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SOLUTIONS OF THE QUANTIZATION CONDITIONSFOR THE ODDERON CHARGE q3AND CONFORMAL WEIGHT hJan Kota«ski and Mihaª PraszaªowizM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived November 15, 2001)The quantization onditions whih ome from the requirement of thesinglevaluedness of the odderon wave funtion are formulated and solvednumerially in the 4 dimensional spae of the odderon harge q3 and theonformal weight h. It turns out that these onditions are ful�lled alongone dimensional urves parametrized by a disrete set of values of Re h in 3dimensional subspae (Im h; Im q3;Re q3). The odderon energy alulatedalong these urves orresponds in all ases to the interept lower than 1.PACS numbers: 12.38.Cy, 12.38.�t, 11.55.Jy, 12.40.Nn1. IntrodutionThe leading ontribution to the total elasti sattering amplitude of twohadrons (A;B) an be written in Quantum Chromodynamis (QCD) in aso alled Regge limit s!1; t = onst. (1.1)as a power series in a strong oupling onstant �s of the partial amplitudeswith a given number n of reggeized gluons (Reggeons) propagating in the thannel: A(s; t) = 1Xn=2�n�2s An(s; t); (1.2)An(s; t) = iXf�g �n;{nA (t)�n;{nB (t)s�n(t): (1.3)(665)



666 J. Kota«ski, M. PraszaªowizHere {n denotes quantum numbers of the n Reggeon state and the residuefuntions �n;{nA and �n;{nB measure the overlap between the hadroni wavefuntions and the wave funtion of a ompound state of n reggeized gluons.The n-Reggeon's partial amplitudes are proportional to s�n(t) where �n(0)is alled an interept.It is of great importane to alulate the interepts �n(0) in QCD, notonly beause they govern the high energy behavior of the forward elastiamplitudes but also beause, e.g. for n = 2, they are responsible for the smallBjorken x behavior of the deep inelasti struture funtions. The lowestnon-trivial ontribution for n = 2 was alulated in the leading logarithmiapproximation by Balitsky, Fadin, Kureav and Lipatov [1, 2℄, who derivedand solved equation for the Pomeron interept. The equation for three andmore Reggeons was formulated in Refs. [3�5℄. It took, however, almost 20years before the solution for n = 3 was obtained in Refs. [6, 7℄.The real progress started with an observation that the n-Reggeon ex-hange is equivalent to an eigenvalue problem of a Shrödinger like equationwith alulable interation Hamiltonian Ĥn. Here the eigen-energy is re-lated to �n(0) � 1. This Shrödinger problem is exatly solvable [8�10℄whih means that there exist n � 1 integrals of motion (q̂2; : : : ; q̂n) whihommute with Ĥn and among themselves. The eigenvalue of q̂2 is equal�h(h� 1) where h is alled a onformal weight.In the present work we shall onentrate the odderon exhange, i.e. onthe ase with n = 3. It is easier to ondut the alulations in the im-pat parameter spae, that is in the transverse spatial oordinates of nReggeons (xj ; yj). After introduing the omplex oordinates (zj = xj + yj,z�j = xj � yj) for j-th reggeized gluon, the odderon Hamiltonian beomesholomorphially separableĤ3 = Ĥ3 + Ĥ3 = �sN4� 3Xk=1 hĤ(zk; zk+1) + Ĥ(z�k; z�k+1)i ; (1.4)where N is a number olors and z1 = zn+1. The Hamiltonian Ĥ3 is on-formally invariant. Its eigenfuntion is given as a bilinear form � = 	 � 	where 	 (	) is the solution of the Shrödinger equation in the holomorphi(antiholomorphi) setor.There have been many attempts either to diretly �nd the values of E3[11�15℄ or to �nd the spetrum of odderon harge q̂3 [6,16℄. Finally, in Ref. [7℄the singlevaluedness onditions for the wave funtion � were formulated andthe spetrum of q̂3 was found. This allowed to alulate the energy [6℄(hene also the odderon interept) for the onformal weight h = 1�h = 1=2whih supposedly gives the largest ontribution to the elasti amplitude.It is, however, interesting to see expliitly whether h = 1 � h = 1=2 gives



Solutions of the Quantization Conditions : : : 667really the largest interept and whether the there exist other solutions to thesinglevaluedness onditions than the ones found in [7℄. The �rst attempt inthis diretion has been undertaken in Ref. [17℄ where the spetrum of q̂3for arbitrary onformal weight but for non-physial quantization onditionsh = h was found. In Ref. [18℄ the spetrum of q̂3 for the spei� hoie ofthe onformal weight h = 1� h = 1=2 + i� in the limit of small � has beenstudied. This result of Ref. [18℄ was on�rmed and extended for arbitrary �in Ref. [17℄.The values of the onformal the weight h and eigenvalues of q̂3 form afour dimensional spae. In the present work we onstrut an algorithm andnumerial ode whih allows to �nd the points in the (h; q3) spae whihsatisfy the physial quantization onditions h = 1� h and singlevaluednessonditions of Refs. [7,17℄. It turns out that these points form one dimensionalurves in the four dimensional spae (h; q3). We have found families ofurves whih are numbered by disrete values of Re h = 1=2 + m=2 withm 2 3Z. Therefore for given Re h these urves are e�etively embedded in3 dimensional subspae (Im h;Re q3; Im q3).Applying the method from Ref. [6℄ whih allows to alulate the odderonenergy for arbitrary h and q3, we have alulated the odderon energy alongthe singlevaluedness lines q3(h). As expeted, the odderon energy has amaximum for h = 1 � h = 1=2, and is always negative. Our numerialproedures are preise enough to �nd 17 values of q3 for h = 1 � h = 1=2with 9 digits auray.The paper is organized as follows: in Set. 2, following Ref. [17℄, wewrite the odderon equation in terms of variable � suggested in Ref. [19℄ and�nd its solutions around � = �1 and 1. Reurrene relations for the forthese solutions are olleted in Appendix A. Next, in Set. 3, we reapitulatethe method of Ref. [6℄ and onstrut a singlevalued odderon wave funtion� relegating the detailed form of the singlevaluedness onstraints to Ap-pendix B. The resulting spetrum of q3 and h is alulated and disussed inSet. 4. The numerial algorithm used in this Setion is desribed in detailin Appendix C. Finally in Set. 5 we alulate the odderon energy alongthe singlevaluedness urves found in Set. 4. Conlusions are presented inSet. 6.2. Solution of the eigenequation for the odderon harge q̂32.1. Origin of the equationAs already said in the Introdution it is possible to �nd a family ofommuting operators q̂k whih ommute with the holomorphi n-ReggeonHamiltonian Ĥn [8℄: [Ĥn; q̂k℄ = 0; k = 2; : : : ; n : (2.1)



