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NULL AND TENSILE STRINGS IN PERES SPACETIME
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We present the general equations of motion for null and tensile strings
in the Peres spacetime and give the general solutions in quadratures in
the case of null strings. As for the tensile strings we integrate equations of
motion and constraints completely in a closed form for circular and straight
string Anséts.

PACS numbers: 11.27.+d, 04.20.Fy

1. Introduction

The study of the string equations of motion and constraints in a curved
background spacetime has been a topic of an active research over the last few
years. Since the equations are nonlinear, it is often quite difficult to obtain
exact solutions in a variety of curved backgrounds [1-6]. In papers [7,20]
it was shown that the string equations in the Schwarzschild spacetime are
actually non-integrable and exhibit chaotic behavior. It means that it is only
possible to find the exact evolution for some special configurations or perform
some numerical calculations [3,7,8].

Among the various peculiarities of the behavior of strings at the Hage-
dorn temperature there is the fact that the effective tension vanishes. Strings
with vanishing tension were introduced by Schild [9], who considered a gener-
alization of the Nambu-Goto Lagrangian to a more generic action principle.
Schild gave them the name “null strings” because their world surface is a null
sub-manifold. As it is known, the string tension appears in the Nambu—Goto
Lagrangian (as well as in the generalization that is associated with the name
of Polyakov) as an overall multiplicative constant and, therefore, cannot be
set to zero without the loss of the whole physical content of the theory.
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The classical evolution of a null string in a curved background is de-
scribed by null geodesic equations of general relativity appended by an addi-
tional “stringy” constraint. The exact null string configurations were studied
in flat and curved backgrounds [10-13, 19]. A very interesting exact solu-
tion which describes a null string moving vertically up and down around the
photon sphere in the Schwarzschild spacetime was presented by Dabrowski
and Larsen [14]. Another reason why it could be interesting to study tensile
and null strings is that tensile and null strings can be viewed as classical
sources of gravity [15].

In this paper we present general equations of motion for tensile and
null strings in the Peres spacetime and we give general solutions of motion
completely in a closed form for circular strings.

2. Null strings in the Peres spacetime

The Nambu—Goto string action in a curved spacetime can be presented
in the form [16,17]

det (BMxMGMN(x)any) B 1
E(7,0) (a)?

S:SO+Slz/d7dU[ E(T,U) ’ (1)

where E(7,0) is an auxiliary world-sheet density, M, N,... =0,1,...,D — 1;
u,v=0,1 and 9y = 9/91, 01 = d/Jo. The equation of motion for E(r,0)
produced by Eq. (1) is

E =d\/—detgu, (2)

G = BMxMGMN(x)(?VxN. (3)

The substitution of E(1,0) from Eq. (2) into functional (1) transforms the
latter into the Nambu—Goto representation

2
S = —J/deO' /—detg,, . (4)

Thus, the representations (1) and (4) for the string action (1) are classically
equivalent. Unlike the representation (4), the representation (1) includes
the string tension parameter 1/’ as a constant at an additive world—sheet
“cosmological” term playing the role of the potential energy. This term may
be considered as a perturbative addition for the case of a weak tension.

We are to consider a dimensional parameter v or some combination of
the parameters defining the metric of the curved space, where the string
moves. Without loss of generality one can put that  has the dimension of
L? (h=c=1). Then the value of the dimensionless combination
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e=_L (5)

Oll

can be considered as a parameter characterizing the power of string tension.
In the gauge

B(1,0) = =y (z]5Gun (2)2]) (6)

accompanied by the ortho-normality condition
.’L‘,]Z[GMN(.’L‘)I% =0, (7)

where z% = 92 /o7, " = 02 /00, the variational Euler-Lagrange
equatlons of motion generated by Eq. (1) acquire the form

xf\ﬂ — 5%%, + FI%(G) xlixg 62£EP.’I}Q =0, (8)
and they contain the dimensionless parameter €. This parameter appears in
another string constraint

.’I,',]\;[GMN( )iE +eée iEMGMN( ) ,]gzo, (9)

which is additional to constraint (7). For ¢ = 0 we have the null string.
From the above we can see that for the null strings we have the null geodesic
equations supplemented by the constraint (7), which ensures that each point
of a tensile string (null string) propagates in the direction perpendicular to
the string. Thus, knowing the null geodesics in a background spacetime
would naturally lead to null string configurations provided all the constraints
are satisfied.

