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NULL AND TENSILE STRINGS IN PERES SPACETIMEA.P. Lelyakov and S.N. RoshhupkinV.I. Vernadskii Tavriis'kyi National University4 Yaltyns'ka, Simferopol', 95007, Ukraine(Reeived July 17, 2001; revised version reeived November 8, 2001)We present the general equations of motion for null and tensile stringsin the Peres spaetime and give the general solutions in quadratures inthe ase of null strings. As for the tensile strings we integrate equations ofmotion and onstraints ompletely in a losed form for irular and straightstring Ansäts.PACS numbers: 11.27.+d, 04.20.Fy1. IntrodutionThe study of the string equations of motion and onstraints in a urvedbakground spaetime has been a topi of an ative researh over the last fewyears. Sine the equations are nonlinear, it is often quite di�ult to obtainexat solutions in a variety of urved bakgrounds [1�6℄. In papers [7, 20℄it was shown that the string equations in the Shwarzshild spaetime areatually non-integrable and exhibit haoti behavior. It means that it is onlypossible to �nd the exat evolution for some speial on�gurations or performsome numerial alulations [3, 7, 8℄.Among the various peuliarities of the behavior of strings at the Hage-dorn temperature there is the fat that the e�etive tension vanishes. Stringswith vanishing tension were introdued by Shild [9℄, who onsidered a gener-alization of the Nambu�Goto Lagrangian to a more generi ation priniple.Shild gave them the name �null strings� beause their world surfae is a nullsub-manifold. As it is known, the string tension appears in the Nambu�GotoLagrangian (as well as in the generalization that is assoiated with the nameof Polyakov) as an overall multipliative onstant and, therefore, annot beset to zero without the loss of the whole physial ontent of the theory.(593)



594 A.P. Lelyakov, S.N. RoshhupkinThe lassial evolution of a null string in a urved bakground is de-sribed by null geodesi equations of general relativity appended by an addi-tional �stringy� onstraint. The exat null string on�gurations were studiedin �at and urved bakgrounds [10�13, 19℄. A very interesting exat solu-tion whih desribes a null string moving vertially up and down around thephoton sphere in the Shwarzshild spaetime was presented by Dabrowskiand Larsen [14℄. Another reason why it ould be interesting to study tensileand null strings is that tensile and null strings an be viewed as lassialsoures of gravity [15℄.In this paper we present general equations of motion for tensile andnull strings in the Peres spaetime and we give general solutions of motionompletely in a losed form for irular strings.2. Null strings in the Peres spaetimeThe Nambu�Goto string ation in a urved spaetime an be presentedin the form [16, 17℄S = S0 + S1 = Z d�d� "det ���xMGMN (x)��xN�E(�; �) � 1(�0)2E(�; �)# ; (1)where E(�; �) is an auxiliary world-sheet density, M;N; ::: = 0; 1; :::;D � 1;�; � = 0; 1 and �0 � �=��; �1 � �=��. The equation of motion for E(�; �)produed by Eq. (1) is E = �0p�det g�� ; (2)g�� = ��xMGMN (x)��xN : (3)The substitution of E(�; �) from Eq. (2) into funtional (1) transforms thelatter into the Nambu�Goto representationS = � 2�0 Z d�d�p�det g�� : (4)Thus, the representations (1) and (4) for the string ation (1) are lassiallyequivalent. Unlike the representation (4), the representation (1) inludesthe string tension parameter 1=�0 as a onstant at an additive world�sheet�osmologial� term playing the role of the potential energy. This term maybe onsidered as a perturbative addition for the ase of a weak tension.We are to onsider a dimensional parameter  or some ombination ofthe parameters de�ning the metri of the urved spae, where the stringmoves. Without loss of generality one an put that  has the dimension ofL2 (~ =  = 1). Then the value of the dimensionless ombination