668 J. Kota«ski, M. PraszaªowizIt follows that the Hamiltonian Ĥn and the operators q̂k have the sameset of eigenfuntions. In terms of the holomorphi oordinates q̂k have thefollowing form:q̂k = Xn�i1>i2>���>ik�1 ikzi1i2zi2i3 : : : ziki1�i1�i2 : : : �ik ; (2.2)where k = 2; : : : ; n, zjk � zj � zk and �j � �zj .For the odderon ase, n = 3, we have only 2 operatorsq̂2 = Xn�j>k�1 z2jk�j�k ;q̂3 = Xn�j>k>l�1�izjkzklzlj�j�k�l : (2.3)Following Ref. [8℄ we will use onformally ovariant Ansatz for 		(z1; z2; z3) = zh=3 (x) ; (2.4)wherez = (z1 � z2)(z1 � z3)(z2 � z3)(z1 � z0)2(z2 � z0)2(z3 � z0)2 ; x = (z1 � z2)(z3 � z0)(z1 � z0)(z3 � z2) ; (2.5)h is a onformal weight and z0 represents an arbitrary referene point. Apartiular feature of this Ansatz (2.4) is that q̂2 is automatially diagonalq̂2	(z1; z2; z3) = �h(h� 1)	(z1; z2; z3) : (2.6)In representation (2.4) the eigenvalue equation for q̂3 takes the followingformiq̂3 (x) = �h3�2�h3 � 1� (x� 2)(x+ 1)(2x � 1)x(x� 1)  (x)+ �2x(x� 1)� h3 (h� 1)(x2 � x+ 1)� 0(x)+2x(x� 1)(2x� 1) 00(x) + x2(x� 1)2 000(x) = iq3 (x) : (2.7)Equation (2.7) has been studied in Ref. [7℄ where the quantization on-ditions for q̂3 were found by introduing the singlevaluedness onstraints onthe whole wave funtion of the odderon, �. The singlevaluedness onditionsare muh simpler when we rewrite equation (2.7) in terms of a new variablesuggested in Ref. [19℄



Solutions of the Quantization Conditions : : : 669� = i 13p3 (x� 2)(x+ 1)(2x � 1)x(x� 1) : (2.8)Putting (2.8) into (2.7) we have [17℄�12(�2�1)2 d3d�3 + 2�(�2�1) d2d�2 +�49��h(�2�1)� dd� + �h� + ~q�'(�) = 0 ;(2.9)where �h = (h+ 2)(h � 3)6 ; �h = h2(h� 3)27 ; ~q = q33p3 ;and q3 is the eigenvalue of the operator q̂3.As we shall shortly see the odderon equation (2.9) is less singular thanEq. (2.7) and the solutions of the indiial equation around � = �1 do notdepend on h. 2.2. Solution of the odderon equationThe odderon equation (2.9) has three regular singular points at � = �1,� = 1 and � = 1. We shall solve this equation using the power seriesmethod. It is a third order ordinary di�erential equation therefore it hasthree linearly independent solutions. We an write them as a vetor~u(�; q3) = 264u1(�; q3)u2(�; q3)u3(�; q3)375 : (2.10)2.2.1. Solution of the equation around � = �1Solutions of equation (2.9) around � = �1 have the following form [17℄:u(�1)i (�; q3) = (1� �)si 1Xn=0u(�1)i;n (� � 1)n; (2.11)where si are solutions of the indiial equations1 = 23 ; s2 = 13 ; s3 = 0 (2.12)and do not depend on h. The oe�ients u(�1)i;n are de�ned in Appendix A.



670 J. Kota«ski, M. Praszaªowiz2.2.2. Solutions around � =1The solution of equation (2.9) around � = 1 has a more ompliatedform. In this ase we perform a substitution � = 1=� and then solve theproblem around � = 0:�12(1� �2)2�2 d3ud�3 + �2(1� �2)� � 3�(1 � �2)2� d2ud�2+ ��3(1� �2)2 � 49�2 + (4 + �h)(1� �2)� dud� + ��h 1� + ~q�u = 0 : (2.13)The solutions of the indiial equation ri depend on the onformal weight hr1 = 2h3 ; r2 = 1� h3 ; r3 = �h3 : (2.14)and are idential as the solutions of the indiial equation in the ase ofequation (2.7). Sine r2 � r3 is equal to an integer number, one of thesolutions, u(1)3 (�), ontains a logarithm. The other two di�erenes r2 � r1,r1 � r3 beome integer as well if h is an integer itself. Therefore we have todistinguish several ases.For h =2 Z and q3 6= 0 the solution of (2.9) in viinity of � =1 reads:u(1)1 (�; q3) = �1��r1 1Xn=0 u(1)1;n �1��n ;u(1)2 (�; q3) = �1��r2 1Xn=0 u(1)2;n �1��n ;u(1)3 (�; q3) = �1��r3 1Xn=0 u(1)3;n �1��n ;+u(1)2 (�; q3)Log�1�� ; (2.15)where the logarithm Log(z) is de�ned as:Log(z) = ln jzj+ iArg(z); jArg(z)j < � : (2.16)The oe�ients entering (2.15) are olleted in Appendix A.The remaining ases, i.e. when q3 = 0 and/or h 2 Z 1, should be onsid-ered separately.1 Solutions of the equation (2.13) around � = 1 for h 2 Z are not onsidered in thiswork.



