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The quantization conditions which come from the requirement of the
singlevaluedness of the odderon wave function are formulated and solved
numerically in the 4 dimensional space of the odderon charge g3 and the
conformal weight h. It turns out that these conditions are fulfilled along
one dimensional curves parametrized by a discrete set of values of Re h in 3
dimensional subspace (Im h,Im g¢3,Re ¢3). The odderon energy calculated
along these curves corresponds in all cases to the intercept lower than 1.
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1. Introduction

The leading contribution to the total elastic scattering amplitude of two
hadrons (A, B) can be written in Quantum Chromodynamics (QCD) in a
so called Regge limit

s — 00, t = const. (1.1)

as a power series in a strong coupling constant a, of the partial amplitudes
with a given number n of reggeized gluons (Reggeons) propagating in the ¢
channel:

A(s,t) = Zan 2 An(s,t), (1.2)
An(st) = Zﬁ" ()8 (1) . (13)
{a}

(665)
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Here s, denotes quantum numbers of the n Reggeon state and the residue
functions ;" and S5 measure the overlap between the hadronic wave
functions and the wave function of a compound state of n reggeized gluons.
The n-Reggeon’s partial amplitudes are proportional to s2n(t) where an(0)
is called an intercept.

It is of great importance to calculate the intercepts «,(0) in QCD, not
only because they govern the high energy behavior of the forward elastic
amplitudes but also because, e.g. for n = 2, they are responsible for the small
Bjorken x behavior of the deep inelastic structure functions. The lowest
non-trivial contribution for n = 2 was calculated in the leading logarithmic
approximation by Balitsky, Fadin, Kureav and Lipatov [1,2]|, who derived
and solved equation for the Pomeron intercept. The equation for three and
more Reggeons was formulated in Refs. [3-5]. It took, however, almost 20
years before the solution for n = 3 was obtained in Refs. [6,7].

The real progress started with an observation that the n-Reggeon ex-
change is equivalent to an eigenvalue problem of a Schrodinger like equation
with calculable interaction Hamiltonian H,. Here the eigen-energy is re-
lated to a,(0) — 1. This Schrédinger problem is exactly solvable [8-10]
which means that there exist n — 1 integrals of motion (go,...,{,) which
commute with 7, and among themselves. The eigenvalue of ¢y is equal
—h(h — 1) where h is called a conformal weight.

In the present work we shall concentrate the odderon exchange, i.e. on
the case with n = 3. It is easier to conduct the calculations in the im-
pact parameter space, that is in the transverse spatial coordinates of n
Reggeons (z,y;). After introducing the complex coordinates (z; = z; + y;,
z;k = zj — y;) for j-th reggeized gluon, the odderon Hamiltonian becomes
holomorphically separable

as N, N .
ZWC Z [H(Zk,2k+1) + H(zz,zzﬂ)] , (1.4)
k=1

7:[3:]:13—}—?3:

where N, is a number colors and z; = 2,41. The Hamiltonian 7:13 is con-
formally invariant. Its eigenfunction is given as a bilinear form @ = ¥ x ¥
where ¥ (¥) is the solution of the Schrédinger equation in the holomorphic
(antiholomorphic) sector.

There have been many attempts either to directly find the values of Fj
[11-15] or to find the spectrum of odderon charge §3 [6,16]. Finally, in Ref. [7]
the singlevaluedness conditions for the wave function @ were formulated and
the spectrum of g3 was found. This allowed to calculate the energy [6]
(hence also the odderon intercept) for the conformal weight h =1—h = 1/2
which supposedly gives the largest contribution to the elastic amplitude.
It is, however, interesting to see explicitly whether h = 1 — h = 1/2 gives
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really the largest intercept and whether the there exist other solutions to the
singlevaluedness conditions than the ones found in [7]. The first attempt in
this direction has been undertaken in Ref. [17] where the spectrum of g3
for arbitrary conformal weight but for non-physical quantization conditions
h = h was found. In Ref. [18] the spectrum of g3 for the specific choice of
the conformal weight h = 1 — h = 1/2 4 4v in the limit of small v has been
studied. This result of Ref. [18] was confirmed and extended for arbitrary v
in Ref. [17].

The values of the conformal the weight h and eigenvalues of ¢3 form a
four dimensional space. In the present work we construct an algorithm and
numerical code which allows to find the points in the (h,q3) space which
satisfy the physical quantization conditions h = 1 — h and singlevaluedness
conditions of Refs. [7,17]. It turns out that these points form one dimensional
curves in the four dimensional space (h,q3). We have found families of
curves which are numbered by discrete values of Re h = 1/2 4+ m/2 with
m € 37. Therefore for given Re h these curves are effectively embedded in
3 dimensional subspace (Im h, Re g3, Im g3).

Applying the method from Ref. [6] which allows to calculate the odderon
energy for arbitrary h and g3, we have calculated the odderon energy along
the singlevaluedness lines ¢3(h). As expected, the odderon energy has a
maximum for h = 1 — h = 1/2, and is always negative. Our numerical
procedures are precise enough to find 17 values of g3 for h =1 —h = 1/2
with 9 digits accuracy.

