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MONOPOLE�ANTI-MONOPOLE BOUNDED PAIRSM. �lusar
zyky and A. Weresz
zy«skizInstitute of Physi
s, Jagellonian UniversityReymonta 4, Krakow, Poland(Re
eived November 11, 2001; revised version re
eived January 13, 2002)We show that in the dual version of the generalized Di
k model monopole-anti-monopole pairs have �nite energy. It is possible to use the potentialbetween monopole and anti-monopole to �nd the mass spe
trum of theglueballs. The results are dis
ussed in 
onne
tion with the Faddeev�Niemimodel and toroidal soliton solutions. Some other �nite energy 
on�gura-tions are found, both in the magneti
 and ele
tri
 se
tor.PACS numbers: 11.15.K
, 11.10.Ef, 12.39.Mk1. The modelRe
ently it was shown that the Di
k model, in the version dis
ussedin [1,2℄, 
an be used to model 
on�nement of quarks (this version is slightlydi�erent from the original Di
k model [3℄ but there is a se
tor of the pa-rameters for whi
h both the models give the same results [1℄). Moreover,the 
on�ning potential be
omes in agreement with the phenomenologi
aldata [4, 5℄ for the parti
ular value of the parameter of the model. In thatsense the modi�ed Di
k model is a good 
andidate for the e�e
tive model forthe low energy QCD. However, su
h an e�e
tive model should des
ribe notonly quark�antiquark states but also glueballs. In the present paper a possi-ble way of appearan
e of the glueballs in the framework of the modi�ed Di
kmodel is 
onsidered. It will o

ur that it is possible to look at the glueballstates as monopole�anti-monopole bounded pairs. However, these pairs arefound not in the original modi�ed Di
k model but in its �dual� version i.e.in the model where 
on�nement of the quark sour
es in the original theoryis inter
hanged with 
on�nement of magneti
 monopoles. Due to that theglueballs and the s
alar mesons appear to be 
onne
ted by kind of �dual�transformation. Be
ause of the fa
t that the intera
tion of the (non)-Abeliany mslus�alphas.if.uj.edu.plz weresz
z�alphas.if.uj.edu.pl (655)



656 M. �lusar
zyk, A. Weresz
zy«skimagneti
 monopoles is not understood su�
iently one 
an �nd our modelinteresting also from the mathemati
al point of view.Let us 
onsider the following a
tionS = Z d4x"�14 �����8Æ F a��F a�� + 12������# ; (1)where Æ � 14 and � is a dimensional 
onstant. Indeed, one 
an re
ognize inthis a
tion the dual version of the modi�ed Di
k model [1℄, with the followinggeneralized �dual� transformationF a�� ! �8Æ �F a�� : (2)The dual �eld tensor is de�ned in the standard way as �F a�� = 12�����F��.The �duality� (2) is equivalent to Æ �! �Æ that means the inter
hanging ofthe strong 
oupling with weak 
oupling se
tor.The �eld equations for (1) readD� "�����8Æ F a��# = ja� ; (3)����� = 2ÆF a��F a�� ��8Æ�1��8Æ ; (4)where ja� is the external 
olor 
urrent density.2. Magneti
 solutionsLet us 
onsider more detailed the Abelian magneti
 se
tor. For exampleone 
an 
hoose Aa� = Æa3A� ; (5)where A0 = 0; Ai = Ai(x; y; z). Stati
 Abelian monopole solutions 
an beobtained by means of the Bogomolny equations. Let us rewrite the energyof a stati
 
on�guration asEN = Z d3x"14 �����8Æ FijFij + 12(�i�)2# : (6)The 
orresponding Bogomolny equation isFij = ����4Æ � ijk�k� : (7)