Let us now discuss the null string propagation in the Peres spacetime
[21,22]. The metric for such spacetime is represented as

dS? = 2dtdx — dy* — dz* + S(t,y, z)dt* . (10)
From Einstein—Hilbert equations we have two different solutions:

dS? = 2dtdz — dy? — dz® + b(y? + 2°%)dt?, (11)
dS? = 2dtdz — dy? — dz* + b(y? — 22)di? (12)

|

where b is a constant [18]. Eq. (11) describes radiation field with an isotropic
energy-momentum tensor. In the second case (see Eq. (12)) we have space-
time which describes strong gravitational waves.
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The null string equations of motion and constraints in the spacetime (11)
are given by

t,TT = Oa
Trr+2b(yyr +227)t, = 0, (13)
Yo +byts = 0,
Zrr + bzt?T 0, (14)
b(y? + zQ)t?T — y?T — z?T +2t,z; =0, (15)
b(y? + zg)tJt,g —YrYo — 2720+t T +tor, = 0 (16)
Egs. (13)—(16) easily integrate
t(r,0) = pilo)T +t(0), (17)
z(r,0) = z(0) + g(o) sin (a(o)T) + w(o) cos (a(o)T) , (18)
i _ a(o)T | 2p'(o) . (a(o)T
z'(1,0) —m(a)cos< 5 >+ a(0) sm< 5 ), (19)
where 1 = 2,3 (302 =y, 2% =2, p? = Py, P’ = p2),
00) = i {33l) +920) - ) o)+ 2]} (20
1
w(o) = 5o {uon (o) + Ip:(0)]
a(o) = 2Vb py(o), (21)

and t(o), z(0), x'(0), pi(o), pz(c), p'(c) are any functions of o. The
explicit form of the solutions (17)-(19) allows to transform the constraints
(13), (14) into those for the Cauchy initial data:

2p1(0)pa(0) = py(0) = p2(0) + bpi (o) [y*(0) + 2*(0)] =0, (22)
2p2(0)pi(0)t (0 )+2pt( ) "(0) = pu(0) [y'(o)p ( ) 2 (0)p2(0)]
+pu(0) [y(0)py (o) + 2(0) PL(0)] =Pi(0) [y(0) py(0) + 2(0)p2(0)] = 0, (23)

where the primes denote differentiation with respect to o.
For example, we can consider

t(o) =0, z(o) =0, y(o) :Rsing, z(0) = Rcos =,

R
2
@) =1,  plo) =" pe) = pyl0) =0. (24)
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This configuration describes a circular null string. Combining Eq. (24) with
Egs. (17)-(19) we obtain

xr=— \/54R2 sin (2\/l;t> , y? 4 22 = R? cos? (\/l;t> . (25)

From Egs. (25) one can see that radiation field with isotropic energy-
momentum tensor play the role of a trap. Fig. 1 shows a world sheet of the
null string Eqs. (25).

Fig. 1. World-sheet of the null string in the radiation field with an isotropic energy-
momentum tensor.

The null string equations of motion for metric Eq. (12) are analogous to
Egs. (13)-(16) and one can easily solve them to get

t(r,0) = pi(o)T + t(o), (26)

1 pio) | ..
z(r,0) = z(o) + 1 Vbz?(o) + m] sinh (2\/5]%(0)7')
1 \/l_)yQ(a) + 71)321(0) sin (2\/1_)pt(0)7> + 1 (27)
4 Vbp}(o) 2pi(0)

% [#0)p=(0) cosh (2VBpi(0)7 ) + (o), (o) cos (2vopilo)7)] |
py(o) .

y(r,0) = y(o)cos <\/l_)pt(a)7'> + \/l_)ypt(a) sin <\/l_)pt(0)7'> , (28)
pz(U) .

z2(1,0) = z(o)cosh <\/5pt(0)7') + m sinh (\/l;pt(a)7'> . (29)
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Using the explicit form of the solutions Eqgs. (26)-(29), we obtain the con-
straints for the Cauchy initial data:

2pu(0)pa(0) = () = P2(o) + bp(o )[zﬂ( ) - 2o )] =0, (30)
2,(0)pu(0)2 (0) + 207 (0)2' (9) + pu(r) [y(@)} () + 2(r)pL (o)
—2py(0) (y(0)pe(0))’ —2pz( ) (z(0)pe(0))" = 0. (31)

For example, we can consider

t(o) = z(0) = y(o) = 2(0) =0, (32)
pe(o) =1, pz(0) = %, py(o) =sino, p,(c) =coso.