Solutions of the Quantization Conditions : : : 6712.2.3. Solutions around � =1 for q3 = 0It is easy to observe that in equation (A.4) for q3 = 0 the term u(1)3;0 =1�h2~q tends to in�nity. In this ase the solution of equation (2.9) should beonstruted separately. With q3 = 0 and h =2 Z the solution is given byu(1)i (�; q3 = 0) = �1��ri 1Xn=0u(1;q3=0)i;2n �1��2n : (2.17)The oe�ients u(1;q3=0)i;2n are de�ned in Appendix A.2.3. Antiholomorphi setorFor given h and q3 we an �nd the solutions of Eq. (2.9) around allsingular points by means of Eqs. (2.11), (2.15) and (2.17). Analogously, wean onstrut the solutions in the antiholomorphi setor. Here instead ofusing the onformal weight h and harge q3 we use their antiholomorphiequivalents: h and q32. Similarly to Eq. (2.10) we write the three linearlyindependent solutions as a vetor:~v(��; q3) = 264 v1(��; q3)v2(��; q3)v3(��; q3)375 : (2.18)3. Quantization onditions for the odderon harge q̂33.1. Transition matriesEah of the solutions around � = �1;2;3 where �1;2;3 = �1;1 has aonvergene radius equal to the di�erene between two singular points: thepoint around whih the solution is de�ned and the nearest of the remainingsingular points. In order to de�ne the global solution whih is onvergentin the entire omplex plane we have to glue the solutions de�ned arounddi�erent singular points. This an be done by expanding one set of solutionsde�ned around �i in terms of the solutions de�ned around �j for � belongingto the overlap region of the two solutions onsidered. Thus, in the overlapregion we an de�ne the transition matries �, � , 
, where~u(1)(�; q3) = �(q3)~u(�1)(�; q3) ;~u(�1)(�; q3) = � (q3)~u(+1)(�; q3) ;~u(+1)(�; q3) = 
(q3)~u(1)(�; q3) : (3.1)2 bar does not denote omplex onjugation for whih we us an asterisk.



672 J. Kota«ski, M. PraszaªowizMatries �, � and 
 are onstruted in terms of the ratios of er-tain determinants. For example to alulate the matrix � we onstrutthe Wro«skianW = ������� u(+1)1 (�; q3) u(+1)2 (�; q3) u(+1)3 (�; q3)u0(+1)1 (�; q3) u0(+1)2 (�; q3) u0(+1)3 (�; q3)u00(+1)1 (�; q3) u00(+1)2 (�; q3) u00(+1)3 (�; q3)������� : (3.2)Next, we onstrut determinants Wij whih are obtained from W by repla-ing j-th olumn by the i-th solution around � = �1, i.e. for i = 1 and j = 2we have W12 = ������� u(+1)1 (�; q3) u(�1)1 (�; q3) u(+1)3 (�; q3)u0(+1)1 (�; q3) u0(�1)1 (�; q3) u0(+1)3 (�; q3)u00(+1)1 (�; q3) u00(�1)1 (�; q3) u00(+1)3 (�; q3)������� : (3.3)The matrix elements �ij are de�ned as�ij = WijW : (3.4)Matrix � does not depend on �, but only on q3 and h. In a similar waywe an get matries � and 
 and their antiholomorphi equivalents: �, � ,
.3.2. Quantization onditions and singlevaluedness of the wave funtionThe odderon harge q3 is onneted to its antiholomorphi equivalent byq3 = �q�3; (3.5)where an asterisk denotes omplex onjugation. There exist two possiblehoies for q3: the one given by Eq. (3.5) and a similar one with the plussign. This follows from the fat that the eigenvalues of holomorphi and an-tiholomorphi Hamiltonian, "3 and "3, are symmetri funtions of q3 and q3,respetively [20℄. Only one hoie, namely (3.5), leads to the nonvanishingsolution of the quantization onditions3.The odderon wave funtion an be written as [17℄�hhq3q3(z; z�) = zh=3(z�)h=3~v T (��; q3)A(q3; q3)~u(�; q3) ; (3.6)3 Note, that beause of the fator i in the de�nition � (2.8), our q3 has di�erent signthan the one in Ref. [7℄.



