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SOLUTIONS OF THE QUANTIZATION CONDITIONSFOR THE ODDERON CHARGE q3AND CONFORMAL WEIGHT hJan Kota«ski and Mi
haª Praszaªowi
zM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived November 15, 2001)The quantization 
onditions whi
h 
ome from the requirement of thesinglevaluedness of the odderon wave fun
tion are formulated and solvednumeri
ally in the 4 dimensional spa
e of the odderon 
harge q3 and the
onformal weight h. It turns out that these 
onditions are ful�lled alongone dimensional 
urves parametrized by a dis
rete set of values of Re h in 3dimensional subspa
e (Im h; Im q3;Re q3). The odderon energy 
al
ulatedalong these 
urves 
orresponds in all 
ases to the inter
ept lower than 1.PACS numbers: 12.38.Cy, 12.38.�t, 11.55.Jy, 12.40.Nn1. Introdu
tionThe leading 
ontribution to the total elasti
 s
attering amplitude of twohadrons (A;B) 
an be written in Quantum Chromodynami
s (QCD) in aso 
alled Regge limit s!1; t = 
onst. (1.1)as a power series in a strong 
oupling 
onstant �s of the partial amplitudeswith a given number n of reggeized gluons (Reggeons) propagating in the t
hannel: A(s; t) = 1Xn=2�n�2s An(s; t); (1.2)An(s; t) = iXf�g �n;{nA (t)�n;{nB (t)s�n(t): (1.3)(665)
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zHere {n denotes quantum numbers of the n Reggeon state and the residuefun
tions �n;{nA and �n;{nB measure the overlap between the hadroni
 wavefun
tions and the wave fun
tion of a 
ompound state of n reggeized gluons.The n-Reggeon's partial amplitudes are proportional to s�n(t) where �n(0)is 
alled an inter
ept.It is of great importan
e to 
al
ulate the inter
epts �n(0) in QCD, notonly be
ause they govern the high energy behavior of the forward elasti
amplitudes but also be
ause, e.g. for n = 2, they are responsible for the smallBjorken x behavior of the deep inelasti
 stru
ture fun
tions. The lowestnon-trivial 
ontribution for n = 2 was 
al
ulated in the leading logarithmi
approximation by Balitsky, Fadin, Kureav and Lipatov [1, 2℄, who derivedand solved equation for the Pomeron inter
ept. The equation for three andmore Reggeons was formulated in Refs. [3�5℄. It took, however, almost 20years before the solution for n = 3 was obtained in Refs. [6, 7℄.The real progress started with an observation that the n-Reggeon ex-
hange is equivalent to an eigenvalue problem of a S
hrödinger like equationwith 
al
ulable intera
tion Hamiltonian Ĥn. Here the eigen-energy is re-lated to �n(0) � 1. This S
hrödinger problem is exa
tly solvable [8�10℄whi
h means that there exist n � 1 integrals of motion (q̂2; : : : ; q̂n) whi
h
ommute with Ĥn and among themselves. The eigenvalue of q̂2 is equal�h(h� 1) where h is 
alled a 
onformal weight.In the present work we shall 
on
entrate the odderon ex
hange, i.e. onthe 
ase with n = 3. It is easier to 
ondu
t the 
al
ulations in the im-pa
t parameter spa
e, that is in the transverse spatial 
oordinates of nReggeons (xj ; yj). After introdu
ing the 
omplex 
oordinates (zj = xj + yj,z�j = xj � yj) for j-th reggeized gluon, the odderon Hamiltonian be
omesholomorphi
ally separableĤ3 = Ĥ3 + Ĥ3 = �sN
4� 3Xk=1 hĤ(zk; zk+1) + Ĥ(z�k; z�k+1)i ; (1.4)where N
 is a number 
olors and z1 = zn+1. The Hamiltonian Ĥ3 is 
on-formally invariant. Its eigenfun
tion is given as a bilinear form � = 	 � 	where 	 (	) is the solution of the S
hrödinger equation in the holomorphi
(antiholomorphi
) se
tor.There have been many attempts either to dire
tly �nd the values of E3[11�15℄ or to �nd the spe
trum of odderon 
harge q̂3 [6,16℄. Finally, in Ref. [7℄the singlevaluedness 
onditions for the wave fun
tion � were formulated andthe spe
trum of q̂3 was found. This allowed to 
al
ulate the energy [6℄(hen
e also the odderon inter
ept) for the 
onformal weight h = 1�h = 1=2whi
h supposedly gives the largest 
ontribution to the elasti
 amplitude.It is, however, interesting to see expli
itly whether h = 1 � h = 1=2 gives
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ept and whether the there exist other solutions to thesinglevaluedness 
onditions than the ones found in [7℄. The �rst attempt inthis dire
tion has been undertaken in Ref. [17℄ where the spe
trum of q̂3for arbitrary 
onformal weight but for non-physi
al quantization 
onditionsh = h was found. In Ref. [18℄ the spe
trum of q̂3 for the spe
i�
 
hoi
e ofthe 
onformal weight h = 1� h = 1=2 + i� in the limit of small � has beenstudied. This result of Ref. [18℄ was 
on�rmed and extended for arbitrary �in Ref. [17℄.The values of the 
onformal the weight h and eigenvalues of q̂3 form afour dimensional spa
e. In the present work we 
onstru
t an algorithm andnumeri
al 
ode whi
h allows to �nd the points in the (h; q3) spa
e whi
hsatisfy the physi
al quantization 
onditions h = 1� h and singlevaluedness
onditions of Refs. [7,17℄. It turns out that these points form one dimensional
urves in the four dimensional spa
e (h; q3). We have found families of
urves whi
h are numbered by dis
rete values of Re h = 1=2 + m=2 withm 2 3Z. Therefore for given Re h these 
urves are e�e
tively embedded in3 dimensional subspa
e (Im h;Re q3; Im q3).Applying the method from Ref. [6℄ whi
h allows to 
al
ulate the odderonenergy for arbitrary h and q3, we have 
al
ulated the odderon energy alongthe singlevaluedness lines q3(h). As expe
ted, the odderon energy has amaximum for h = 1 � h = 1=2, and is always negative. Our numeri
alpro
edures are pre
ise enough to �nd 17 values of q3 for h = 1 � h = 1=2with 9 digits a