The paper is organized as follows: in Sect. 2, following Ref. [17], we
write the odderon equation in terms of variable ¢ suggested in Ref. [19] and
find its solutions around & = £1 and oco. Recurrence relations for the for
these solutions are collected in Appendix A. Next, in Sect. 3, we recapitulate
the method of Ref. [6] and construct a singlevalued odderon wave function
@ relegating the detailed form of the singlevaluedness constraints to Ap-
pendix B. The resulting spectrum of g3 and h is calculated and discussed in
Sect. 4. The numerical algorithm used in this Section is described in detail
in Appendix C. Finally in Sect. 5 we calculate the odderon energy along
the singlevaluedness curves found in Sect. 4. Conclusions are presented in
Sect. 6.

2. Solution of the eigenequation for the odderon charge §s

2.1. Origin of the equation

As already said in the Introduction it is possible to find a family of
commuting operators gy which commute with the holomorphic n-Reggeon
Hamiltonian H,, [8]:

[H,, 6 =0, k=2,...,n. (2.1)
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It follows that the Hamiltonian H, and the operators ¢ have the same
set of eigenfunctions. In terms of the holomorphic coordinates ¢ have the
following form:

Gr = > iR 241 iy Ziis -+ - Zigiy Oy Oy « - - Ol (2.2)

n>i1>ia> >0 >1

where k = 2,...,n, zj; = z; — 2 and J; = 0,;.
For the odderon case, n = 3, we have only 2 operators
. 2
G2 = Z 25,050k 5
n>j>k>1
s = Y —izkawe;0;0k0, . (2.3)
n>j>k>I>1

Following Ref. [8] we will use conformally covariant Ansatz for ¥
W(z1, 29, 23) = Zh/g?/’(m) ) (2.4)
where

(21 — 22) (21 — 23) (22 — 23) (21— 22)(23 — 20)
(z1 — 20)%(z2 — 20)% (23 — 20)2 "~ (21 — 20) (23 — 22)

(2.5)

z =

h is a conformal weight and zy represents an arbitrary reference point. A
particular feature of this Ansatz (2.4) is that §o is automatically diagonal

QQW(Zl,ZQ,Zg) = —h(h — 1)!17(21,22,23) . (26)

In representation (2.4) the eigenvalue equation for s takes the following
form

ot = (1) (1) R,
h

+ [2x(x -1) - g(h — (@ —z+1)| ¢ (z)

+2a(z —1)(2z — 1)¢" (z) + 2°(z — 1)*)" (z) = igzp(z) . (2.7)

Equation (2.7) has been studied in Ref. [7] where the quantization con-
ditions for g3 were found by introducing the singlevaluedness constraints on
the whole wave function of the odderon, @. The singlevaluedness conditions
are much simpler when we rewrite equation (2.7) in terms of a new variable
suggested in Ref. [19]
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=i 1 (z-2)(z+1)(2z —1)
33 z(z —1) '
Putting (2.8) into (2.7) we have [17]

1y ad &2 (4 , d B
S0 2 -0 T+ (34 -D) £ e+ ] w0 =0,

where

(h+2)(h — 3) _h(h-3) . g
6 y  Ph = 27 ) q_3\/§a

and ¢3 is the eigenvalue of the operator gs.

As we shall shortly see the odderon equation (2.9) is less singular than
Eq. (2.7) and the solutions of the indicial equation around £ = +1 do not
depend on h.

Br =

2.2. Solution of the odderon equation

The odderon equation (2.9) has three regular singular points at £ = —1,
& =1 and € = oco. We shall solve this equation using the power series
method. It is a third order ordinary differential equation therefore it has
three linearly independent solutions. We can write them as a vector

u1(€;q3)
(&5 q3) = | ua(&ias) | - (2.10)
u3(&;q3)

2.2.1. Solution of the equation around ¢ = +1

Solutions of equation (2.9) around ¢ = %1 have the following form [17]:

Dieigs) = (1F¢)° Zu (2.11)

where s; are solutions of the indicial equation
s1=5, S2=+, s3=0 (2.12)

(£1)

and do not depend on h. The coefficients u;, ' are defined in Appendix A.
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2.2.2. Solutions around £ = oo

The solution of equation (2.9) around & = oo has a more complicated
form. In this case we perform a substitution £ = 1/n and then solve the
problem around n = 0:

1 d3u d?u
C21 = 2202 L Toe — 2V — 3n(] — n2)2] Y
5 n)ndn3+[( n*)n — 3n( n)]ch72
4 du 1
+ [ =301 =7")” = o' + (44 B (1 —nQ)] ant [phﬁ +q] u=0.(2.13)

The solutions of the indicial equation r; depend on the conformal weight h

2h
==, TQZ]-__a r3s = —

. 3 (2.14)

g .
and are identical as the solutions of the indicial equation in the case of

equation (2.7). Since r9 — r3 is equal to an integer number, one of the

solutions, ugoo)(f ), contains a logarithm. The other two differences ro — 71,
r1 — r3 become integer as well if h is an integer itself. Therefore we have to
distinguish several cases.

For h ¢ 7 and g3 # 0 the solution of (2.9) in vicinity of £ = oo reads:

u™ (€5 q3) = <%) Ziﬁ?( ,

n=0

o0 1\ o= (s
u$™ (€5 q3) = <E) Zugn)<

n=0

ul™ (& q3) = (%) Zuéﬁ?(  +uS) (€ g3)Log (%) , (2.15)

n=0
where the logarithm Log(z) is defined as:
Log(z) = In|z| + iArg(z), |Arg(z)| <. (2.16)

The coefficients entering (2.15) are collected in Appendix A.
The remaining cases, i.e. when g3 = 0 and/or h € Z !, should be consid-
ered separately.