Solutions of the Quantization Conditions : : : 673where � = �(z). The wave funtion �hhq3q3(z; z�) ontains the solutions ofequation (2.9) and its antiholomorphi ounterpart, ~u(�; q3) and ~v(��; q3)respetively, and a 3� 3 matrix A(q3; q3) �sewing� the solutions of the bothsetors.The wave funtion � has to be singlevalued. This means that it shouldnot depend on the hoie of the Riemann sheet for the variables z and �. Informula (3.6) the term zh=3(z�)h=3 is uniquely de�ned only if h=3�h=3 2 Z.This leads to the quantization ondition for the onformal weight hh = 12(�+m) + i� and h = 12(��m) + i�; (3.7)where � and � are real and m=3 2 Z. The latter ondition follows fromthe invariane under the Lorentz spin transformations. The normalizationondition of the wave funtion requires that � = 1 for the physial odderonsolution.The fat that the wave funtion � should be singlevalued imposes ertainonditions on the form of matrix A. It follows from Eq. (3.6) that for thesolutions (2.11) around � = �1 the matrix element Aji is multiplied by afator (1� �)si(1� ��)sj . This expression is singlevalued only if si� sj 2 Z.For si of Eq. (2.12) this is true only for i = j. Therefore the matries A(�1)have a diagonal formA(�1)(q3; q3) = 24� 0 00 � 00 0 35 ; A(+1)(q3; q3) = 24�0 0 00 �0 00 0 035 : (3.8)For the solutions around � = 1 (2.15), (2.17), and for h =2 Z, thematrix element Aji is multiplied by a fator (1=�)ri(1=��)rj . One shouldnotie that solutions of the indiial equation r2, r2, r3 and r3 di�er by aninteger4, therefore terms whih orrespond to the elements A23 i A32, do notvanish. Furthermore, terms with a logarithm appear in the solutions u(1)3and v(1)3 for q3 =2 Z. One an see that when A23 = A32 then in the sum theambiguous arguments of the logarithms anel out. Moreover, for q3 =2 Z theterm whih orresponds to the matrix element A33 is not singlevalued. Itontains a square of the logarithm whih does not our in any other terms.For this reason the element A33(q3 6= 0; q3 6= 0) has to vanish.Thus the matries A, de�ned around � =1, have the following formA(1)(q3 6= 0; q3 6= 0)=24� 0 00 � �0 � 035; A(1)(q3 = 0; q3 = 0)=24�0 0 00 �0 �00 & 0 � 035:(3.9)4 r2 and r3 are solutions of the indiial equation in the antiholomorphi setor.



674 J. Kota«ski, M. PraszaªowizSubstituting equation (3.1) into the wave funtion (3.6), one �nds thefollowing onditions for the matries A(q3; q3)�T (q3)A(1)(q3; q3)�(q3) = A(�1)(q3; q3) ; (3.10)� T (q3)A(�1)(q3; q3)� (q3) = A(+1)(q3; q3) ; (3.11)
T (q3)A(+1)(q3; q3)
(q3) = A(1)(q3; q3) : (3.12)Eah of the formulae (3.10)�(3.12) is equivalent to a set of nine equationswhih an be onveniently written in terms of the following 4 vetors:~a = 24��35 ; ~b = 24�0�0035 ; ~ = 24���35 ; ~d = 26664�0�0& 0�0� 037775 ;We an now rewrite equations (3.10), (3.11), (3.12) in the following form:� equation (3.10):� for q3 6= 0 as Bup~ = 0 ; Blow~ = 0 ; Bdiag~ = ~a ; (3.13)� for q3 = 0 as B0up~d = 0 ; B0low ~d = 0 ; B0diag ~d = ~a : (3.14)� equation (3.11) asCup~a = 0 ; Clow~a = 0 ; Cdiag~a = ~b ; (3.15)� equation (3.12):� for q3 6= 0 as Dup~b = 0 ; Dlow~b = 0 ; Ddiag~b = ~ ; (3.16)� for q3 = 0 as D0up~b = 0 ; D0low~b = 0 ; D0diag~b = ~d : (3.17)De�nitions of matries B, C, D : : : are given in Appendix B.Equations (3.13)�(3.17) have nonvanishing solutions only if the determi-nants of matries with subsripts up and low are equal zero. Moreover thereshould exist the unique solutions of these equations: ~a, ~b, ~, ~d whih dependonly on one free parameter whih an be �xed by normalizing the wave fun-tion �. As we shall show in the next Setions these two requirements �xuniquely the �boundary onditions� for the eigen equation of the operatorq̂3 and allow to alulate its spetrum.



Solutions of the Quantization Conditions : : : 6754. Spetrum of the odderon harge q̂34.1. Eigenvalues of q̂3 for h = 1=2Let us �rst disuss physial solutions found in Ref. [7℄ whih orrespondto the onformal weight h = 1=2 and Re q3 = 0. In order to alulatethe eigenvalues q3 we have solved Eqs. (3.13)�(3.17) requiring vanishing ofthe up and low matrix determinants. After that, we have also heked theuniqueness of obtained solutions. The results, also for unphysial values ofq3 with Im q3 = 0 are displayed in Table I. Entries labeled from 0 to 4, 12and 13 agree with the ones of Refs. [7,17℄, while the remaining ones are new.TABLE IEigenvalues of the odderon harge q3 for h = 1=2.No. q3 No. q3 No. q30 0 6 68:600522343i 12 1:4753274241 0:205257506i 7 109:214406900i 13 12:9470470372 2:343921063i 8 163:296192765i 14 44:4138301633 8:326345902i 9 232:769867177i 15 105:8726146154 20:080496894i 10 319:559416811i 16 207:3207060515 39:530550304i 11 425:588828106i 17 358:755426678In fat the eigenvalues q3 for h = 1=2 form a disrete set of pointssymmetrially distributed on the real and omplex axis in omplex q3 plane.Therefore in Table I only a half of the spetrum is displayed. It has beenshown [6,7℄ that only the imaginary values of q3 are relevant for the odderonproblem; real eigenvalues orrespond to a wave funtion whih is not totallysymmetri under the exhange of the neighboring Reggeons. There existsalso one eigenvalue q3 = 0 whih does not orrespond to a normalizablesolution [20℄, see however [21℄.4.2. Eigenvalues q̂3 for the arbitrary onformal weights hAs seen from Eq. (3.7) the onformal weight h depends on two parame-ters: m=3 2 Z and � 2 R. In order to �nd the manifolds on whih onditions(3.13)�(3.17) are satis�ed we have extended the domain of h and allowed mto be any real number. This de�nes a four dimensional spae of the onfor-mal weight and the odderon harge (h; q3) 2 R4 . In eah group of equations(3.13)�(3.17) there are two equations whih ontain matries with subsripts`up' and `low'. The determinants of these two matries are omplex, so wean de�ne the following fourvalued funtions:



676 J. Kota«ski, M. Praszaªowiz
fB : (Re h; Im h;Re q3; Im q3) �!((Re(detBup); Im(detBup);Re(detBlow); Im(detBlow)) for q3 6= 0�Re(detB0up); Im(detB0up);Re(detB0low); Im(detB0low)� for q3 = 0 ;(4.1)fC : (Re h; Im h;Re q3; Im q3) �!(Re(detCup); Im(detCup);Re(detClow); Im(detClow)) ; (4.2)fD : (Re h; Im h;Re q3; Im q3) �!((Re(detDup); Im(detDup);Re(detDlow); Im(detDlow)) for q3 6= 0�Re(detD0up); Im(detD0up);Re(detD0low); Im(detD0low)� for q3 = 0 :(4.3)Thus, in order to alulate the spetrum of the operator q̂3, we should�nd ommon zeros of all funtions fB , fC and fD:fB = 0; fC = 0; fD = 0: (4.4)Furthermore one should verify the uniqueness of the solutions for (3.13)�(3.17).In Appendix C we have desribed the numerial algorithm onstrutedto �nd roots of Eqs. (4.4). Our numerial �ndings an be summarized asfollows:1. Although we have formally allowed m to be a ontinuous real parame-ter, the solutions of Eqs. (4.4) exist only for m=3 2 Z (e.g. Re h = 1=2or Re h = 2).2. For the above disrete values of m, that is for �xed Re h, the solu-tions of Eqs. (4.4) form ontinuous urves in 3 dimensional subspae(Im h;Re q3; Im q3).3. It turned out that eah of 3 equations (4.4) yields the same set ofurves, provided that the solutions of Eqs. (3.13)�(3.17) are unique.In the following we disuss two sets of solutions to Eqs. (4.4), namely forRe h = 1=2 and Re h = 2.



Solutions of the Quantization Conditions : : : 6774.2.1. Spetrum of q̂3 for Re(h) = 1=2In �gure 1 we plot spetrum of the odderon harge q̂3 as a funtion ofh for Re h = 1=2. One an see two sets of urves: the ones in the planeof Re q3 = 0 and in the perpendiular plane of Im q3 = 0 and the lineq3 = 0 whih belongs to the both lasses. For all these urves, exept forq3 = 0, the minimum of jq3j ours for h = 1=2. Going away from thispoint the absolute value of q3 inreases monotonially. Minimal values ofjq3j orrespond to the points listed in Table I. We have not found any urveloated outside of Re q3 = 0 or Im q3 = 0 planes.
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Solutions of the Quantization Conditions : : : 6794.2.3. Case for q3 = 0During the numerial omputations we have notied that similarly to theother matries A, the matrix A(1)(q3 = 0; q3 = 0) depends only on threeparameters. The remaining ones vanish identially. In the ase Re h = 1=2,& 0 and �0 vanish and for Re h = 2, �0 = � 0 = 0.5. Odderon energyThe odderon energy is de�ned as [20℄E3 = �sN4� �"3(h; q3) + �"3(�h; �q3)� = �sN2� Re("3(h; q3)) ; (5.1)where "3 and �"3 are the largest eigenvalues of the holomorphi and antiholo-morphi odderon Hamiltonian, respetively. Applying the Bethe Ansatz wehave for n = 3 [20, 24℄"3 = i _Q3(�i)Q3(�i) � _Q3(i)Q3(i)!� 6 ; (5.2)where Q3(�) satis�es the following Baxter equation [25℄:(�+ i)3Q3(�+ i) + (�� i)3Q3(�� i)� (2�3 + �q2 + q3)Q3(�) = 0 : (5.3)Equation (5.3) was solved in Ref. [6℄ by a substitution�kQk(�) = ZCz dz2�iK(z; �)P̂ kQ(z)�i kXm=1 ZCz dz2�i ddz hz(z � 1)L̂k�mK(z; �)P̂m�1Q(z)i ; (5.4)whereK(z; �) = z�i��1(z� 1)i��1; L̂ = ��i ddz z(z � 1)� ; P̂ = �iz(z � 1) ddz� :(5.5)Choosing the proper integration ontour Cz and boundary onditions onearrives at a di�erential equation for Q(z):"�z(z � 1) ddz�3 � q2z2(z � 1)2 ddz � iq3z(1 � z)#Q(z) = 0 : (5.6)