Null and Tensile Strings in Peres Spaetime 595" = �0 (5)an be onsidered as a parameter haraterizing the power of string tension.In the gauge E(�; �) = � �xM;�GMN (x)xN; �� (6)aompanied by the ortho-normality onditionxM;� GMN (x)xN; � = 0 ; (7)where xM;� � �xM=�� , xM;� � �xM=��, the variational Euler�Lagrangeequations of motion generated by Eq. (1) aquire the formxM;�� � "2xM;�� + �MPQ(G)hxP;�xQ;� � "2xP;�xQ;�i = 0 ; (8)and they ontain the dimensionless parameter ". This parameter appears inanother string onstraintxM;� GMN (x)xN;� + "2xM;�GMN (x)xN;� = 0 ; (9)whih is additional to onstraint (7). For " = 0 we have the null string.From the above we an see that for the null strings we have the null geodesiequations supplemented by the onstraint (7), whih ensures that eah pointof a tensile string (null string) propagates in the diretion perpendiular tothe string. Thus, knowing the null geodesis in a bakground spaetimewould naturally lead to null string on�gurations provided all the onstraintsare satis�ed.Let us now disuss the null string propagation in the Peres spaetime[21, 22℄. The metri for suh spaetime is represented asdS2 = 2dtdx� dy2 � dz2 + S(t; y; z)dt2 : (10)From Einstein�Hilbert equations we have two di�erent solutions:dS2 = 2dtdx� dy2 � dz2 + b(y2 + z2)dt2 ; (11)dS2 = 2dtdx� dy2 � dz2 + b(y2 � z2)dt2 ; (12)where b is a onstant [18℄. Eq. (11) desribes radiation �eld with an isotropienergy-momentum tensor. In the seond ase (see Eq. (12)) we have spae-time whih desribes strong gravitational waves.



596 A.P. Lelyakov, S.N. RoshhupkinThe null string equations of motion and onstraints in the spaetime (11)are given by t;�� = 0 ;x;�� + 2b(yy;� + zz;� )t;� = 0 ; (13)y;�� + byt2;� = 0 ;z;�� + bzt2;� = 0 ; (14)b(y2 + z2)t2;� � y2;� � z2;� + 2t;�x;� = 0 ; (15)b(y2 + z2)t;� t;� � y;�y;� � z;�z;� + t;�x;� + t;�x;� = 0 : (16)Eqs. (13)�(16) easily integratet(�; �) = pt(�)� + t(�) ; (17)x(�; �) = x(�) + g(�) sin (a(�)�) +w(�) os (a(�)�) ; (18)xi(�; �) = xi(�) os�a(�)�2 �+ 2pi(�)a(�) sin�a(�)�2 � ; (19)where i = 2; 3 (x2 = y; x3 = z; p2 = py; p3 = pz),g(�) = pba2(�)np2y(�) + p2z(�)� p2t (�) �y2(�) + z2(�)� o ; (20)w(�) = 12pt(�)ny(�)py(�) + z(�)pz(�)o ;a(�) = 2pb pt(�) ; (21)and t(�); x(�); xi(�); pt(�); px(�); pi(�) are any funtions of �. Theexpliit form of the solutions (17)�(19) allows to transform the onstraints(13), (14) into those for the Cauhy initial data:2pt(�)px(�)� p2y(�)� p2z(�) + bp2t (�) �y2(�) + z2(�)� = 0 ; (22)2px(�)pt(�)t0(�) + 2p2t (�)x0(�)� pt(�) �y0(�)py(�) + z0(�)pz(�)�+pt(�) �y(�)p0y(�) + z(�) p0z(�)��p0t(�) [y(�) py(�) + z(�)pz(�)℄ = 0 ; (23)where the primes denote di�erentiation with respet to �.For example, we an onsidert(�) = 0 ; x(�) = 0 ; y(�) = R sin �R ; z(�) = R os �R ;pt(�) = 1 ; px(�) = �bR22 ; py(�) = py(�) = 0 : (24)



Null and Tensile Strings in Peres Spaetime 597This on�guration desribes a irular null string. Combining Eq. (24) withEqs. (17)�(19) we obtainx = �pbR24 sin�2pb t� ; y2 + z2 = R2 os2 �pb t� : (25)From Eqs. (25) one an see that radiation �eld with isotropi energy-momentum tensor play the role of a trap. Fig. 1 shows a world sheet of thenull string Eqs. (25).

Fig. 1. World-sheet of the null string in the radiation �eld with an isotropi energy-momentum tensor.The null string equations of motion for metri Eq. (12) are analogous toEqs. (13)�(16) and one an easily solve them to gett(�; �) = pt(�)� + t(�) ; (26)x(�; �) = x(�) + 14 "pb x2(�) + p2z(�)pb p2t (�)# sinh�2pb pt(�)���14 "pb y2(�) + p2y(�)pb p2t (�)# sin�2pb pt(�)�� + 12pt(�) (27)� hz(�)pz(�) osh �2pb pt(�)��+ y(�)py(�) os �2pb pt(�)��i ;y(�; �) = y(�) os �pb pt(�)�� + py(�)pb pt(�) sin�pb pt(�)�� ; (28)z(�; �) = z(�) osh �pb pt(�)�� + pz(�)pb pt(�) sinh�pb pt(�)�� : (29)



