)(x2+y2)�e�it + e�it(N+1) NXk=0 aN�k;kHN�k(x)Hk(y)�;(3)where Hj(z) is the Hermite polynomial of order j. If the free expansion
oe�
ients aN�k;k are all real then the equations resulting from (1) areobviously integrable. The situation is mu
h more interesting if at least oneof the 
oe�
ients for a given N , is 
hosen as an imaginary quantity. Then,one 
an always adjust aN�k;k's in su
h a way to have the sum in (3) equalto NXk=0 aN�k;kHN�k(x)Hk(y) = aN (x+ iy)N :
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an be proved with the help of an integral representation of the Hermitepolynomials [27℄. For example, for N = 1 this is the 
ase for a10 = (1=2)aand a01 = ia=2, and for N = 2, we have a20 = a2=4, a02 = �a2=4, a11 =ia2=2, and so on.Now, we 
an write the fun
tion (3) in the polar form and its phaseSN = � tan�1� sin t+ aNrN sin [(N + 1)t�N'℄
os t+ aNrN 
os [(N + 1)t�N'℄� (4)is then used in Eq. (1). As a result, we get_x = �aNNrN�1fsin [Nt� (N � 1)'℄ + aNrN sin'g[
osNt+ aNrN 
osN'℄2 + [sinNt+ aNrN sinN'℄2 ;_y = aNNrN�1f
os [Nt� (N � 1)'℄ + aNrN 
os'g[
osNt+ aNrN 
osN'℄2 + [sinNt+ aNrN sinN'℄2 ; (5)where r2 = x2 + y2 and ' = tan�1 (y=x). The dynami
al system (5) has asingle 
ontrol parameter, represented by a, and it 
an be proved to be 
om-pletely integrable. The simplest way to do that is using the transformationx = r 
osD, y = r sinD with D = N(t � '). Thus, the non-autonomousequations (5) 
an be simpli�ed to the autonomous ones and no 
haoti
 so-lutions are possible in this 
ase.Equations (5) have two interesting features: a 
onstant of the motionexistsCN =MN � a2N lnMN � 2aNrN 
os [N(t� ')℄ + a2N (r2 � r2N ) (6)for an arbitrary integer N � 1, whereMN=1+a2Nr2N+2aNrN 
os [N(t�')℄,and the phase spa
e volume is 
onserved, i.e., d _x=dx+d _y=dy = 0. The latterproperty is a 
onsequen
e of the fa
t that there must be �SN = 0 whi
h inthe 2D spa
e has a general solution SN (x; y; t) = fN (x+ iy; t)+gN (x� iy; t)for arbitrary fun
tions fN and gN of their arguments.We 
an also �nd a fun
tion ~H(x; y; t) su
h that _x = �� ~H=�y and_y = � ~H=�x. It has a simple form of ~H(x; y; t) = (1=2) lnMN . More-over, we 
an propose a transformation whi
h transforms the 
onservativenon-autonomous system (5) to a Hamiltonian autonomous one. It has thefollowing form X = � 
os�; Y = � sin�; (7)with�2 = X2 + Y 2 =MN ;� = Nt� tan�1 ( sinNt+ Im zN
osNt+Re zN ) = tan�1�YX�; z = ax+ iby: (8)