! Solutions of the equation (2.13) around ¢ = oo for h € Z are not considered in this
work.
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2.2.3. Solutions around £ = oo for g3 = 0

It is easy to observe that in equation (A.4) for g3 = 0 the term ugfg) =

% tends to infinity. In this case the solution of equation (2.9) should be
constructed separately. With g3 = 0 and h ¢ Z the solution is given by

r; 00 2n
u§-°°)(£;q3=o>=(§) > u (é) - (2.17)
n=0

(00393=0)

The coefficients U; o are defined in Appendix A.

2.3. Antiholomorphic sector

For given h and g3 we can find the solutions of Eq. (2.9) around all
singular points by means of Egs. (2.11), (2.15) and (2.17). Analogously, we
can construct the solutions in the antiholomorphic sector. Here instead of
using the conformal weight A and charge g3 we use their antiholomorphic
equivalents: h and g32. Similarly to Eq. (2.10) we write the three linearly
independent solutions as a vector:

T(E%q3) = | v2(6%5G3) | - (2.18)

3. Quantization conditions for the odderon charge g3
3.1. Transition matrices

Each of the solutions around ¢ = ;23 where {23 = £1,00 has a
convergence radius equal to the difference between two singular points: the
point around which the solution is defined and the nearest of the remaining
singular points. In order to define the global solution which is convergent
in the entire complex plane we have to glue the solutions defined around
different singular points. This can be done by expanding one set of solutions
defined around ¢; in terms of the solutions defined around &; for { belonging
to the overlap region of the two solutions considered. Thus, in the overlap
region we can define the transition matrices A, I', {2, where

(OO)(g’qg) = A(q,?,) (_1)(£;q3)a
V(& a) = Tlaa)a™) (&5 s),
(& a3) = 2(a3)a > (& 3). (3.1)

2 bar does not denote complex conjugation for which we us an asterisk.

ST
=

£
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Matrices A, I' and 2 are constructed in terms of the ratios of cer-
tain determinants. For example to calculate the matrix I' we construct
the Wroriskian

u§+11 (&5 a3) U§+11)(£;q3) U§,+11)(€;q3)
W= |uwlt 1) (€as) 'y 1) (€as) s 1) (& a3) |- (3.2)
WV gs) u'S (Ggs) wST (€ as)
Next, we construct determinants W;; which are obtained from W by replac-

ing j-th column by the i-th solution around { = —1, i.e. fors =1 and j = 2
we have

1 1
Wio = o/ (&05) v\ (Eas) oS (6 a) |- (3:3)

(3.4)

Matrix I" does not depend on &, but only on g3 and h. In a similar way
we can get matrices A and {2 and their antiholomorphic equivalents: A, I,
0.

3.2. Quantization conditions and singlevaluedness of the wave function

The odderon charge g3 is connected to its antiholomorphic equivalent by

TG = —a35 (3.5)

where an asterisk denotes complex conjugation. There exist two possible
choices for g5: the one given by Eq. (3.5) and a similar one with the plus
sign. This follows from the fact that the eigenvalues of holomorphic and an-
tiholomorphic Hamiltonian, €3 and €3, are symmetric functions of g3 and g,
respectively [20]. Only one choice, namely (3.5), leads to the nonvanishing
solution of the quantization conditions3.

The odderon wave function can be written as [17]

Byngsa, (2:27) = 2PV 5T (€4G3) AGy, 03)(E5 3) (3.6)

3 Note, that because of the factor i in the definition ¢ (2.8), our g, has different sign
than the one in Ref. [7].
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where £ = £(z). The wave function qjhﬁqsﬁg(z’ z*) contains the solutions of

equation (2.9) and its antiholomorphic counterpart, @(§;qs) and 0(&*;q3)
respectively, and a 3 x 3 matrix A(g5; q3) “sewing” the solutions of the both
sectors.

The wave function @ has to be singlevalued. This means that it should
not depend on the choice of the Riemann sheet for the variables z and £. In
formula (3.6) the term z"/3(2*)"/3 is uniquely defined only if h/3 — /3 € Z.
This leads to the quantization condition for the conformal weight h

1 - 1
h:§(u+m)+iu and h:§(u—m)+il/, (3.7)

where p and v are real and m/3 € Z. The latter condition follows from
the invariance under the Lorentz spin transformations. The normalization
condition of the wave function requires that gy = 1 for the physical odderon
solution.

The fact that the wave function @ should be singlevalued imposes certain
conditions on the form of matrix A. It follows from Eq. (3.6) that for the
solutions (2.11) around ¢ = +£1 the matrix element Aj; is multiplied by a
factor (1 F&)* (1 F&*)% . This expression is singlevalued only if s; — s; € Z.
For s; of Eq. (2.12) this is true only for i = j. Therefore the matrices A&
have a diagonal form

!/

(0%
A(_l) @3,%) = 3 A(+1)(63,Q3) =10
0

oo
o™ O
2 oo
o ™o

0
0|, (398)
,YI

For the solutions around & = oo (2.15), (2.17), and for h ¢ 7Z, the
matrix element Aj; is multiplied by a factor (1/£)"i(1/£*)7. One should
notice that solutions of the indicial equation ry, 7o, r3 and 73 differ by an
integer?, therefore terms which correspond to the elements As3 i Aso, do not

(c0)

vanish. Furthermore, terms with a logarithm appear in the solutions us
and vgoo) for g3 ¢ Z. One can see that when Agz = Asy then in the sum the
ambiguous arguments of the logarithms cancel out. Moreover, for g3 ¢ 7Z the
term which corresponds to the matrix element Ass is not singlevalued. It
contains a square of the logarithm which does not occur in any other terms.
For this reason the element Ass(gs # 0,75 # 0) has to vanish.