598 A.P. Lelyakov, S.N. RoshhupkinUsing the expliit form of the solutions Eqs. (26)�(29), we obtain the on-straints for the Cauhy initial data:2pt(�)px(�)� p2y(�)� p2z(�) + bp2t (�)hy2(�)� z2(�)i = 0 ; (30)2px(�)pt(�)t0(�) + 2p2t (�)x0(�) + pt(�)hy(�)p0y(�) + z(�)p0z(�)i�2py(�) (y(�)pt(�))0 � 2pz(�) (z(�)pt(�))0 = 0 : (31)For example, we an onsidert(�) = x(�) = y(�) = z(�) = 0 ; (32)pt(�) = 1 ; px(�) = 12 ; py(�) = sin� ; pz(�) = os � :Finally, substituting Eq. (32) into Eqs. (26)�(29), one obtainsx = 14pb hos2 � sinh�2pb t�+ sin2 � sin�2pb t�i ; (33)y = 1pb sin� sin�pb t� ; z = 1pb os � sinh�pb t� : (34)Fig. 2 shows world-sheet of the null string � Eqs. (33), (34).

Fig. 2. World-sheet of the null string in the �eld of strong gravitational waves.



Null and Tensile Strings in Peres Spaetime 5993. Tensile strings in Peres bakgroundIn this setion we brie�y onsider the ase of tensile strings (" = 1) andstart with the irular Ansätzt = � ; x = x(�) ; y = f(�) os � ; z = f(�) sin� : (35)We then �nd from Eqs. (7)�(9) and (11) the following set of ordinary di�er-ential equations for x(�) and f(�):f;�� + (b+ 1)f = 0 ; (36)x;� = 12 h(f;� )2 + (1� b)f2i : (37)The set of ordinary di�erential equations (36), (37) an be easily integratedand we have t = �; y = f(�) os �; z = f(�) sin�; (38)x = 12�A2 +B2�� + b �A2 �B2�4pb+ 1 sin�2pb+1��+ ABb2pb+ 1 os�2pb+ 1�� ; (39)f(�) = A os �pb+ 1��+B sin�pb+ 1�� ; (40)where A and B are arbitrary onstants. Eqs. (38)�(40) desribe a irulartensile string in the y, z plane, entered at the origin and with an osillatingradius f(�). In addition, the string moves in the x-diretion.From the solutions (38)�(40) one an see that a tensile string that on-trats to a smaller size than its Shwarzshild radius will ollapse and forma bak hole.Another simple, but instrutive solution in Peres spaetime is a rotatingstraight tensile string given byt = �; x = (1� b) �A2 +B2� � ; (41)y = hA os�p1� b ��+B sin�p1� b ��i os � ; (42)z = hA os�p1� b ��+B sin�p1� b ��i sin � ; (43)where 0 < b < 1. Eqs. (41)�(43) identially ful�ll the string equations andonstraints.



600 A.P. Lelyakov, S.N. RoshhupkinFinally, we notie that the invariant string size (the length of the string)S(�) is given by S(�) = 2�Z0 S(�; �)d� ; (44)whereS(�; �) �q�xM;� GMN (x)xN;� = h�b �y2 + z2� t02 � 2t0x0 + y02 + z02i1=2(45)for the null string [14℄, andS(�; �) �qxM;� GMN (x)xN;� (46)for the tensile string. By using Eqs. (38)�(40) and (46), we haveS(�; �) � f(�) = A os (pb+ 1�) +B sin (pb+ 1�) ; (47)S(�) = 2�f(�) : (48)From equations (41)�(43), we haveS(�; �) = (1� b)"3 �A2 +B2�2 � A2 �B22 os�2p1� b���AB sin�2p1� b��# ; (49)S(�) = (1� b)"3� �A2 +B2��AB � A2 �B22 sin�4�p1� b�+AB os�4�p1� b�# : (50)It would be interesting to onsider other null and tensile strings on�gu-rations and apply them to study null and tensile strings dynamis in shokand other strong gravitational waves.4. SummaryIn this artile, we have onsidered a motion of null and tensilestrings in Peres spaetime, whih traditionally desribes radiation �eldwith an isotropi energy-momentum tensor and strong gravitational waves.
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