ura
y.The paper is organized as follows: in Se
t. 2, following Ref. [17℄, wewrite the odderon equation in terms of variable � suggested in Ref. [19℄ and�nd its solutions around � = �1 and 1. Re
urren
e relations for the forthese solutions are 
olle
ted in Appendix A. Next, in Se
t. 3, we re
apitulatethe method of Ref. [6℄ and 
onstru
t a singlevalued odderon wave fun
tion� relegating the detailed form of the singlevaluedness 
onstraints to Ap-pendix B. The resulting spe
trum of q3 and h is 
al
ulated and dis
ussed inSe
t. 4. The numeri
al algorithm used in this Se
tion is des
ribed in detailin Appendix C. Finally in Se
t. 5 we 
al
ulate the odderon energy alongthe singlevaluedness 
urves found in Se
t. 4. Con
lusions are presented inSe
t. 6.2. Solution of the eigenequation for the odderon 
harge q̂32.1. Origin of the equationAs already said in the Introdu
tion it is possible to �nd a family of
ommuting operators q̂k whi
h 
ommute with the holomorphi
 n-ReggeonHamiltonian Ĥn [8℄: [Ĥn; q̂k℄ = 0; k = 2; : : : ; n : (2.1)
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zIt follows that the Hamiltonian Ĥn and the operators q̂k have the sameset of eigenfun
tions. In terms of the holomorphi
 
oordinates q̂k have thefollowing form:q̂k = Xn�i1>i2>���>ik�1 ikzi1i2zi2i3 : : : ziki1�i1�i2 : : : �ik ; (2.2)where k = 2; : : : ; n, zjk � zj � zk and �j � �zj .For the odderon 
ase, n = 3, we have only 2 operatorsq̂2 = Xn�j>k�1 z2jk�j�k ;q̂3 = Xn�j>k>l�1�izjkzklzlj�j�k�l : (2.3)Following Ref. [8℄ we will use 
onformally 
ovariant Ansatz for 		(z1; z2; z3) = zh=3 (x) ; (2.4)wherez = (z1 � z2)(z1 � z3)(z2 � z3)(z1 � z0)2(z2 � z0)2(z3 � z0)2 ; x = (z1 � z2)(z3 � z0)(z1 � z0)(z3 � z2) ; (2.5)h is a 
onformal weight and z0 represents an arbitrary referen
e point. Aparti
ular feature of this Ansatz (2.4) is that q̂2 is automati
ally diagonalq̂2	(z1; z2; z3) = �h(h� 1)	(z1; z2; z3) : (2.6)In representation (2.4) the eigenvalue equation for q̂3 takes the followingformiq̂3 (x) = �h3�2�h3 � 1� (x� 2)(x+ 1)(2x � 1)x(x� 1)  (x)+ �2x(x� 1)� h3 (h� 1)(x2 � x+ 1)� 0(x)+2x(x� 1)(2x� 1) 00(x) + x2(x� 1)2 000(x) = iq3 (x) : (2.7)Equation (2.7) has been studied in Ref. [7℄ where the quantization 
on-ditions for q̂3 were found by introdu
ing the singlevaluedness 
onstraints onthe whole wave fun
tion of the odderon, �. The singlevaluedness 
onditionsare mu
h simpler when we rewrite equation (2.7) in terms of a new variablesuggested in Ref. [19℄



Solutions of the Quantization Conditions : : : 669� = i 13p3 (x� 2)(x+ 1)(2x � 1)x(x� 1) : (2.8)Putting (2.8) into (2.7) we have [17℄�12(�2�1)2 d3d�3 + 2�(�2�1) d2d�2 +�49��h(�2�1)� dd� + �h� + ~q�'(�) = 0 ;(2.9)where �h = (h+ 2)(h � 3)6 ; �h = h2(h� 3)27 ; ~q = q33p3 ;and q3 is the eigenvalue of the operator q̂3.As we shall shortly see the odderon equation (2.9) is less singular thanEq. (2.7) and the solutions of the indi
ial equation around � = �1 do notdepend on h. 2.2. Solution of the odderon equationThe odderon equation (2.9) has three regular singular points at � = �1,� = 1 and � = 1. We shall solve this equation using the power seriesmethod. It is a third order ordinary di�erential equation therefore it hasthree linearly independent solutions. We 
an write them as a ve
tor~u(�; q3) = 264u1(�; q3)u2(�; q3)u3(�; q3)375 : (2.10)2.2.1. Solution of the equation around � = �1Solutions of equation (2.9) around � = �1 have the following form [17℄:u(�1)i (�; q3) = (1� �)si 1Xn=0u(�1)i;n (� � 1)n; (2.11)where si are solutions of the indi
ial equations1 = 23 ; s2 = 13 ; s3 = 0 (2.12)and do not depend on h. The 
oe�
ients u(�1)i;n are de�ned in Appendix A.
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z2.2.2. Solutions around � =1The solution of equation (2.9) around � = 1 has a more 
ompli
atedform. In this 
ase we perform a substitution � = 1=� and then solve theproblem around � = 0:�12(1� �2)2�2 d3ud�3 + �2(1� �2)� � 3�(1 � �2)2� d2ud�2+ ��3(1� �2)2 � 49�2 + (4 + �h)(1� �2)� dud� + ��h 1� + ~q�u = 0 : (2.13)The solutions of the indi
ial equation ri depend on the 
onformal weight hr1 = 2h3 ; r2 = 1� h3 ; r3 = �h3 : (2.14)and are identi
al as the solutions of the indi
ial equation in the 
ase ofequation (2.7). Sin
e r2 � r3 is equal to an integer number, one of thesolutions, u(1)3 (�), 
ontains a logarithm. The other two di�eren
es r2 � r1,r1 � r3 be
ome integer as well if h is an integer itself. Therefore we have todistinguish several 
ases.For h =2 Z and q3 6= 0 the solution of (2.9) in vi
inity of � =1 reads:u(1)1 (�; q3) = �1��r1 1Xn=0 u(1)1;n �1��n ;u(1)2 (�; q3) = �1��r2 1Xn=0 u(1)2;n �1��n ;u(1)3 (�; q3) = �1��r3 1Xn=0 u(1)3;n �1��n ;+u(1)2 (�; q3)Log�1�� ; (2.15)where the logarithm Log(z) is de�ned as:Log(z) = ln jzj+ iArg(z); jArg(z)j < � : (2.16)The 
oe�
ients entering (2.15) are 
olle
ted in Appendix A.The remaining 
ases, i.e. when q3 = 0 and/or h 2 Z 1, should be 
onsid-ered separately.1 Solutions of the equation (2.13) around � = 1 for h 2 Z are not 
onsidered in thiswork.