680 J. Kota«ski, M. PraszaªowizSimilarly to the solutions of equation (2.9), the solutions of Eq. (5.6) dependon the onformal weight h and the odderon harge q3. Using the spetrumq3(h) alulated in the last setion, we have alulated the energy of theodderon along the urves from �gures 1 and 2.Analyzing the spetra of energy we an onlude that the odderon energyis always negative. This means that the interept�(t = 0) = E3 + 1 (5.7)is lower than one, so the odderon partial amplitude A3(s; t) (1.3) is desribedby the onvergent series in Regge limit (1.1).5.1. Spetrum of the energy for Re h = 1=2 TABLE IIMaximal values of Re("3) for Re h = 1=2.q3 Re("3)0 �0:738010:20526i �0:494342:34392i �5:169301:47533 �4:23462In �gure 3 we plot a real part of the holomorphi odderon energy Re("3)as a funtion of Im h. The piture is plotted for urves from �gure 1, thatis for Re h = 1=2. All these urves have a maximum in h = 1=2. Themaximal values are displayed in Table II. Going away from the maximum,the energy dereases monotonially. Our results agree with the values fromRef. [7℄. The energy spetrum has the following symmetryh �! 1� h : (5.8)5.2. Spetrum of the energy for Re h = 2In �gure 4, similarly to Fig. 3, we plot Re("3) as a funtion of Im h forurves from �gure 2, that is for Re h = 2. In this ase the urves in (h; q3)spae have muh more ompliated harater and loation of the energymaxima ours not always for Im h = 0.For plots I, VI, Re("3) has a maximum in h = 2. In others ases theenergy has a maximum in viinity of h = 2, i.e. for the II-nd urve the energyhas a maximum in (h = 2:0 + 0:107i; q3 = �3:508 + 2:050i). The maximalvalues of energy are given in Table III. Similarly to the ase of Re h = 1=2going away from the maximum, energy dereases monotonially.
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682 J. Kota«ski, M. Praszaªowiz TABLE IIIMaximal value Re("3) for Re h = 2.urve symbols Re("3)I �7:21II, III �6:27IV, V �8:51VI �4:00spei� values of h [6,18,22,23℄ or for arbitrary h but unphysial quantizationondition h = h [17℄. To this end we have onstruted and implemented thealgorithm whih is in detail desribed in Appendix C. This algorithm anbe easily extended to more dimensional ases [26℄.The alulations were performed in the holomorphi variable � whihrespets Bose symmetry and was proposed in Refs. [17, 19℄. The odderonequation (2.9) is a third order ordinary di�erential equation with three regu-lar singular points at � = �1, 1 and 1. Solutions around � = �1 have beenalready found in Ref. [17℄. Here we have also alulated solutions around� =1 (2.13).The singlevaluedness onditions imposed on the odderon wave funtion� were found to be ful�lled along the disrete sets of ontinuous one di-mensional urves. These sets are numbered by values of Re h = 1=2 +m=2(m=3 2 Z) and lie e�etively in 3 dimensional subspae (Im h;Re q3; Im q3).In this way we have obtained numerially the known spetrum of the Lorentzspin m.Although there are in priniple 3 di�erent singlevaluedness onditionsobtained by gluing solutions around eah of 3 singular points, whih haveto be ful�lled simultaneously, it turned out that it was enough to satisfyonly one of them to get a omplete set of solutions. It was therefore enoughto onsider two singular points, namely �1 for whih the solutions of theharateristi equation do not depend on h.Finally, we have alulated the odderon energy along the singlevaluednessurves q3(h). For all ases the energy turned out to be negative whihmeans that the odderon interept is smaller than 1. The maximal valueof the odderon energy orresponds, as earlier onjetured, to h = 1=2 andq3 = 0:205257506 � i whih an be seen on Fig. 3.The authors thank J. Wosiek and G. Korhemsky for valuable ommentsand disussion. We are grateful to J. Wosiek and A. Rostworowski for mak-ing the program for alulating the odderon energy available to us. Thiswork was partially supported by the Polish State Committee for Sienti�Researh (KBN) Grant PB 2 P03B 019 17.



Solutions of the Quantization Conditions : : : 683Appendix ADe�nition of series from solutions of the equation for q̂3A.A Solutions around � = �1The solutions of the equation (2.9) around � = �1 have a form (2.11),where oe�ients are de�ned byu(�1)i;0 = 1 ; u(�1)i;1 = ai;0u(�1)i;0 =mi;1 ;u(�1)i;n = �ai;n�1u(�1)i;n�1 + bi;n�2u(�1)i;n�2� =mi;n ; (A.1)while ai;n�1 = �4(n+ si � 1) [(n+ si � 2)(n+ si)� �h℄ + 2�h � 2~q ;bi;n�2 = �(n+ si � 2) [(n+ si � 3)(n+ si)� 2�h℄ + 2�h ;mi;n = 4(n+ si) [(n+ si)(n+ si � 1) + 2=9℄ : (A.2)The upper sign orresponds to solutions around � = 1 and the lower one tosolutions around � = �1.A.B Solutions around � =1The oe�ients of solutions of equation (2.15) for q3 6= 0 and h =2 Z wean write as� for i = 1; 2:u(1)i;0 = 1 ; u(1)i;1 = ai;0u(1)i;0 =mi;1 ;u(1)i;2 = �ai;1u(1)i;1 + bi;0u(1)i;0 � =mi;2 ;u(1)i;3 = �ai;2u(1)i;2 + bi;1u(1)i;1 � =mi;3 ;u(1)i;n = �ai;n�1u(1)i;n�1 + bi;n�2u(1)i;n�2 + i;n�4u(1)i;n�4� =mi;n ;(A.3)