Thus the matrices A, defined around £ = oo, have the following form

p 0 0 P/ 0 0

ARGy #£0,q5#0)= 10 o 7|, A®(G=0,¢5=0=|0 o o]
0 7 0 0o ¢ 7
(3.9)

4 7, and 73 are solutions of the indicial equation in the antiholomorphic sector.
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Substituting equation (3.1) into the wave function (3.6), one finds the
following conditions for the matrices A(qs,q3)

A (735) A (G5, 43) Alg3) = ATV (G5, 45), (3.10)
T (@) A) (@3, 45) T (gs) = AT (T, q3), (3.11)
2 @) A (G5, 05)2a5) = A (@3, 05) (3.12)

Each of the formulae (3.10)-(3.12) is equivalent to a set of nine equations
which can be conveniently written in terms of the following 4 vectors:

/

p
a o P o'
a= /8 ) b= IBI 5 c=|o 5 d=|¢ )
Y ¢4 T V'
7_/

We can now rewrite equations (3.10), (3.11), (3.12) in the following form:
e equation (3.10):

— for g3 # 0 as
Bupé=0, Biwé=0, Baagé=, (3.13)

— for g3 =0 as
Bl,d=0, Bl,d=0, Bj,d=a. (3.14)

e equation (3.11) as
Cup@ =0, Clowd =0, Caiagdi =0, (3.15)

e equation (3.12):

— for g3 # 0 as

Dypb =0, Diowb=0, Dyingh=¢, (3.16)

— for g3 =0 as
Dj,b=0, Dib=0, Dy,b=d. (3.17)

Definitions of matrices B, C', D ... are given in Appendix B.

Equations (3.13)-(3.17) have nonvanishing solutions only if the determi-
nants of matrices with subscripts up and low are equal zero. Moreover there
should exist the unique solutions of these equations: @, I;, c, d which depend
only on one free parameter which can be fixed by normalizing the wave func-
tion @. As we shall show in the next Sections these two requirements fix
uniquely the “boundary conditions” for the eigen equation of the operator
g3 and allow to calculate its spectrum.
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4. Spectrum of the odderon charge §s
4.1. Eigenvalues of ¢3 for h =1/2

Let us first discuss physical solutions found in Ref. [7] which correspond
to the conformal weight h = 1/2 and Re g3 = 0. In order to calculate
the eigenvalues g3 we have solved Egs. (3.13)—(3.17) requiring vanishing of
the up and low matrix determinants. After that, we have also checked the
uniqueness of obtained solutions. The results, also for unphysical values of
g3 with Im ¢3 = 0 are displayed in Table I. Entries labeled from 0 to 4, 12
and 13 agree with the ones of Refs. [7,17], while the remaining ones are new.

TABLE 1

Eigenvalues of the odderon charge g3 for h = 1/2.

No. q3 No. q3 No. Q3
0 0 6 68.600522343: 12 1.475327424
1 0.205257506% 7 | 109.214406900: || 13 | 12.947047037
2 2.343921063: 8 | 163.2961927657 || 14 | 44.413830163
3 8.326345902i 9 | 232.769867177: || 15 | 105.872614615
4 | 20.080496894: || 10 | 319.559416811: || 16 | 207.320706051
5 | 39.5305503047 || 11 | 425.588828106:¢ || 17 | 358.755426678

In fact the eigenvalues g3 for h = 1/2 form a discrete set of points
symmetrically distributed on the real and complex axis in complex g3 plane.
Therefore in Table I only a half of the spectrum is displayed. It has been
shown [6,7] that only the imaginary values of g3 are relevant for the odderon
problem; real eigenvalues correspond to a wave function which is not totally
symmetric under the exchange of the neighboring Reggeons. There exists
also one eigenvalue g3 = 0 which does not correspond to a normalizable
solution [20], see however [21].

4.2. Eigenvalues §s for the arbitrary conformal weights h

As seen from Eq. (3.7) the conformal weight A depends on two parame-
ters: m/3 € Z and v € R. In order to find the manifolds on which conditions
(3.13)—(3.17) are satisfied we have extended the domain of h and allowed m
to be any real number. This defines a four dimensional space of the confor-
mal weight and the odderon charge (h,q3) € R*. In each group of equations
(3.13)—(3.17) there are two equations which contain matrices with subscripts
‘up’ and ‘low’. The determinants of these two matrices are complex, so we
can define the following fourvalued functions:
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fB: (Re h,Im h,Re g3,Im ¢q3) —
(Re(det Byyp), Im(det Byp), Re(det Bioy), Im(det Bjoy)) for g3 #0
(Re(det By,,), Im(det B},,), Re(det B, ),Im(det B ) for g3 =0,
(4.1)

fc : (Re hyIm h,Re ¢g3,Im ¢q3) —
(Re(det Cyp), Im(det Cyp), Re(det Clow ), Im(det Cioy)) (4.2)

fp: (Re h,Im h,Re ¢3,Im ¢q3) —
(Re(det Dyp), Im(det Dyp), Re(det Dygy ), Im(det Dyoy))  for g3 # 0
(Re(det D,), Im(det D}, ), Re(det Dy ), Im(det D)) for g5 =0.
(4.3)

Thus, in order to calculate the spectrum of the operator 43, we should
find common zeros of all functions fg, fo and fp:

fBZOa fC:07 fDZO (44)

Furthermore one should verify the uniqueness of the solutions for (3.13)—
(3.17).