Solutions of the Quantization Conditions : : : 6712.2.3. Solutions around � =1 for q3 = 0It is easy to observe that in equation (A.4) for q3 = 0 the term u(1)3;0 =1�h2~q tends to in�nity. In this 
ase the solution of equation (2.9) should be
onstru
ted separately. With q3 = 0 and h =2 Z the solution is given byu(1)i (�; q3 = 0) = �1��ri 1Xn=0u(1;q3=0)i;2n �1��2n : (2.17)The 
oe�
ients u(1;q3=0)i;2n are de�ned in Appendix A.2.3. Antiholomorphi
 se
torFor given h and q3 we 
an �nd the solutions of Eq. (2.9) around allsingular points by means of Eqs. (2.11), (2.15) and (2.17). Analogously, we
an 
onstru
t the solutions in the antiholomorphi
 se
tor. Here instead ofusing the 
onformal weight h and 
harge q3 we use their antiholomorphi
equivalents: h and q32. Similarly to Eq. (2.10) we write the three linearlyindependent solutions as a ve
tor:~v(��; q3) = 264 v1(��; q3)v2(��; q3)v3(��; q3)375 : (2.18)3. Quantization 
onditions for the odderon 
harge q̂33.1. Transition matri
esEa
h of the solutions around � = �1;2;3 where �1;2;3 = �1;1 has a
onvergen
e radius equal to the di�eren
e between two singular points: thepoint around whi
h the solution is de�ned and the nearest of the remainingsingular points. In order to de�ne the global solution whi
h is 
onvergentin the entire 
omplex plane we have to glue the solutions de�ned arounddi�erent singular points. This 
an be done by expanding one set of solutionsde�ned around �i in terms of the solutions de�ned around �j for � belongingto the overlap region of the two solutions 
onsidered. Thus, in the overlapregion we 
an de�ne the transition matri
es �, � , 
, where~u(1)(�; q3) = �(q3)~u(�1)(�; q3) ;~u(�1)(�; q3) = � (q3)~u(+1)(�; q3) ;~u(+1)(�; q3) = 
(q3)~u(1)(�; q3) : (3.1)2 bar does not denote 
omplex 
onjugation for whi
h we us an asterisk.
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zMatri
es �, � and 
 are 
onstru
ted in terms of the ratios of 
er-tain determinants. For example to 
al
ulate the matrix � we 
onstru
tthe Wro«skianW = ������� u(+1)1 (�; q3) u(+1)2 (�; q3) u(+1)3 (�; q3)u0(+1)1 (�; q3) u0(+1)2 (�; q3) u0(+1)3 (�; q3)u00(+1)1 (�; q3) u00(+1)2 (�; q3) u00(+1)3 (�; q3)������� : (3.2)Next, we 
onstru
t determinants Wij whi
h are obtained from W by repla
-ing j-th 
olumn by the i-th solution around � = �1, i.e. for i = 1 and j = 2we have W12 = ������� u(+1)1 (�; q3) u(�1)1 (�; q3) u(+1)3 (�; q3)u0(+1)1 (�; q3) u0(�1)1 (�; q3) u0(+1)3 (�; q3)u00(+1)1 (�; q3) u00(�1)1 (�; q3) u00(+1)3 (�; q3)������� : (3.3)The matrix elements �ij are de�ned as�ij = WijW : (3.4)Matrix � does not depend on �, but only on q3 and h. In a similar waywe 
an get matri
es � and 
 and their antiholomorphi
 equivalents: �, � ,
.3.2. Quantization 
onditions and singlevaluedness of the wave fun
tionThe odderon 
harge q3 is 
onne
ted to its antiholomorphi
 equivalent byq3 = �q�3; (3.5)where an asterisk denotes 
omplex 
onjugation. There exist two possible
hoi
es for q3: the one given by Eq. (3.5) and a similar one with the plussign. This follows from the fa
t that the eigenvalues of holomorphi
 and an-tiholomorphi
 Hamiltonian, "3 and "3, are symmetri
 fun
tions of q3 and q3,respe
tively [20℄. Only one 
hoi
e, namely (3.5), leads to the nonvanishingsolution of the quantization 
onditions3.The odderon wave fun
tion 
an be written as [17℄�hhq3q3(z; z�) = zh=3(z�)h=3~v T (��; q3)A(q3; q3)~u(�; q3) ; (3.6)3 Note, that be
ause of the fa
tor i in the de�nition � (2.8), our q3 has di�erent signthan the one in Ref. [7℄.
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tion �hhq3q3(z; z�) 
ontains the solutions ofequation (2.9) and its antiholomorphi
 