684 J. Kota«ski, M. Praszaªowiz� for i = 3:u(1)3;0 = 1� h2~q ; u(1)3;1 = 0 ;u(1)3;2 = �a3;1u(1)3;1 + b3;0u(1)3;0 + d3;1u(1)2;1 �=mi;2 ;u(1)3;3 = �a3;2u(1)3;2 + b3;1u(1)3;1 + d3;2u(1)2;2 + f3;0u(1)2;0 �=m3;3 ;u(1)3;4 = �a3;3u(1)3;3 + b3;2u(1)3;2 + 3;0u(1)3;0 + d3;3u(1)2;3 + f3;1u(1)2;1 �=m3;4 ;u(1)3;n = �a3;n�1u(1)3;n�1 + b3;n�2u(1)3;n�2 + 3;n�4u(1)3;n�4+d3;n�1u(1)2;n�1 + f3;n�3u(1)2;n�3 + g3;n�5u(1)2;n�5�=mi;n; (A.4)whereai;n�1 = 2~q ;bi;n�2 = 2(n+ ri � 2) [(n+ ri � 1)(n+ ri � 2)� �h � 4=9℄ ;i;n�4 = �(n+ ri � 4)(n+ ri � 3)(n+ ri � 2) ;di;n�1 = �(n+ ri) [3(n+ ri � 2) + 4℄ + 2(1 + �h) ;fi;n�3 = 2 [(n+ ri � 2)(3(n + ri � 4) + 8)� �h � 4=9℄ ;gi;n�5 = �3(n+ ri � 4)(n+ ri � 2)� 2 ;mi;n = (n+ ri)2(n+ ri � 1)� 2(n+ ri)(1 + �h)� 2�h : (A.5)Similarly the oe�ients for the solution (2.17) for q3 = 0 and h =2 Z have aform u(1;q3=0)i;0 = 1 ; u(1;q3=0)i;2 = bi;0u(1)i;0 =mi;2 ;u(1;q3=0)i;2n = �bi;2(n�1)u(1;q3=0)i;2(n�1) + i;2(n�2)u(1;q3=0)i;2(n�2) � =mi;2n : (A.6)Appendix BDe�nition of matries onneted to singlevaluedness onstraints on �In Setion 3.2 we de�ned quantization onditions for operator q̂3. Thematries in formula (3.13) have the following formBup = 24�11�12 �21�22 �31�22 +�21�32�11�13 �21�23 �31�23 +�21�33�12�13 �22�23 �32�23 +�22�3335 ; (B.1)



Solutions of the Quantization Conditions : : : 685Blow = Bup(�$ �); (B.2)Bdiag = 24�11�11 �21�21 �31�21 +�21�31�12�12 �22�22 �32�22 +�22�32�13�13 �23�23 �33�23 +�23�3335 : (B.3)We an write matries from (3.14) asB0up = 266664�11�12 �21�22 �31�22 �21�32 �31�32�11�13 �21�23 �31�23 �21�33 �31�33�12�13 �22�23 �32�23 �22�33 �32�33�12�11 �22�21 �32�21 �22�31 �32�31�13�11 �23�21 �33�21 �23�31 �33�31
377775 ; (B.4)

B0low = 266664�11�12 �21�22 �31�22 �21�32 �31�32�11�13 �21�23 �31�23 �21�33 �31�33�13�12 �23�22 �33�22 �23�32 �33�32�12�11 �22�21 �32�21 �22�31 �32�31�13�11 �23�21 �33�21 �23�31 �33�31
377775 ; (B.5)B0diag = 24�11�11 �21�21 �31�21 �21�31 �31�31�12�12 �22�22 �32�22 �22�32 �32�32�13�13 �23�23 �33�23 �23�33 �33�3335 : (B.6)The matries ourring in (3.15) have a formCup = 24� 11�12 � 21�22 � 31�32� 11�13 � 21�23 � 31�33� 12�13 � 22�23 � 32�3335 ; (B.7)Clow = Cup(� $ � ); (B.8)Cdiag = 24� 11�11 � 21�21 � 31�31� 12�12 � 22�22 � 32�32� 13�13 � 23�23 � 33�3335 : (B.9)Similarly we an write matries from (3.16) asDup = 24
11
12 
21
22 
31
32
11
13 
21
23 
31
33
13
13 
23
23 
33
3335 ; (B.10)Dlow = 24 
12
11 
22
21 
32
31
13
11 
23
21 
33
31
13
12 �
12
13 
23
22 �
22
23 
33
32 �
32
3335 ;(B.11)



686 J. Kota«ski, M. PraszaªowizDdiag = 2664 
11
11 
21
21 
31
31
12
12 
22
22 
32
32
13
12 +
12
132 
23
22 +
22
232 
33
32 +
32
332 3775 :(B.12)and the matries from (3.17) look likeD0up = 24
11
12 
21
22 
31
32
11
13 
21
23 
31
33
12
11 
22
21 
32
3135 ; (B.13)D0low = D0up(
 $ 
); (B.14)D0diag = 266664
11
11 
21
21 
31
31
12
12 
22
22 
32
32
13
12 
23
22 
33
32
12
13 
22
23 
32
33
13
13 
23
23 
33
33
377775 : (B.15)Appendix CManifolds determined by set of M equations in N dimensional spaeC.A Method of �nding zeros of the funtion ~F in N dimensionsWe shall be looking for solutions of a set of equationsFj(x1; x2; : : : ; xN ) = 0 j = 1; 2; : : : ;M: (C.1)Let ~x denote the vetor of values xi, and ~F the vetor of funtions Fj . Letus expand Fj(~x) in a Taylor seriesFj(x1 + Æx1; x1 + Æx1; : : : ; xN + Æxn) = Fj(x1; x2; : : : xN )+ NXi=1 �Fj�xi Æxi +O(Æx2): (C.2)The matrix of partial derivatives appearing in equation (C.2) is the retan-gular Jaobian matrix J . Thus, in matrix notation equation (C.2) reads:~F (~x+ Æ~x) = ~F (~x) + JÆ~x+O(Æ~x 2): (C.3)