In Appendix C we have described the numerical algorithm constructed
to find roots of Eqgs. (4.4). Our numerical findings can be summarized as
follows:

1. Although we have formally allowed m to be a continuous real parame-
ter, the solutions of Eqs. (4.4) exist only for m/3 € Z (e.g. Re h =1/2
or Re h =2).

2. For the above discrete values of m, that is for fixed Re h, the solu-
tions of Egs. (4.4) form continuous curves in 3 dimensional subspace
(Im h,Re g3,Tm Q3)

3. It turned out that each of 3 equations (4.4) yields the same set of
curves, provided that the solutions of Eqs. (3.13)-(3.17) are unique.

In the following we discuss two sets of solutions to Eqgs. (4.4), namely for
Re h=1/2 and Re h = 2.
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4.2.1. Spectrum of gz for Re(h) = 1/2

In figure 1 we plot spectrum of the odderon charge ¢3 as a function of
h for Re h = 1/2. One can see two sets of curves: the ones in the plane
of Re g3 = 0 and in the perpendicular plane of Im g3 = 0 and the line
g3 = 0 which belongs to the both classes. For all these curves, except for
g3 = 0, the minimum of |g3| occurs for h = 1/2. Going away from this
point the absolute value of g3 increases monotonically. Minimal values of
|gs| correspond to the points listed in Table I. We have not found any curve
located outside of Re g3 = 0 or Im g3 = 0 planes.

——for h=0.5 q,=0.205257i
44 ——for h=0.5 q,=2.343921i

——for h=0.5 q,=1.475327 49 \
for h=0.5q,=0.0 ~__

2 2
> =
£° E°

2 2

Re(q,)

Fig. 1. Odderon charge g3 as a function of h for Re h = 1/2 Presented curves are
described with point with the higher value of |gs].

The curves in the plane of Re g3 = 0 have been earlier found in Ref. [22]
and also in Refs. [17,23].
The spectrum of g3 has the following symmetries:

1. Re ¢35 -+ —Re g3,
2. Im ¢35 — —Im g3,
3. h—=1—h

which follow from the symmetries of the odderon equation (2.9). Indeed,
equation (2.9) is invariant under the transformation £ — —¢ and g3 — —gs.
The last symmetry follows from the exchange symmetry between the holo-
morphic and antiholomorphic sectors.
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4.2.2. Spectrum of §s for Re(h) = 2

In figure 2 we plot the odderon charge g3 as a function of the conformal
weight for Re h = 2. Except of a line with g3 = 0 which is analogous to the
case of Re h = 1/2, the remaining curves have more complicated character.
Still, they obey the following symmetries:

1. ¢3 — —qs,
2. Imh— —Imh Re g3 — —Re g3,
3. Imh— —Imh Imq; — —Im gs.

These symmetries are similar to the case of h = 1/2.

204 20+
10 10
2 2
E° E°
-104 -10+
-20 . . . .20 .
-20 -4 2 0 2 4
::I 20+ Im(h)
1
20
v 10
Vi 10 ~
(=)
E g0 )
g a4
-101” 10+
204 ~10 -20+— .
-4 2 0 2 4
Im(h)

Fig.2. Odderon charge ¢3 as a function of h for Re h = 2

The first one is connected to Bose symmetry (£ <> —¢) and the others
correspond to exchange of holomorphic and antyholomorphic sectors. For
h = 2, that is, if the imaginary part of h vanishes, equation (2.9) has not been
solved. In this case the eigenvalues g3 have been obtained by an interpolation
of the neighboring points which satisfied the quantization conditions.
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4.2.3. Case for gs =0

During the numerical computations we have noticed that similarly to the
other matrices A, the matrix A(®) (g3 = 0,5 = 0) depends only on three
parameters. The remaining ones vanish identically. In the case Re h = 1/2,
¢’ and v’ vanish and for Re h =2, ¢/ = 7' = 0.

5. Odderon energy
The odderon energy is defined as [20]

agN, -
E3 = ZWC [e3(h, q3) + &3(h, q3)] =

(673

2fTVCRe(fsg(h,q3)) , (5.1)

where €3 and €3 are the largest eigenvalues of the holomorphic and antiholo-
morphic odderon Hamiltonian, respectively. Applying the Bethe Ansatz we
have for n = 3 |20, 24]

_ Qs(—i)  @s())
= (Qg(—i) Qg(i)) 0 52

where QQ3(\) satisfies the following Baxter equation [25]:
A +1)°Q3(A +14) + (A =9)°Q3(X =) — (237 + A2 +43)Q3(X) = 0. (5.3)
Equation (5.3) was solved in Ref. [6] by a substitution

Vo = | L k(2 0 PFQ(2)

21
C.

k

dz d - 3
—iy | oo [z(z— LK (2, A)P"“Q(z)} ,(5.4)
m:lcz

where

K(z,A) =2z 2 Y z=1)?"1 L= <—%z(z - 1)) , P= <iz(z - 1)%) .