ounterpart, ~u(�; q3) and ~v(��; q3)respe
tively, and a 3� 3 matrix A(q3; q3) �sewing� the solutions of the bothse
tors.The wave fun
tion � has to be singlevalued. This means that it shouldnot depend on the 
hoi
e of the Riemann sheet for the variables z and �. Informula (3.6) the term zh=3(z�)h=3 is uniquely de�ned only if h=3�h=3 2 Z.This leads to the quantization 
ondition for the 
onformal weight hh = 12(�+m) + i� and h = 12(��m) + i�; (3.7)where � and � are real and m=3 2 Z. The latter 
ondition follows fromthe invarian
e under the Lorentz spin transformations. The normalization
ondition of the wave fun
tion requires that � = 1 for the physi
al odderonsolution.The fa
t that the wave fun
tion � should be singlevalued imposes 
ertain
onditions on the form of matrix A. It follows from Eq. (3.6) that for thesolutions (2.11) around � = �1 the matrix element Aji is multiplied by afa
tor (1� �)si(1� ��)sj . This expression is singlevalued only if si� sj 2 Z.For si of Eq. (2.12) this is true only for i = j. Therefore the matri
es A(�1)have a diagonal formA(�1)(q3; q3) = 24� 0 00 � 00 0 
35 ; A(+1)(q3; q3) = 24�0 0 00 �0 00 0 
035 : (3.8)For the solutions around � = 1 (2.15), (2.17), and for h =2 Z, thematrix element Aji is multiplied by a fa
tor (1=�)ri(1=��)rj . One shouldnoti
e that solutions of the indi
ial equation r2, r2, r3 and r3 di�er by aninteger4, therefore terms whi
h 
orrespond to the elements A23 i A32, do notvanish. Furthermore, terms with a logarithm appear in the solutions u(1)3and v(1)3 for q3 =2 Z. One 
an see that when A23 = A32 then in the sum theambiguous arguments of the logarithms 
an
el out. Moreover, for q3 =2 Z theterm whi
h 
orresponds to the matrix element A33 is not singlevalued. It
ontains a square of the logarithm whi
h does not o

ur in any other terms.For this reason the element A33(q3 6= 0; q3 6= 0) has to vanish.Thus the matri
es A, de�ned around � =1, have the following formA(1)(q3 6= 0; q3 6= 0)=24� 0 00 � �0 � 035; A(1)(q3 = 0; q3 = 0)=24�0 0 00 �0 �00 & 0 � 035:(3.9)4 r2 and r3 are solutions of the indi
ial equation in the antiholomorphi
 se
tor.
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zSubstituting equation (3.1) into the wave fun
tion (3.6), one �nds thefollowing 
onditions for the matri
es A(q3; q3)�T (q3)A(1)(q3; q3)�(q3) = A(�1)(q3; q3) ; (3.10)� T (q3)A(�1)(q3; q3)� (q3) = A(+1)(q3; q3) ; (3.11)
T (q3)A(+1)(q3; q3)
(q3) = A(1)(q3; q3) : (3.12)Ea
h of the formulae (3.10)�(3.12) is equivalent to a set of nine equationswhi
h 
an be 
onveniently written in terms of the following 4 ve
tors:~a = 24��
35 ; ~b = 24�0�0
035 ; ~
 = 24���35 ; ~d = 26664�0�0& 0�0� 037775 ;We 
an now rewrite equations (3.10), (3.11), (3.12) in the following form:� equation (3.10):� for q3 6= 0 as Bup~
 = 0 ; Blow~
 = 0 ; Bdiag~
 = ~a ; (3.13)� for q3 = 0 as B0up~d = 0 ; B0low ~d = 0 ; B0diag ~d = ~a : (3.14)� equation (3.11) asCup~a = 0 ; Clow~a = 0 ; Cdiag~a = ~b ; (3.15)� equation (3.12):� for q3 6= 0 as Dup~b = 0 ; Dlow~b = 0 ; Ddiag~b = ~
 ; (3.16)� for q3 = 0 as D0up~b = 0 ; D0low~b = 0 ; D0diag~b = ~d : (3.17)De�nitions of matri
es B, C, D : : : are given in Appendix B.Equations (3.13)�(3.17) have nonvanishing solutions only if the determi-nants of matri
es with subs
ripts up and low are equal zero. Moreover thereshould exist the unique solutions of these equations: ~a, ~b, ~
, ~d whi
h dependonly on one free parameter whi
h 
an be �xed by normalizing the wave fun
-tion �. As we shall show in the next Se
tions these two requirements �xuniquely the �boundary 
onditions� for the eigen equation of the operatorq̂3 and allow to 
al
ulate its spe
trum.
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trum of the odderon 
harge q̂34.1. Eigenvalues of q̂3 for h = 1=2Let us �rst dis
uss physi
al solutions found in Ref. [7℄ whi
h 
orrespondto the 
onformal weight h = 1=2 and Re q3 = 0. In order to 
al
ulatethe eigenvalues q3 we have solved Eqs. (3.13)�(3.17) requiring vanishing ofthe up and low matrix determinants. After that, we have also 
he
ked theuniqueness of obtained solutions. The results, also for unphysi
al values ofq3 with Im q3 = 0 are displayed in Table I. Entries labeled from 0 to 4, 12and 13 agree with the ones of Refs. [7,17℄, while the remaining ones are new.TABLE IEigenvalues of the odderon 
harge q3 for h = 1=2.No. q3 No. q3 No. q30 0 6 68:600522343i 12 1:4753274241 0:205257506i 7 109:214406900i 13 12:9470470372 2:343921063i 8 163:296192765i 14 44:4138301633 8:326345902i 9 232:769867177i 15 105:8726146154 20:080496894i 10 319:559416811i 16 207:3207060515 39:530550304i 11 425:588828106i 17 358:755426678In fa
t the eigenvalues q3 for h = 1=2 form a dis
rete set of pointssymmetri
ally distributed on the real and 
omplex axis in 
omplex q3 plane.Therefore in Table I only a half of the spe
trum is displayed. It has beenshown [6,7℄ that only the imaginary values of q3 are relevant for the odderonproblem; real eigenvalues 
orrespond to a wave fun
tion whi
h is not totallysymmetri
 under the ex
hange of the neighboring Reggeons. There existsalso one eigenvalue q3 = 0 whi
h does not 
orrespond to a normalizablesolution [20℄, see however [21℄.4.2. Eigenvalues q̂3 for the arbitrary 
onformal weights hAs seen from Eq. (3.7) the 
onformal weight h depends on two parame-ters: m=3 2 Z and � 2 R. In order to �nd the manifolds on whi
h 
onditions(3.13)�(3.17) are satis�ed we have extended the domain of h and allowed mto be any real number. This de�nes a four dimensional spa
e of the 
onfor-mal weight and the odderon 
harge (h; q3) 2 R4 . In ea
h group of equations(3.13)�(3.17) there are two equations whi
h 
ontain matri
es with subs
ripts`up' and `low'. The determinants of these two matri
es are 
omplex, so we
an de�ne the following fourvalued fun
tions:
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fB : (Re h; Im h;Re q3; Im q3) �!((Re(detBup); Im(detBup);Re(detBlow); Im(detBlow)) for q3 6= 0�Re(detB0up); Im(detB0up);Re(detB0low); Im(detB0low)� for q3 = 0 ;(4.1)fC : (Re h; Im h;Re q3; Im q3) �!(Re(detCup); Im(detCup);Re(detClow); Im(detClow)) ; (4.2)fD : (Re h; Im h;Re q3; Im q3) �!((Re(detDup); Im(detDup);Re(detDlow); Im(detDlow)) for q3 6= 0�Re(detD0up); Im(detD0up);Re(detD0low); Im(detD0low)� for q3 = 0 :(4.3)Thus, in order to 
al
ulate the spe
trum of the operator q̂3, we should�nd 
ommon zeros of all fun
tions fB , fC and fD:fB = 0; fC = 0; fD = 0: (4.4)Furthermore one should verify the uniqueness of the solutions for (3.13)�(3.17).In Appendix C we have des
ribed the numeri
al algorithm 
onstru
tedto �nd roots of Eqs. (4.4). Our numeri
al �ndings 
an be summarized asfollows:1. Although we have formally allowed m to be a 
ontinuous real parame-ter, the solutions of Eqs. (4.4) exist only for m=3 2 Z (e.g. Re h = 1=2or Re h = 2).2. For the above dis
rete values of m, that is for �xed Re h, the solu-tions of Eqs. (4.4) form 
ontinuous 
urves in 3 dimensional subspa
e(Im h;Re q3; Im q3).3. It turned out that ea
h of 3 equations (4.4) yields the same set of
urves, provided that the solutions of Eqs. (3.13)�(3.17) are unique.In the following we dis
uss two sets of solutions to Eqs. (4.4), namely forRe h = 1=2 and Re h = 2.