Monopole�Anti-Monopole Bounded Pairs 657It is easy to show that this �eld tensor ful�lls the Gauss law automati
ally.Moreover, the equation of motion of the s
alar �eld takes the same form asthe Bian
hi identity, namely1r2 �r2�0�0 + 4Æ��1 ��0�2 = 0 : (8)One 
an �nd the singular solutions in the following form�(r) = A�� 1�r� 1=(1+4Æ) ; (9)where A = [g(1 + 4Æ)℄ 1=(1+4Æ) and g is the 
harge of the monopole. Thenthe �eld tensor reads Fij = �g� ijkxkr3 : (10)Of 
ourse, these Abelian monopoles are the well known Dira
 monopoleswith the string atta
hed to them. For these 
on�gurations of the �elds weget the energy density" = A�8Æ g2r4 � 1�r��(8Æ)=(1+4Æ) : (11)Indeed, the energy is divergent at large distan
es that is at r!1. One
an observe that the energy density has singularity also at r = 0 but thissingularity is integrable. We 
on
lude that single monopoles disappear fromthe physi
al spe
trum of the theory.The dual Di
k model 
ontains also nonsingular magneti
 monopoles la-beled by positive parameter �0� = A�� 1�r + 1�0� 1=(1+4Æ) : (12)The energy density reads" = A�8Æ g2r4 � 1�r + 1�0��(8Æ)=(1+4Æ) : (13)These 
on�gurations give �nite energyEN = Z "r2dr = �4Æ + 14Æ � 1A�8Æg2� (4Æ�1)=(4Æ+1)0 : (14)



658 M. �lusar
zyk, A. Weresz
zy«skiHowever, as it was shown in [2℄ the �nite energy monopole se
tor 
an beremoved by adding a potential term for the s
alar �eld. It is easy to 
he
kthat this potential 
an have the following formV (�) = �4����4+8Æ : (15)Vanishing of the monopoles from the phisi
al spe
trum is not su�
ient to
laim that 
on�nement appears. It has to be 
he
ked weather a dipole-likestate has a �nite energy. We assume that monopole and anti-monopole layon the z-axis in the distan
e R=2 from the origin. Then the equations ofmotion take the form:r � ~B = g �Æ�z � R2 �� Æ�z + R2 �� ; (16)r� "�����8Æ ~B# = 0 ; (17)� 1r2 �r2�0�0 � 4Æ��8Æ�1��8Æ ~B2 = 0 : (18)We applied the Ansatz (5) and the magneti
 �eld is given by~B = r� ~A : (19)Of 
ourse, due to the r.h.s. of (16) the �eld ~A 
annot be regular every-where i.e. the Dira
 string is still present. In order to solve the remaining twoequations we adopt the pro
edure presented in the papers [1, 6, 13℄. Firstly,we introdu
e the 
ylindri
al 
oordinates (�; �; z), whi
h are natural in ourproblem. Se
ondly, we express the ve
tor gauge potential by means of as
alar �ux �eld �(�; z) in the following way~A = �̂2�� � : (20)Using this expression we obtain from (17) and (18) the equations for thes
alar �elds r"1� �����8Ær�# = 0 ; (21)r2�+ 4Æ�����8Æ �� ���r����2 = 0 : (22)