(5.5)
Choosing the proper integration contour C, and boundary conditions one
arrives at a differential equation for Q(z):

3
[(z(z _ 1)%) T 1)26% igsr(1 — z)] Q) =0.  (56)
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Similarly to the solutions of equation (2.9), the solutions of Eq. (5.6) depend
on the conformal weight h and the odderon charge ¢3. Using the spectrum
q3(h) calculated in the last section, we have calculated the energy of the
odderon along the curves from figures 1 and 2.

Analyzing the spectra of energy we can conclude that the odderon energy
is always negative. This means that the intercept

aft=0)=Fs+1 (5.7)

is lower than one, so the odderon partial amplitude A3(s,t) (1.3) is described
by the convergent series in Regge limit (1.1).

5.1. Spectrum of the energy for Re h =1/2
TABLE 11

Maximal values of Re(es) for Re h = 1/2.

qs Re (63)

0 —0.73801
0.20526¢ | —0.49434
2.34392 | —5.16930
1.47533 | —4.23462

In figure 3 we plot a real part of the holomorphic odderon energy Re(es)
as a function of Im h. The picture is plotted for curves from figure 1, that
is for Re h = 1/2. All these curves have a maximum in A = 1/2. The
maximal values are displayed in Table II. Going away from the maximum,
the energy decreases monotonically. Our results agree with the values from
Ref. [7]. The energy spectrum has the following symmetry

h—s1—h. (5.8)

5.2. Spectrum of the energy for Re h = 2

In figure 4, similarly to Fig. 3, we plot Re(e3) as a function of Im A for
curves from figure 2, that is for Re h = 2. In this case the curves in (h, ¢3)
space have much more complicated character and location of the energy
maxima occurs not always for Im h = 0.

For plots I, VI, Re(e3) has a maximum in h = 2. In others cases the
energy has a maximum in vicinity of h = 2, i.e. for the II-nd curve the energy
has a maximum in (h = 2.0 + 0.1074, g3 = —3.508 + 2.0507). The maximal
values of energy are given in Table III. Similarly to the case of Re h = 1/2
going away from the maximum, energy decreases monotonically.
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for h=0.5 ¢,=0.205257i
for h=0.5 q,=2.343921i
for h=0.5 q,=1.475327
for h=0.5 g,=0.0

9,54 . . . . . . . .
-4 2 0 2 4

Im(h)

Fig.3. Real part of holomorphic energy of odderon for Re h = 1/2. Picture is
plotted for curves from figure 1.

-3,5 —Il
407 — 1
-4,5 -
50
_5‘5 _-
6,0
65
70

8,0

_8'5 -
9,0
9,5
10,0

-10,5
-11,0 +—m"7r——-?r-or-—"T"—-"--+o——r—1T"-"-"—-"T—""—"T—"—""T——

Im(h)

Fig.4. Real part of the holomorphic odderon energy for Re h = 2. The picture is
plotted for the curves from figure 2.

6. Summary and conclusions

The aim of the present paper was to look for the solutions of the odderon
equation (2.9) in the entire four dimensional space of the conformal weight h
and odderon charge ¢3. So far these solutions have been found only for some
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TABLE III
Maximal value Re(es) for Re h = 2.

curve symbols | Re(es)

i 721
1, IIT —6.27
IV, V —8.51

VI —4.00

specific values of h [6,18,22,23] or for arbitrary h but unphysical quantization
condition h = h [17]. To this end we have constructed and implemented the
algorithm which is in detail described in Appendix C. This algorithm can
be easily extended to more dimensional cases [26].

The calculations were performed in the holomorphic variable & which
respects Bose symmetry and was proposed in Refs. [17,19]. The odderon
equation (2.9) is a third order ordinary differential equation with three regu-

lar singular points at £ = —1, 1 and oo. Solutions around £ = £1 have been
already found in Ref. [17]. Here we have also calculated solutions around
¢ = oo (2.13).

The singlevaluedness conditions imposed on the odderon wave function
@ were found to be fulfilled along the discrete sets of continuous one di-
mensional curves. These sets are numbered by values of Re h = 1/2 4+ m/2
(m/3 € Z) and lie effectively in 3 dimensional subspace (Im h, Re g3, Im ¢3).
In this way we have obtained numerically the known spectrum of the Lorentz
spin m.

Although there are in principle 3 different singlevaluedness conditions
obtained by gluing solutions around each of 3 singular points, which have
to be fulfilled simultaneously, it turned out that it was enough to satisfy
only one of them to get a complete set of solutions. It was therefore enough
to consider two singular points, namely 41 for which the solutions of the
characteristic equation do not depend on h.

Finally, we have calculated the odderon energy along the singlevaluedness
curves g3(h). For all cases the energy turned out to be negative which
means that the odderon intercept is smaller than 1. The maximal value
of the odderon energy corresponds, as earlier conjectured, to h = 1/2 and
g3 = 0.205257506 X ¢ which can be seen on Fig. 3.