Solutions of the Quantization Conditions : : : 6774.2.1. Spe
trum of q̂3 for Re(h) = 1=2In �gure 1 we plot spe
trum of the odderon 
harge q̂3 as a fun
tion ofh for Re h = 1=2. One 
an see two sets of 
urves: the ones in the planeof Re q3 = 0 and in the perpendi
ular plane of Im q3 = 0 and the lineq3 = 0 whi
h belongs to the both 
lasses. For all these 
urves, ex
ept forq3 = 0, the minimum of jq3j o

urs for h = 1=2. Going away from thispoint the absolute value of q3 in
reases monotoni
ally. Minimal values ofjq3j 
orrespond to the points listed in Table I. We have not found any 
urvelo
ated outside of Re q3 = 0 or Im q3 = 0 planes.
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)Im(h)Fig. 1. Odderon 
harge q3 as a fun
tion of h for Re h = 1=2 Presented 
urves aredes
ribed with point with the higher value of jq3j.The 
urves in the plane of Re q3 = 0 have been earlier found in Ref. [22℄and also in Refs. [17, 23℄.The spe
trum of q3 has the following symmetries:1. Re q3 ! �Re q3,2. Im q3 ! �Im q3,3. h! 1� hwhi
h follow from the symmetries of the odderon equation (2.9). Indeed,equation (2.9) is invariant under the transformation � ! �� and q3 ! �q3.The last symmetry follows from the ex
hange symmetry between the holo-morphi
 and antiholomorphi
 se
tors.
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z4.2.2. Spe
trum of q̂3 for Re(h) = 2In �gure 2 we plot the odderon 
harge q3 as a fun
tion of the 
onformalweight for Re h = 2. Ex
ept of a line with q3 = 0 whi
h is analogous to the
ase of Re h = 1=2, the remaining 
urves have more 
ompli
ated 
hara
ter.Still, they obey the following symmetries:1. q3 ! �q3,2. Im h! �Im h Re q3 ! �Re q3,3. Im h! �Im h Im q3 ! �Im q3.These symmetries are similar to the 
ase of h = 1=2.
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Im(h)Fig. 2. Odderon 
harge q3 as a fun
tion of h for Re h = 2The �rst one is 
onne
ted to Bose symmetry (� $ ��) and the others
orrespond to ex
hange of holomorphi
 and antyholomorphi
 se
tors. Forh = 2, that is, if the imaginary part of h vanishes, equation (2.9) has not beensolved. In this 
ase the eigenvalues q3 have been obtained by an interpolationof the neighboring points whi
h satis�ed the quantization 
onditions.