Finally, substituting Eq. (32) into Egs. (26)—(29), one obtains

z = 4\1/5 [coszasinh (2\/137:) + sin? o sin (2\/137:)] : (33)
y = % sin o sin (\/I;t) , z= % cos o sinh (\/l;t) . (34)

Fig. 2 shows world-sheet of the null string — Eqs. (33), (34).

Fig. 2. World-sheet of the null string in the field of strong gravitational waves.
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3. Tensile strings in Peres background

In this section we briefly consider the case of tensile strings (¢ = 1) and
start with the circular Ansétz

t=r, x=z(1), y = f(1)coso, z = f(7)sino. (35)

We then find from Egs. (7)-(9) and (11) the following set of ordinary differ-
ential equations for z(7) and f(7):

for +

T, =

)

(b+1)7 =0, (36)
S [U2 -0 (37)

The set of ordinary differential equations (36), (37) can be easily integrated
and we have

t =T, y = f(7) cos o, z = f(1)sino, (38)

b (A2 - B?) |
ﬁ sin (2@7)

oS (2\/ZH——17> , (39)

T = %(AQ—FB?)T—F

ABb
+ 2vb+ 1
f(r) = Acos (\/b-i-—17> + Bsin (\/b-i-—lT) ; (40)

where A and B are arbitrary constants. Egs. (38)—(40) describe a circular
tensile string in the vy, z plane, centered at the origin and with an oscillating
radius f(7). In addition, the string moves in the z-direction.

From the solutions (38)—(40) one can see that a tensile string that con-
tracts to a smaller size than its Schwarzschild radius will collapse and form
a back hole.

Another simple, but instructive solution in Peres spacetime is a rotating
straight tensile string given by

z=(1-b)(A>+B%) T, (41)
y = [Acos (m ) + Bsin (\/I——baﬂ COS T, (42)
z = [Acos (\/ﬁ ) + Bsin (ﬂa)} sinT, (43)

t =T,

where 0 < b < 1. Egs. (41)—(43) identically fulfill the string equations and
constraints.
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Finally, we notice that the invariant string size (the length of the string)
S(7) is given by

S(r) = /S(T, o)do , (44)

where
2 2\ 412 10 12 2]1/2
S(r,0) = \/—xf\;IGMN(m)xf)’ = [—b(y +22) " =2+ 4 2 ]
(45)
for the null string [14], and
S(r,0) = \/xgyGMN(x) o (46)

for the tensile string. By using Eqgs. (38)-(40) and (46), we have

S(r,0) = f(r) = Acos(Vb+17) + Bsin(Vb+ 171), (47)
S(r) = 2nf(r). (48)

From equations (41)-(43), we have

S(ro) = (1-b)|2 (A22+B2) A& - B s (2vi=1to)
A (2 ) | (1)
S(r) = (1—b)|3r (42 + B?) — AB — AP (4rvT=10)
+ AB cos (47T =) ] . (50)

It would be interesting to consider other null and tensile strings configu-
rations and apply them to study null and tensile strings dynamics in shock
and other strong gravitational waves.

4. Summary

In this article, we have considered a motion of null and tensile
strings in Peres spacetime, which traditionally describes radiation field
with an isotropic energy-momentum tensor and strong gravitational waves.
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The exact, general solutions of equations of motion for a closed null string
are obtained. The examples of motion and also the world-sheet for null
string in these space are presented. It is shown, that radiation fields with an
isotropic energy-momentum tensor play the role of a trap. As for the tensile
strings we have integrated equations of motion and constraints completely
in a closed form for circular and straight string Ansétz.

Hereinafter, the exact solutions obtained in this article, can be used as
the test solutions indispensable for a numerical modeling of motion null and
tensile string in the pseudo-Riemannian spaces.

The authors would like to thank L. Arifov and A. Zheltukhin for the
useful discussions. This work is supported by Grant Ukraine 02.07/276.
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