Solutions of the Quantization Conditions : : : 687We are interested in zeros of ~F (~x), i.e. we are looking for suh Æ~x that~F (~x + Æ~x) = 0. Negleting terms of the order O(Æ~x 2), we obtain a set oflinear equations for the orretions Æ~xJÆ~x = �~F : (C.4)Equation (C.4) desribes a set of M linear equations with n values ofsolution Æ~x. Eah of these equations de�nes (N � 1) dimensional plane inN dimensional spae. In order to solve (C.4) we should �nd the intersetionof these N � 1-planes.One should onsider three ases:1. If the number of linearly independent equations is equal to the numberof oordinates M = N then the set of equations has only one solutionÆ~x;2. If the number of linearly independent equations is lower than the num-ber of oordinates M < N and the equations are not ontraditory,the set (C.4) has an in�nite number of solutions whih form a N �Mdimensional plane. Then one selets the solution from this N �Mplane whih has the lowest norm.3. In the ase when Æ~x doesn't exist, whih means that the equationsare ontraditory, we adopt a proedure whih tries to �nd some Æ~x 0whih dereases the test funtion (C.3). If our set of equations is notontraditory then the algorithm redues itself to two other ases.(a) Let m be a number of linearly independent equations whih arenot ontraditory. Then, from the set of equations (C.4) we anonstrut k sets of m linearly independent equations. Eah ofthese sets determinesm entries of theN dimensional vetor Æ~x(i) 0.Here i (= 1; : : : ; k) orresponds to the ith set of equations.(b) The remaining (N �m) entries are set in a suh way that Æ~x(i) 0has the lowest norm.() Next we hoose suh j that sum of the angles between a ve-tor Æ~x(j)0 and remaining vetors ~x(i)0 is minimal. Æ~x(j) 0 has thenearest diretion to the average diretion of other vetors ~x(i)0.Instead of �nding a zero of the M -dimensional funtion ~F we shall belooking for a global minimum of a funtionf = 12 ~F � ~F : (C.5)



688 J. Kota«ski, M. PraszaªowizOf ourse, there an be some loal minima of Eq. (C.5) that are not solutionsof Eq. (C.4).Our step Æ~x is usually in the desent diretion of f~rf � Æ~x = (~FJ) � (�J�1 ~F ) = �~F � ~F < 0 (C.6)whih is true if only J�1 exists.It is onvenient to de�neg(�) � f(~xold + �~p) ; (C.7)where ~p = Æ~x. We always �rst try the full step i.e. � = 1. If the proposedstep does not redue f we baktrak along the same diretion until we havean aeptable step ~xnew = ~xold + �~p ; 0 < � � 1 ; (C.8)i.e. we look for � whih su�iently redues g(�). This is done by approxi-mating g(�) by polynomials in �. Initially we know g(0) and g0(0) and alsog(1) whih is known from the �rst trial (� = 1). Sine we an easily alulatethe derivative of g(�) g0(�) = ~rf � ~p : (C.9)we an approximate g(�) by a quadrati polynomial in �:g(�) ' �g(1) � g(0) � g0(0)� �2 + g0(0)�+ g(0) (C.10)and look for the minimum of (C.10). If this step also fails, we model g(�) asa ubi polynomial in � and so on until the satisfatory value of � is found.It is obvious that beause of the linearity of the algorithm~F (~x+ Æ~x) = O(Æ~x2) : (C.11)But, if f(~x + Æ~x) � f(~x), then our proedure leads towards the solutionof (C.1), provided we are not in a viinity of a false (i.e. loal) minimumof f . In the latter ase we have to hange the initial onditions and startthe whole proedure again.C.B Algorithm for �nding the urvesWe shall desribe a urve as a set of points plaed along some pathwhere the distane r between all neighboring points, should be onstant.By de�nition all points should be zeros of funtion ~F .



Solutions of the Quantization Conditions : : : 6891. The input data of our algorithm are:� two points ~y1, ~y2, whih should be plaed in the viinity of thesought urve,� distane r between these adjaent points.2. Making use of the algorithm from Setion C.A we �nd a root ~x1,situated in the viinity of ~y1.3. We de�ne the point ~x1 as a enter of a hyperspherial oordinate sys-tem. Next, we look on the sphere with radius r for the root ~x2 whihhas similar oordinates as point ~y2.4. We shift the enter of the oordinate system to the point ~x2 and lookfor a zero of ~F on the hypersphere of radius r in viinity of point~yk(k = 3) extrapolated from previously found roots ~xi with i =1; 2; : : : ; k � 1.5. Iterating the above proedure we onstrut a urve of zeros of ~F .Using this algorithm we an �nd not only urves, but also k dimensionalhypersurfaes. This an be done by �xing the values of k � 1 oordinates.Then for eah hoie depending on whih oordinates were �xed, we an�nd urves from whih we an, in priniple, reonstrut the hypersurfae.However, in our ase it turned out that the zeros of ~F lie on one dimensionalurves. REFERENCES[1℄ E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Zh. Eksp. Teor. Fiz. 71, 840 (1976).[2℄ Ya.Ya. Balitzky, L.N. Lipatov, Yad. Fiz. 28, 1597 (1978).[3℄ J. Bartels, Nul. Phys. B175, 365 (1980).[4℄ J. Kwiei«ski, M. Praszaªowiz, Phys. Lett. B94, 413 (1980).[5℄ T. Jaroszewiz, Triest preprint IC/80/175, see also Ata Phys. Pol. B11, 965(1980).[6℄ R. Janik, J. Wosiek, Phys. Rev. Lett. 79, 2935 (1997).[7℄ R. Janik, J. Wosiek, Phys. Rev. Lett. 82, 1092 (1999).[8℄ L.N. Lipatov, Phys. Lett. B309, 394 (1993).[9℄ L. Lipatov, Sov. Phys. JETP 63, 904 (1986).[10℄ L.D. Faddeev, G.P. Korhemsky, Phys. Lett. B342, 311 (1994).[11℄ P. Gauron, L. Lipatov, B. Niolesu, Phys. Lett. B260, 407 (1991).
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