Solutions of the Quantization Conditions : : : 6794.2.3. Case for q3 = 0During the numeri
al 
omputations we have noti
ed that similarly to theother matri
es A, the matrix A(1)(q3 = 0; q3 = 0) depends only on threeparameters. The remaining ones vanish identi
ally. In the 
ase Re h = 1=2,& 0 and �0 vanish and for Re h = 2, �0 = � 0 = 0.5. Odderon energyThe odderon energy is de�ned as [20℄E3 = �sN
4� �"3(h; q3) + �"3(�h; �q3)� = �sN
2� Re("3(h; q3)) ; (5.1)where "3 and �"3 are the largest eigenvalues of the holomorphi
 and antiholo-morphi
 odderon Hamiltonian, respe
tively. Applying the Bethe Ansatz wehave for n = 3 [20, 24℄"3 = i _Q3(�i)Q3(�i) � _Q3(i)Q3(i)!� 6 ; (5.2)where Q3(�) satis�es the following Baxter equation [25℄:(�+ i)3Q3(�+ i) + (�� i)3Q3(�� i)� (2�3 + �q2 + q3)Q3(�) = 0 : (5.3)Equation (5.3) was solved in Ref. [6℄ by a substitution�kQk(�) = ZCz dz2�iK(z; �)P̂ kQ(z)�i kXm=1 ZCz dz2�i ddz hz(z � 1)L̂k�mK(z; �)P̂m�1Q(z)i ; (5.4)whereK(z; �) = z�i��1(z� 1)i��1; L̂ = ��i ddz z(z � 1)� ; P̂ = �iz(z � 1) ddz� :(5.5)Choosing the proper integration 
ontour Cz and boundary 
onditions onearrives at a di�erential equation for Q(z):"�z(z � 1) ddz�3 � q2z2(z � 1)2 ddz � iq3z(1 � z)#Q(z) = 0 : (5.6)
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zSimilarly to the solutions of equation (2.9), the solutions of Eq. (5.6) dependon the 
onformal weight h and the odderon 
harge q3. Using the spe
trumq3(h) 
al
ulated in the last se
tion, we have 
al
ulated the energy of theodderon along the 
urves from �gures 1 and 2.Analyzing the spe
tra of energy we 
an 
on
lude that the odderon energyis always negative. This means that the inter
ept�(t = 0) = E3 + 1 (5.7)is lower than one, so the odderon partial amplitude A3(s; t) (1.3) is des
ribedby the 
onvergent series in Regge limit (1.1).5.1. Spe
trum of the energy for Re h = 1=2 TABLE IIMaximal values of Re("3) for Re h = 1=2.q3 Re("3)0 �0:738010:20526i �0:494342:34392i �5:169301:47533 �4:23462In �gure 3 we plot a real part of the holomorphi
 odderon energy Re("3)as a fun
tion of Im h. The pi
ture is plotted for 
urves from �gure 1, thatis for Re h = 1=2. All these 
urves have a maximum in h = 1=2. Themaximal values are displayed in Table II. Going away from the maximum,the energy de
reases monotoni
ally. Our results agree with the values fromRef. [7℄. The energy spe
trum has the following symmetryh �! 1� h : (5.8)5.2. Spe
trum of the energy for Re h = 2In �gure 4, similarly to Fig. 3, we plot Re("3) as a fun
tion of Im h for
urves from �gure 2, that is for Re h = 2. In this 
ase the 
urves in (h; q3)spa
e have mu
h more 
ompli
ated 
hara
ter and lo
ation of the energymaxima o

urs not always for Im h = 0.For plots I, VI, Re("3) has a maximum in h = 2. In others 
ases theenergy has a maximum in vi
inity of h = 2, i.e. for the II-nd 
urve the energyhas a maximum in (h = 2:0 + 0:107i; q3 = �3:508 + 2:050i). The maximalvalues of energy are given in Table III. Similarly to the 
ase of Re h = 1=2going away from the maximum, energy de
reases monotoni
ally.
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ture isplotted for the 
urves from �gure 2.6. Summary and 
on
lusionsThe aim of the present paper was to look for the solutions of the odderonequation (2.9) in the entire four dimensional spa
e of the 
onformal weight hand odderon 
harge q3. So far these solutions have been found only for some
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z TABLE IIIMaximal value Re("3) for Re h = 2.
urve symbols Re("3)I �7:21II, III �6:27IV, V �8:51VI �4:00spe
i�
 values of h [6,18,22,23℄ or for arbitrary h but unphysi
al quantization
ondition h = h [17℄. To this end we have 
onstru
ted and implemented thealgorithm whi
h is in detail des
ribed in Appendix C. This algorithm 
anbe easily extended to more dimensional 
ases [26℄.The 
al
ulations were performed in the holomorphi
 variable � whi
hrespe
ts Bose symmetry and was proposed in Refs. [17, 19℄. The odderonequation (2.9) is a third order ordinary di�erential equation with three regu-lar singular points at � = �1, 1 and 1. Solutions around � = �1 have beenalready found in Ref. [17℄. Here we have also 
al
ulated solutions around� =1 (2.13).The singlevaluedness 
onditions imposed on the odderon wave fun
tion� were found to be ful�lled along the dis
rete sets of 
ontinuous one di-mensional 
urves. These sets are numbered by values of Re h = 1=2 +m=2(m=3 2 Z) and lie e�e
tively in 3 dimensional subspa
e (Im h;Re q3; Im q3).In this way we have obtained numeri
ally the known spe
trum of the Lorentzspin m.Although there are in prin
iple 3 di�erent singlevaluedness 
onditionsobtained by gluing solutions around ea
h of 3 singular points, whi
h haveto be ful�lled simultaneously, it turned out that it was enough to satisfyonly one of them to get a 
omplete set of solutions. It was therefore enoughto 
onsider two singular points, namely �1 for whi
h the solutions of the
hara
teristi
 equation do not depend on h.Finally, we have 
al
ulated the odderon energy along the singlevaluedness
urves q3(h). For all 
ases the energy turned out to be negative whi
hmeans that the odderon inter
ept is smaller than 1. The maximal valueof the odderon energy 
orresponds, as earlier 
onje
tured, to h = 1=2 andq3 = 0:205257506 � i whi
h 
an be seen on Fig. 3.The authors thank J. Wosiek and G. Kor
hemsky for valuable 
ommentsand dis
ussion. We are grateful to J. Wosiek and A. Rostworowski for mak-ing the program for 
al
ulating the odderon energy available to us. Thiswork was partially supported by the Polish State Committee for S
ienti�
Resear
h (KBN) Grant PB 2 P03B 019 17.