For
ed Dynami
al Systems Derivable from Bohmian Me
hani
s 587In the new variables with b = a, equations (5) take the form of a Hamiltoniansystem _X = �NY�1� Na2�2 �;_Y = �N +NX�1� Na2�2 � (9)derivable from the HamiltonianH = N2 (X2 + Y 2)� 12N2a2 ln (X2 + Y 2)�NX: (10)Again, of 
ourse, the phase spa
e volume is 
onserved, i.e., now we haved _X=dX + d _Y =dY = 0. For ea
h N the set (9) has a pair of �xed pointsY1 = 0; X1 = 12(1 +p1 + 4Na2);Y2 = 0; X2 = 12(1�p1 + 4Na2); (11)the �rst always being the ellipti
 �xed point and the se
ond a hyperboli
one. The relative separation between the points is growing with the numberof the degenerate states used in (3). We 
an also �nd separatri
es for theparti
ular values of N . Denoting H(Y = 0;X = X2) = HS we have therequired equationHS � N2 (X2 + Y 2) + 12N2a2 ln (X2 + Y 2) +NX = 0: (12)3. Non-integrable perturbed systemsThe main 
on
lusion we 
an draw from the previous se
tion is that theone-parameter dynami
al systems proposed here are all 
ompletely inte-grable. The simplest generalization of the above approa
h, leading to non-integrable equations and hen
e possibly to 
haos, is introdu
ing a se
ond
ontrol parameter, say b.To this end, we shall represent the whole sum over k in (3) asNXk=0 aN�k;kHN�k(x)Hk(y) = GN (ax+ iby)with two real 
onstants a and b. Unfortunately, this time, when a 6= b, the
oe�
ients aN�k;k 
annot in any way be adjusted to have GN (ax + iby)



588 A.J. Makowskiequal to (ax+ iby)N . Instead, it is possible to obtain:G1 = ax+ iby;G2 = (ax+ iby)2 + 12�; � = b2 � a2;G3 = (ax+ iby)3 + 32�(ax+ iby);G4 = (ax+ iby)4 + 3�(ax+ iby)2 + 34�2: (13)We were not able to �nd a general formula for GN . However, the nextmembers of the set (13) 
an be obtained with a little e�ort.Now, the phase SN of the fun
tion (3)SN (x; y; t)=�tan�1� sin t+ReGN sin [t(N + 1)℄� ImGN 
os [t(N + 1)℄
os t+ReGN 
os [t(N + 1)℄ + ImGN sin [t(N + 1)℄�(14)generates with the help of (1) the following non-integrable dynami
al sys-tems:_x = �1QN �(sinNt+ ImGN )(ReGN )x � (
osNt+ReGN )(ImGN )x�;_y = �1QN �(sinNt+ ImGN )(ReGN )y � (
osNt+ReGN )(ImGN )y�;(15)where the subs
ripts x and y denote derivatives of the market expressionswith respe
t to these variables, andQN = (sinNt+ ImGN )2 + (
osNt+ReGN )2: (16)Equations (15) and (16) hold not only for GN 's listed in (13) but generallyfor the quantities with all integers N � 1.One may 
ast (15) into the form of 
onservative equations perturbed bysome periodi
 time-dependent 
ontributions. This is a very tedious task forthe parti
ular fun
tions GN (ax+ iby). Nevertheless, it 
an be done with thehelp of the transformation (7), where now � and � should read as:�2 = X2 + Y 2 = QN ;� = Nt� tan�1� sinNt+ ImGN
osNt+ReGN � = tan�1�YX�: (17)



For
ed Dynami
al Systems Derivable from Bohmian Me
hani
s 589Equations (17) and (8) are equivalent to ea
h other in two 
ases: for anyinteger N � 1 when b = a, and for b 6= a when N = 1. The transformation(7) with both (8) or (17) is a 
anoni
al transformation only for N = 1(pre
isely when � ! ��=ab in (7)) and as su
h it does not 
hange theproperties of the studied dynami
al system. This point has been dis
ussedin detail in [25℄. Hen
e, for N > 1 and b 6= a there is no need to deriveequations in the large X and Y 
oordinates. Therefore, we shall only writedown here the equations in the simplest 
ase of N = 1. Then, using (17) or(8) for N = 1, we get from (7) and (15)_X = �Y�1� a2 + b22�2 �+ b2 � a22�2 �X sin 2t� Y 
os 2t�;_Y = �1 +X�1� a2 + b22�2 �� b2 � a22�2 �X 
os 2t+ Y sin 2t�: (18)For the parti
ular fun
tions GN , N � 1, equations for _X and _Y will all havethe similar stru
ture with, however, mu
h more 
ompli
ated perturbationterms. Their 
ommon feature is that all the equations will have for b = athe form of (9) and that 
an be proved with the help of equations (17).
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Fig. 1. Contour map of the period t = 2� of the orbits from (6) or (15) witha = b = 1 and N = 1.In order to show that solutions of (15) may exhibit deterministi
 