The authors thank J. Wosiek and G. Korchemsky for valuable comments
and discussion. We are grateful to J. Wosiek and A. Rostworowski for mak-
ing the program for calculating the odderon energy available to us. This
work was partially supported by the Polish State Committee for Scientific
Research (KBN) Grant PB 2 P03B 019 17.
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Appendix A
Definition of series from solutions of the equation for §s3

A.A Solutions around &£ = £1

The solutions of the equation (2.9) around ¢ = %1 have a form (2.11),
where coefficients are defined by

+1 +1 +1
“5,0 b =1, UZ(-J ) = az‘,ouz(-p )/mi,l,
+1 +1 +1
ug,n ) = (ai,n—luz(,njl + bi,n—2ug’n22) /mi,n ) (Al)

while

Ain—1 = Fh(n+si—1)[(n+ s —2)(n+si) — Bu] + 2pn £ 24,
bin—2 = —(n+s;—=2)[(n+s; —3)(n+s;) —2B] +2ps,
min = 4(n+s5;) [(n+s;)(n+s; —1)+2/9]. (A.2)

)

The upper sign corresponds to solutions around & = 1 and the lower one to
solutions around & = —1.

A.B Solutions around & = oo

The coefficients of solutions of equation (2.15) for g3 # 0 and h ¢ Z we
can write as

o fori=1,2:
(00) _
s ui71 = ay OUZ 0 /mz 15
(00
a; luz 1 + b; ,ou; 0 /mi,2 )

)

(00
Ajn— luzn 1+bzn 2U;

1
= (
(aZQuZ2 —i—bzlugl )/mig,
- (

2+CZ” 4u§n 4) /mzna(A?’)
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e fori=23:

“30 = —, Uz =Y,
uf{’;’) = <a3,1U3 1+ b3 oug o)+ ds 1u§ 1 )/mz 2,
u33 = <a372u32 +b31u§1) +d32ug2 —|—f30u20 )/mgg,
u34 = <a33u33 +b32ug2) +030u§0) +d33ug3 +f31u21 )/m374,
uly) = <a3n TSy by + Can—aul

+d37”*1ug,n)71 + f3,n73ugf“ﬁ)73 + 93,n75ugﬁ75>/mi,m (A.4)
where

ain—1 = 2q,
bin2 = 2(n+r—2)[(n+ri—1)(n+r—2)— B, —4/9],

Cin—a = —(n+r;—4)(n+r;—3)(n+r—2),

din—1 = —(n+mr)[3(n+r —2)+4]+2(1+ ),
fin-3 = 2[(n+7; —2)(3(n +r; —4) +8) — B —4/9] ,
Gin-5 = —3(n+r—4)n+r —2) -2,

Min = (n+7r)2(n+r—1)—2(n+r)(1+ ) —2pn. (A5)

Similarly the coefficients for the solution (2.17) for g3 = 0 and h ¢ Z have a
form

UE’OOO;%:O) =1, UZ(ZO;%:O) _ bi,OUg,%o)/mi,Q,
00;q3=0 00;g3=0 00;g3=0
ug,ans ) = (bi,2(nf1)ug,2(g?’_1)) + Ci,?(n72)ug72(g3_2))> /mi,Qn . (A6)

Appendix B
Definition of matrices connected to singlevaluedness constraints on @

In Section 3.2 we defined quantization conditions for operator ¢s. The
matrices in formula (3.13) have the following form

Ay A9 Ay Az gy + Ay Agy
Byp = |A1n1diz Apdgz Az Aoz + Ay Asg |, (B.1)
Aplyz AgpAog Aga Aoz + AgpAsg
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Biow = Bup(A < A), (B.2)
AnAn Ay Ay Az Ay + Ay Ay
Baiag = |A12412 A9y Agolgy + ApAszs | - (B.3)

A13A13  AggAgy  Agz3Aog + AgzAsg

We can write matrices from (3.14) as

Ay Ay Azlyy Ay dzy AzAz
Andiz Ay Az Aoy Ay Agz AsiAsg

Bip = |Aipd1z ApAgy Azl ApAzy AzppAssl|, (B.4)
Aoy Al ApAz AzAs
A9z AgzAor AggAz Aszdg
A1 Agy Ag1Agy Ag1 Ay A Ay
A1 A9z Az1lgz Ay Aszy Az Asg
Bloy = Ao3Agy Asglgy AgzAszy AgzAsa| (B.5)
Aplgr Ay AgpAsi AzpAz
A Ay AgzAor AggAz AszAg
A2 Agy Az Ay AnAz Az Az
Biag = Agplgy  AzpAgy  AgpAzy AgppAse| . (B.6)

Ay3lgy  AgzAgy Ag3Azy AgzAsg
The matrices occurring in (3.15) have a form
Tly Tonlyy Tl

Cop= |I'nlny Torlsy Tailss|, (B.7)
Iyl I'aolnz 'salig

Clow = Cup(I' &+ 1), (B.8)
I'nly ;I Tals
Caiag = |1T12In2  I'ealhe  I'sol3a| . (B.9)

T3y Taglhsy  T'szlss

Similarly we can write matrices from (3.16) as

Dua Qo 23103
Dyp = (211813 2918293 (2318233

Y o [0 : (B.10)
213813 (2938293 (2330233

1201 D902, 239021

Diow = | (3821 (2382 23382
21380 — 1983 (a38lyy — Qoollyy (2330239 — (2390233
(B.11)

3
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21100 291929 231031
& 213800 + 219803 2938200 + (2998203 (2338239 + (2328233
2 2 2

(B.12)

and the matrices from (3.17) look like

21y D910 03103
Dy = |21z Qo183 23103, (B.13)
Q1281 2998291 232003

Dy = Dl (2 6 ), (B.14)