Monopole�Anti-Monopole Bounded Pairs 659To solve these equations one should �nd the boundary 
onditions. This
an be done if we realize that in the monopole�anti-monopole 
ase, the Dira
string has �nite size and 
onne
ts the monopoles. It is equivalent to� = 0 for � = 0; jzj > R2 ;� = g for � = 0; jzj < R2 ;� �! 0 for �2 + z2 �!1 ; (23)where the last 
ondition emerges due to the expe
tation that energy densityhas to fall down to zero at the spatial in�nity. It is obvious that the equations(21), (22) are too 
ompli
ated to �nd analyti
al solutions. However, it ispossible to 
onstru
t an approximate solution whi
h obeys the boundary
onditions and has �nite energy:� = g0� z + R2q�2 + �z + R2 �2 � z � R2q�2 + �z � R2 �21A ; (24)�=A�0� 1�q�2+�z+R2 �21A1=(1+4Æ)�A�0� 1�q�2��z�R2 �21A1=(1+4Æ): (25)Although these fun
tions do not obey the �eld equations one 
an use themto �nd the upper bound for the total �eld energy [2℄. We getEpair = � g 2=(1+4Æ)�(�R) (4Æ�1)=(4Æ+1) ; (26)where � is a �nite numeri
al 
onstant. As it was said before, the quark�anti-quark potential derived from the modi�ed Di
k model with Æ = 3=4
an be applied to obtain the spe
trum of masses in the quarkonium system.The masses, for many di�erent e�e
tive potentials, were obtained using theKlein�Gordon equation [7℄. It seems reasonable to expe
t that the masses ofglueballs 
an be also found in the similar �e�e
tive potential� model. Now,the e�e
tive potential is a potential between monopole and anti-monopolein the dual version of the original model (26). So one 
an apply the Klein�Gordon equation and �nd the masses Mn of the glueball states. A
tually,the e�e
tive potential idea in the glueball physi
s has been re
ently verysu

essfully exploited [8℄. For example, it was shown by West [9℄ that thelightest glueball 0++ 
an be understood as a bound state of the masslessgluons with the potential: UWest = 94�R� �R ; (27)
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zyk, A. Weresz
zy«skiwhere � is the string tension and � is the strong 
oupling 
onstant. One
an immediately see that our model admits the 
on�ning part of the Westpotential in the limit Æ �! 1. This limit is equivalent, in the originalmodi�ed Di
k model, to the well known string pi
ture of the quarks 
on�ne-ment [1, 2℄. Very similar results were also obtained for the dual Ginzburg�Landau model [10, 11℄.The non-Abelian magneti
 monopoles 
an be obtained if we take intoa

ount all non-Abelian degrees of freedom in the magneti
 se
tor. In fa
t,there is the Wu-Yang non-Abalian monopoleAai = �aikxkr2 ; Aa0 = 0 ; (28)� = C�� 1�r + 1�0� 1=(1+4Æ) ; (29)where C = (1 + 4Æ) 1=(1+4Æ). The Dira
 string is no longer present. Thepoint-like singularity whi
h we observe in the gauge potential is integrableat the energy density level. Moreover, identi
ally as in the Abelian 
ase, thetotal energy, for �0 =1, is in�nite due to the fa
t that the energy densityfalls too slowly at the spatial in�nity. One 
an 
he
k that the energy ofthe non-Abelian dipole is �nite. So, the 
on�ning behavior is visible also inthe non-Abelian theory. The approximate monopole�anti-monopole solutionreads Aai = �aik xk + xk0x2 + y2 + �z + R2 �2 � xk � xk0x2 + y2 + �z � R2 �2! : (30)Here x0 = (0; 0; R=2) is the position of one of the monopoles. The s
alarfun
tion has the form (25).3. Ele
tri
 solutionsIn order to have the general pi
ture of the physi
s in the dual modi�edDi
k model we dis
uss the Coulomb problem. For simpli
ity we restri
tourselves to the stati
 non-Abelian sour
eja� = 4� qÆ(r) Æ3aÆ�0 : (31)The �eld equations take the form"r2�����8Æ E#0 = qÆ(r) : (32)