haosthree maps of the period Nt = 2� have been prepared for N = 1; 2; 3 andb = a. In the simplest 
ase of N = 1, we 
an 
learly observe in �gure 1the homo
lini
 orbit 
rossing itself in a hyperboli
 point. The position of an



590 A.J. Makowskiellipti
 �xed point 
an easily be tra
ed out in the middle of the large loop ofthe orbit. With the growing values of N in
reasing 
omplexity of (15) resultsin an appearan
e of additional hyperboli
 �xed points and the separatri
esget more sophisti
ated in shape. This 
an be observed in �gure 2 for N = 2and in �gure 3 for N = 3.
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Fig. 2. As in �gure 1 but for N = 2 and 2t = 2�. One hetero- and one homo
lini
orbits are 
learly visible.
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Fig. 3. As in �gure 1 but for N = 3 and 3t = 2�. One 
an �nd here two di�erentseparatri
es en
ir
ling ellipti
 �xed points.



For
ed Dynami
al Systems Derivable from Bohmian Me
hani
s 591Now, one may generate here a 
haoti
 behavior even if the parameters aand b di�er slightly. To prove that we have 
al
ulated the largest Lyapunovexponents �N for three values of N for the orbits 
orresponding to theperturbed homo
lini
 
onne
tions presented in the above �gures. In ea
h
ase a = 1, b = 1:1 and the initial 
onditions are: x(0) = 2:46, y(0) = 0 forN = 1; x(0) = 2:3, y(0) = 0 for N = 2 and x(0) = 0:35, y(0) = 0 for N = 3.We have obtained �1 = 0:05, �2 = 0:07 and �3 = 0:13 and this is what weexpe
ted. Thus, the formation and break-up of a homo- and hetero
lini
traje
tories seems to be the 
ause of 
haos for the proposed here 
lass ofdynami
al systems. A more detailed des
ription of the onset of 
haos andthe whole route to it will possibly be determined after a systemati
 study ofa few members of the 
lass is 
ondu
ted.4. Con
lusionA pro
edure has been developed that shows a possible way of generatinga wide 
lass of dynami
al systems. It is based on using the formula (1) andthen a suitably 
hosen wave fun
tion. In our study it is 
omposed of twostationary states, one of whi
h has to be at least double degenerate and someof the expansion 
oe�
ients in (2) have to be imaginary quantities. Thanksto that, we 
an 
reate a set of integrable systems and a 
haoti
 behavior isexpe
ted when the systems are perturbed by periodi
 time-dependent termsresulting from introdu
ing the se
ond 
ontrol parameter. We thus have atour disposal a 
lass of similar systems, the degree of 
haoti
ity of whi
h isto some extent 
ontrolable by the number of used degenerate states. Thepreliminary numeri
al results we have presented here seem to be interestingenough to study the proposed systems in more detail and systemati
ally infuture.The 
lass of dynami
al systems proposed here, is the only one derived sofar within the Bohmian me
hani
s for whi
h known properties of 
lassi
alfor
ed systems 
an also be observed for the quantum Bohmian traje
tories.Deriving of any similar model seems to be very di�
ult, if possible at all,sin
e the 
hoi
e of  in Eq. (1) was a rather spe
ial one, making our 
lassof systems to some extent unique. The model we have studied in detailre
ently [25℄ is the simplest (for N = 1) member of the large family ofmodels 
onsidered here.The author wishes to thank dr hab. P. Pepªowski for some numeri
alassistan
e. This work has been supported in part by the Polish State Com-mittee for S
ienti�
 Resear
h (KBN) grant No. 2 P03B 121 16.
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