2110 Q01821 231825
1989 2908259 (2320259
Dging = | 213012 2230200 2338 . (B.15)
219803 (290823 (2320253
213803 L2038293  $2338233

Appendix C

Manifolds determined by set of M equations in N dimensional space

C.A Method of finding zeros of the function F in N dimensions

We shall be looking for solutions of a set of equations
Fj(iEl,iEQ,...,xN):O j:1,2,...,M. (Cl)

Let # denote the vector of values x;, and F the vector of functions Fj. Let
us expand F;(Z) in a Taylor series

Fj(iEl +d0x1,21 +0x1,..., TN + 5$n) = Fj(iEl,iﬁQ,. . .:EN)

N
OF; 9
i . 2
+Z-El axiéxz-i-O(&x) (C.2)

The matrix of partial derivatives appearing in equation (C.2) is the rectan-
gular Jacobian matrix J. Thus, in matrix notation equation (C.2) reads:

F(Z+ 6%) = F(2) + J0& + O(0F 2). (C.3)
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We are interested in zeros of F(Z), i.e. we are looking for such 6Z that

F(Z + 6%) = 0. Neglecting terms of the order O(JZ 2), we obtain a set of
linear equations for the corrections 67

Joi = —F. (C.4)

Equation (C.4) describes a set of M linear equations with n values of
solution 6Z. Each of these equations defines (N — 1) dimensional plane in
N dimensional space. In order to solve (C.4) we should find the intersection
of these N — 1-planes.

One should consider three cases:

1. If the number of linearly independent equations is equal to the number

of coordinates M = N then the set of equations has only one solution
0x;

2. If the number of linearly independent equations is lower than the num-
ber of coordinates M < N and the equations are not contradictory,
the set (C.4) has an infinite number of solutions which form a N — M
dimensional plane. Then one selects the solution from this N — M
plane which has the lowest norm.

3. In the case when 0% doesn’t exist, which means that the equations
are contradictory, we adopt a procedure which tries to find some 02’
which decreases the test function (C.3). If our set of equations is not
contradictory then the algorithm reduces itself to two other cases.

(a) Let m be a number of linearly independent equations which are
not contradictory. Then, from the set of equations (C.4) we can
construct k sets of m linearly independent equations. Each of
these sets determines mn entries of the N dimensional vector 6z .
Here i (= 1,...,k) corresponds to the i*" set of equations.

(b) The remaining (N — m) entries are set in a such way that 6z’
has the lowest norm.

(c) Next we choose such j that sum of the angles between a vec-
tor 07) and remaining vectors £’ is minimal. §Z()’ has the
nearest direction to the average direction of other vectors #(®’.

Instead of finding a zero of the M-dimensional function F we shall be
looking for a global minimum of a function

f=-F-F. (C.5)

DN | =
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Of course, there can be some local minima of Eq. (C.5) that are not solutions
of Eq. (C.4).
Our step 7 is usually in the descent direction of f
Vf-6&t=(FJ) (-J'F)=-F-F<0 (C.6)
1

which is true if only J ™ exists.
It is convenient to define

9(A) = f(Zoa + Ap), (C.7)

where o= 0Z. We always first try the full step i.e. A = 1. If the proposed
step does not reduce f we backtrack along the same direction until we have
an acceptable step

Thew = Tola + AP, 0< A<, (0.8)

i.e. we look for A which sufficiently reduces g(\). This is done by approxi-
mating ¢g(A) by polynomials in A. Initially we know ¢(0) and ¢'(0) and also
g(1) which is known from the first trial (A = 1). Since we can easily calculate
the derivative of g()\)

g\ =Vr7. (C.9)
we can approximate g(\) by a quadratic polynomial in A:
g(A) = [g(1) = g(0) = ¢'(0)] A + ¢/ (0)A + (0) (C.10)

and look for the minimum of (C.10). If this step also fails, we model g(\) as
a cubic polynomial in A and so on until the satisfactory value of A is found.
It is obvious that because of the linearity of the algorithm

F(Z+6%) = 0(67?) . (C.11)

But, if f(Z+ 0%) < f(Z), then our procedure leads towards the solution
of (C.1), provided we are not in a vicinity of a false (i.e. local) minimum
of f. In the latter case we have to change the initial conditions and start
the whole procedure again.

C.B Algorithm for finding the curves

We shall describe a curve as a set of points placed along some path
where the distance r between all neighboring points, should be constant.
By definition all points should be zeros of function F.
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1. The input data of our algorithm are:

— two points 41, %2, which should be placed in the vicinity of the
sought curve,

— distance r between these adjacent points.

2. Making use of the algorithm from Section C.A we find a root 7,
situated in the vicinity of ;.

3. We define the point Z; as a center of a hyperspherical coordinate sys-
tem. Next, we look on the sphere with radius r for the root Zs which
has similar coordinates as point #s.

4. We shift the center of the coordinate system to the point Z and look
for a zero of F' on the hypersphere of radius r in vicinity of point
yr(k = 3) extrapolated from previously found roots Z; with i =
1,2,...,k—1.

5. Tterating the above procedure we construct a curve of zeros of F.

Using this algorithm we can find not only curves, but also k¥ dimensional
hypersurfaces. This can be done by fixing the values of £k — 1 coordinates.
Then for each choice depending on which coordinates were fixed, we can
find curves from which we can, in principle, reconstruct the hypersurface.
However, in our case it turned out that the zeros of F' lie on one dimensional
curves.
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