Solutions of the Quantization Conditions : : : 683Appendix ADe�nition of series from solutions of the equation for q̂3A.A Solutions around � = �1The solutions of the equation (2.9) around � = �1 have a form (2.11),where 
oe�
ients are de�ned byu(�1)i;0 = 1 ; u(�1)i;1 = ai;0u(�1)i;0 =mi;1 ;u(�1)i;n = �ai;n�1u(�1)i;n�1 + bi;n�2u(�1)i;n�2� =mi;n ; (A.1)while ai;n�1 = �4(n+ si � 1) [(n+ si � 2)(n+ si)� �h℄ + 2�h � 2~q ;bi;n�2 = �(n+ si � 2) [(n+ si � 3)(n+ si)� 2�h℄ + 2�h ;mi;n = 4(n+ si) [(n+ si)(n+ si � 1) + 2=9℄ : (A.2)The upper sign 
orresponds to solutions around � = 1 and the lower one tosolutions around � = �1.A.B Solutions around � =1The 
oe�
ients of solutions of equation (2.15) for q3 6= 0 and h =2 Z we
an write as� for i = 1; 2:u(1)i;0 = 1 ; u(1)i;1 = ai;0u(1)i;0 =mi;1 ;u(1)i;2 = �ai;1u(1)i;1 + bi;0u(1)i;0 � =mi;2 ;u(1)i;3 = �ai;2u(1)i;2 + bi;1u(1)i;1 � =mi;3 ;u(1)i;n = �ai;n�1u(1)i;n�1 + bi;n�2u(1)i;n�2 + 
i;n�4u(1)i;n�4� =mi;n ;(A.3)
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z� for i = 3:u(1)3;0 = 1� h2~q ; u(1)3;1 = 0 ;u(1)3;2 = �a3;1u(1)3;1 + b3;0u(1)3;0 + d3;1u(1)2;1 �=mi;2 ;u(1)3;3 = �a3;2u(1)3;2 + b3;1u(1)3;1 + d3;2u(1)2;2 + f3;0u(1)2;0 �=m3;3 ;u(1)3;4 = �a3;3u(1)3;3 + b3;2u(1)3;2 + 
3;0u(1)3;0 + d3;3u(1)2;3 + f3;1u(1)2;1 �=m3;4 ;u(1)3;n = �a3;n�1u(1)3;n�1 + b3;n�2u(1)3;n�2 + 
3;n�4u(1)3;n�4+d3;n�1u(1)2;n�1 + f3;n�3u(1)2;n�3 + g3;n�5u(1)2;n�5�=mi;n; (A.4)whereai;n�1 = 2~q ;bi;n�2 = 2(n+ ri � 2) [(n+ ri � 1)(n+ ri � 2)� �h � 4=9℄ ;
i;n�4 = �(n+ ri � 4)(n+ ri � 3)(n+ ri � 2) ;di;n�1 = �(n+ ri) [3(n+ ri � 2) + 4℄ + 2(1 + �h) ;fi;n�3 = 2 [(n+ ri � 2)(3(n + ri � 4) + 8)� �h � 4=9℄ ;gi;n�5 = �3(n+ ri � 4)(n+ ri � 2)� 2 ;mi;n = (n+ ri)2(n+ ri � 1)� 2(n+ ri)(1 + �h)� 2�h : (A.5)Similarly the 
oe�
ients for the solution (2.17) for q3 = 0 and h =2 Z have aform u(1;q3=0)i;0 = 1 ; u(1;q3=0)i;2 = bi;0u(1)i;0 =mi;2 ;u(1;q3=0)i;2n = �bi;2(n�1)u(1;q3=0)i;2(n�1) + 
i;2(n�2)u(1;q3=0)i;2(n�2) � =mi;2n : (A.6)Appendix BDe�nition of matri
es 
onne
ted to singlevaluedness 
onstraints on �In Se
tion 3.2 we de�ned quantization 
onditions for operator q̂3. Thematri
es in formula (3.13) have the following formBup = 24�11�12 �21�22 �31�22 +�21�32�11�13 �21�23 �31�23 +�21�33�12�13 �22�23 �32�23 +�22�3335 ; (B.1)



Solutions of the Quantization Conditions : : : 685Blow = Bup(�$ �); (B.2)Bdiag = 24�11�11 �21�21 �31�21 +�21�31�12�12 �22�22 �32�22 +�22�32�13�13 �23�23 �33�23 +�23�3335 : (B.3)We 
an write matri
es from (3.14) asB0up = 266664�11�12 �21�22 �31�22 �21�32 �31�32�11�13 �21�23 �31�23 �21�33 �31�33�12�13 �22�23 �32�23 �22�33 �32�33�12�11 �22�21 �32�21 �22�31 �32�31�13�11 �23�21 �33�21 �23�31 �33�31
377775 ; (B.4)

B0low = 266664�11�12 �21�22 �31�22 �21�32 �31�32�11�13 �21�23 �31�23 �21�33 �31�33�13�12 �23�22 �33�22 �23�32 �33�32�12�11 �22�21 �32�21 �22�31 �32�31�13�11 �23�21 �33�21 �23�31 �33�31
377775 ; (B.5)B0diag = 24�11�11 �21�21 �31�21 �21�31 �31�31�12�12 �22�22 �32�22 �22�32 �32�32�13�13 �23�23 �33�23 �23�33 �33�3335 : (B.6)The matri
es o

urring in (3.15) have a formCup = 24� 11�12 � 21�22 � 31�32� 11�13 � 21�23 � 31�33� 12�13 � 22�23 � 32�3335 ; (B.7)Clow = Cup(� $ � ); (B.8)Cdiag = 24� 11�11 � 21�21 � 31�31� 12�12 � 22�22 � 32�32� 13�13 � 23�23 � 33�3335 : (B.9)Similarly we 
an write matri
es from (3.16) asDup = 24
11
12 
21
22 
31
32
11
13 
21
23 
31
33
13
13 
23
23 
33
3335 ; (B.10)Dlow = 24 
12
11 
22
21 
32
31
13
11 
23
21 
33
31
13
12 �
12
13 
23
22 �
22
23 
33
32 �
32
3335 ;(B.11)
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zDdiag = 2664 
11
11 
21
21 
31
31
12
12 
22
22 
32
32
13
12 +
12
132 
23
22 +
22
232 
33
32 +
32
332 3775 :(B.12)and the matri
es from (3.17) look likeD0up = 24
11
12 
21
22 
31
32
11
13 
21
23 
31
33
12
11 
22
21 
32
3135 ; (B.13)D0low = D0up(
 $ 
); (B.14)D0diag = 266664
11
11 
21
21 
31
31
12
12 
22
22 
32
32
13
12 
23
22 
33
32
12
13 
22
23 
32
33
13
13 
23
23 
33
33
377775 : (B.15)Appendix CManifolds determined by set of M equations in N dimensional spa
eC.A Method of �nding zeros of the fun
tion ~F in N dimensionsWe shall be looking for solutions of a set of equationsFj(x1; x2; : : : ; xN ) = 0 j = 1; 2; : : : ;M: (C.1)Let ~x denote the ve
tor of values xi, and ~F the ve
tor of fun
tions Fj . Letus expand Fj(~x) in a Taylor seriesFj(x1 + Æx1; x1 + Æx1; : : : ; xN + Æxn) = Fj(x1; x2; : : : xN )+ NXi=1 �Fj�xi Æxi +O(Æx2): (C.2)The matrix of partial derivatives appearing in equation (C.2) is the re
tan-gular Ja
obian matrix J . Thus, in matrix notation equation (C.2) reads:~F (~x+ Æ~x) = ~F (~x) + JÆ~x+O(Æ~x 2): (C.3)