Monopole�Anti-Monopole Bounded Pairs 661r2r� = 4ÆE2 ��8Æ�1��8Æ : (33)Here E ai = �F a0i and ~E a = EÆ3ar̂. The solutions of these equations formthe family parameterized by �0�(r) = B�� 1�r + 1�0� 1=(1�4Æ) ; (34)E(r) = B8Æ qr2 � 1�r + 1�0� 8=(1�4Æ) ; (35)where B = [q(1� 4Æ)℄ 1=(1�4Æ). The energy for the family is �nite and hasthe form EN = �4Æ � 14Æ + 1q2B8Æ� (4Æ+1)=(4Æ�1)0 : (36)Similar to the magneti
 se
tor there is a singular solution of the Coulombproblem whi
h is divergent at the spatial in�nity�(r) = B�� 1�r� 1=(1�4Æ) ; (37)E(r) = B8Æq�2� 1�r� 2=(1�4Æ) : (38)However, in that 
ase the singularity is strong enough to remove also quark�anti-quark solution from physi
al spe
trum i.e. the energy of su
h 
on�gu-rations is still in�nite. 4. Con
lusionsIn our work we have pointed out the model whi
h admits the boundedmonopole�anti-monopole states, whereas the single monopole solution hasin�nite energy. Su
h obje
ts we 
all magneti
 mesons. We assume that thesemesons 
an be interpreted as glueballs. The potential between monopole andanti-monopole 
an be used to �nd the mass spe
trum of the glueballs. In thelimit Æ �! 1 we re
onstru
t the 
on�ning part of the famous West poten-tial. This result is in agreement with the standard super
ondu
tor pi
turewhere the monopole potential grows linearly [11℄. Moreover, in our pi
ture,glueballs appear to be �dual� obje
ts to s
alar mesons. That is quark�anti-quark states and glueballs 
an be des
ribed by means of a
tions whi
h are
onne
ted by a very simple �dual� transformation (2). We believe that thisproperty is not unique and should be observed in other models whi
h are



662 M. �lusar
zyk, A. Weresz
zy«skiused to model quarks 
on�nement. For example, it should be possible to�nd the transformation whi
h inter
hanges the quarks 
on�ning se
tor withthe magneti
 monopoles 
on�ning se
tor in the Pagels�Tomboulis e�e
tivemodel [12, 13℄.Re
ently it was observed by Faddeev and Niemi [14℄, inspired by Cho [15℄,that at low energies the appropriate order parameter is a unit length ve
-tor �eld na, a = 1; 2; 3. For the pure SU(2) Yang�Mills theory they haveproposed the e�e
tive a
tionSFN = Z d4x �m2 (��~n)2 + 1e2 (~n; ��~n� ��~n)2� ; (39)where m is a mass parameter and e is a 
oupling 
onstant. This a
tion hasnontrivial topology. Namely, lo
alized stati
 solutions where ~n �! ~n0 forr !1 
an be understood as a map from S3 to S2. These maps are dividedinto homotopy 
lasses �3(S2) ' Z numbered by the Hopf invariant. Su
hknotted solutions were found for several topologi
al numbers [16℄. One 
anidentify them with the so 
alled magneti
 glueballs [17℄ whi
h are supposedto form physi
al spe
trum of the gauge theory in the low energy limit. More-over, as it was mentioned in [17℄, the knotted solitons have neither baryoni
nor monopole 
harges. Following that, we expe
t that it is possible to in-terpret knots as bound states 
onsisting of monopole�anti-monopole pairs.One 
an suppose, that the Faddeev�Niemi model and the dual version of themodi�ed Di
k model refer to the same physi
s seen from non-topologi
al ortopologi
al point of view, respe
tively. Then the magneti
 glueball is a topo-logi
al obje
t in the Faddeev�Niemi theory, with appropriate Hopf numberor a non-topologi
al soliton in the dual modi�ed Di
k model. Unfortunately,we do not know how the models 
orrespond to ea
h other. However, as itwas shown in [10℄ it is possible to obtain the glueball 0++ in the toroidalas well as in the e�e
tive potential framework in the dual Ginzburg�Landaumodel. Be
ause of that one 
an try to �nd the potential representation ofthe Faddeev�Niemi model and �t our parameter Æ to it.Both the problems i.e. the glueballs spe
trum as well as the 
onne
tionbetween the Faddeev�Niemi and our model will be 
onsidered in the nextpapers.We would like to thank Professor H. Arod¹ for many helpful 
ommentsand suggestions.
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