Solutions of the Quantization Conditions : : : 687We are interested in zeros of ~F (~x), i.e. we are looking for su
h Æ~x that~F (~x + Æ~x) = 0. Negle
ting terms of the order O(Æ~x 2), we obtain a set oflinear equations for the 
orre
tions Æ~xJÆ~x = �~F : (C.4)Equation (C.4) des
ribes a set of M linear equations with n values ofsolution Æ~x. Ea
h of these equations de�nes (N � 1) dimensional plane inN dimensional spa
e. In order to solve (C.4) we should �nd the interse
tionof these N � 1-planes.One should 
onsider three 
ases:1. If the number of linearly independent equations is equal to the numberof 
oordinates M = N then the set of equations has only one solutionÆ~x;2. If the number of linearly independent equations is lower than the num-ber of 
oordinates M < N and the equations are not 
ontradi
tory,the set (C.4) has an in�nite number of solutions whi
h form a N �Mdimensional plane. Then one sele
ts the solution from this N �Mplane whi
h has the lowest norm.3. In the 
ase when Æ~x doesn't exist, whi
h means that the equationsare 
ontradi
tory, we adopt a pro
edure whi
h tries to �nd some Æ~x 0whi
h de
reases the test fun
tion (C.3). If our set of equations is not
ontradi
tory then the algorithm redu
es itself to two other 
ases.(a) Let m be a number of linearly independent equations whi
h arenot 
ontradi
tory. Then, from the set of equations (C.4) we 
an
onstru
t k sets of m linearly independent equations. Ea
h ofthese sets determinesm entries of theN dimensional ve
tor Æ~x(i) 0.Here i (= 1; : : : ; k) 
orresponds to the ith set of equations.(b) The remaining (N �m) entries are set in a su
h way that Æ~x(i) 0has the lowest norm.(
) Next we 
hoose su
h j that sum of the angles between a ve
-tor Æ~x(j)0 and remaining ve
tors ~x(i)0 is minimal. Æ~x(j) 0 has thenearest dire
tion to the average dire
tion of other ve
tors ~x(i)0.Instead of �nding a zero of the M -dimensional fun
tion ~F we shall belooking for a global minimum of a fun
tionf = 12 ~F � ~F : (C.5)
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zOf 
ourse, there 
an be some lo
al minima of Eq. (C.5) that are not solutionsof Eq. (C.4).Our step Æ~x is usually in the des
ent dire
tion of f~rf � Æ~x = (~FJ) � (�J�1 ~F ) = �~F � ~F < 0 (C.6)whi
h is true if only J�1 exists.It is 
onvenient to de�neg(�) � f(~xold + �~p) ; (C.7)where ~p = Æ~x. We always �rst try the full step i.e. � = 1. If the proposedstep does not redu
e f we ba
ktra
k along the same dire
tion until we havean a

eptable step ~xnew = ~xold + �~p ; 0 < � � 1 ; (C.8)i.e. we look for � whi
h su�
iently redu
es g(�). This is done by approxi-mating g(�) by polynomials in �. Initially we know g(0) and g0(0) and alsog(1) whi
h is known from the �rst trial (� = 1). Sin
e we 
an easily 
al
ulatethe derivative of g(�) g0(�) = ~rf � ~p : (C.9)we 
an approximate g(�) by a quadrati
 polynomial in �:g(�) ' �g(1) � g(0) � g0(0)� �2 + g0(0)�+ g(0) (C.10)and look for the minimum of (C.10). If this step also fails, we model g(�) asa 
ubi
 polynomial in � and so on until the satisfa
tory value of � is found.It is obvious that be
ause of the linearity of the algorithm~F (~x+ Æ~x) = O(Æ~x2) : (C.11)But, if f(~x + Æ~x) � f(~x), then our pro
edure leads towards the solutionof (C.1), provided we are not in a vi
inity of a false (i.e. lo
al) minimumof f . In the latter 
ase we have to 
hange the initial 
onditions and startthe whole pro
edure again.C.B Algorithm for �nding the 
urvesWe shall des
ribe a 
urve as a set of points pla
ed along some pathwhere the distan
e r between all neighboring points, should be 
onstant.By de�nition all points should be zeros of fun
tion ~F .



Solutions of the Quantization Conditions : : : 6891. The input data of our algorithm are:� two points ~y1, ~y2, whi
h should be pla
ed in the vi
inity of thesought 
urve,� distan
e r between these adja
ent points.2. Making use of the algorithm from Se
tion C.A we �nd a root ~x1,situated in the vi
inity of ~y1.3. We de�ne the point ~x1 as a 
enter of a hyperspheri
al 
oordinate sys-tem. Next, we look on the sphere with radius r for the root ~x2 whi
hhas similar 
oordinates as point ~y2.4. We shift the 
enter of the 
oordinate system to the point ~x2 and lookfor a zero of ~F on the hypersphere of radius r in vi
inity of point~yk(k = 3) extrapolated from previously found roots ~xi with i =1; 2; : : : ; k � 1.5. Iterating the above pro
edure we 
onstru
t a 
urve of zeros of ~F .Using this algorithm we 
an �nd not only 
urves, but also k dimensionalhypersurfa
es. This 
an be done by �xing the values of k � 1 
oordinates.Then for ea
h 
hoi
e depending on whi
h 
oordinates were �xed, we 
an�nd 
urves from whi
h we 
an, in prin
iple, re
onstru
t the hypersurfa
e.However, in our 
ase it turned out that the zeros of ~F lie on one dimensional
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