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Kaon-nucleus scattering has been analyzed using an equivalent local
potential to calculate the differential elastic, total, and reaction cross sec-
tions from 2H, ®Li, '2C, 28Si, and °Ca at kaon lab momenta ranging from
488 to 800 MeV/c. The DWUCK4 computer program was used to pre-
dict observables of kaon—nucleus scattering. Our results are successfully
compared to recent data.

PACS numbers: 25.80.Dj, 25.80.Ek, 25.80.Gn

1. Introduction

The first studies of elastic scattering of K+ from '2C and “°Ca gave
cross sections larger than the predictions of optical model theories [1], and
total cross sections for K™ mesons on several nuclei at a range of kaon
lab momenta also exceeded model expectations [2]|, as an indication that
the nucleons within the nuclear medium do not behave as they do in free
space. These observations led to several suggestions on how to remove the
problem, including the interesting suggestion that medium modification such
as nuclear swelling or meson mass scaling might be responsible for the lack
of agreement with experimental data.

Many pion—nucleus reaction models are built on the distorted-wave im-
pulse approximation DWIA, using the interaction of the meson with free
nucleons. The DWTA pion optical potential [3,4] has been modified to treat
KT -nucleus scattering, by changing the mass of the projectile and by alter-
ing the isospin couplings in the new code DOKAY [5], to describe a range
of Kt-nucleus observables.

It should be remarked here that all the previous calculations of K*-nu-
cleus, which are based on the impulse approximation, fall lower than the
experimental data. The DOKAY code [5] with a variable Scale Factor SF
multiplies the real and imaginary amplitudes for each KT-nucleon collision
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within a nucleus, representing a medium enhancement factor for K+t-N
interaction. Increasing both the real and imaginary amplitudes by about
10-20% gave results nearer to the data [5]. The required enhancement for
or is larger than for differential elastic and inelastic scattering cross sec-
tions, this indicates that the imaginary part of K™-N coupling needs to
be enhanced as found in [6]. Reaction cross sections are almost indepen-
dent of the real amplitudes, while differential elastic and inelastic scattering
cross sections depend about equally on both parts of the optical potential
or amplitude [5].

In the present work a quite different approach — Distorted Wave Born
Approximation DWBA — is considered. It is well known that the interaction
between an incident particle and a target in the Impulse Approximation, TA,
is the sum of the interaction between the projectile and each individual target
nucleon over all nucleons in the target nucleus, while in Born Approximation,
BA, that interaction is expressed in terms of the interaction between the
projectile and the whole target nucleus. In a previous work [7], the local
equivalent potential together with the DWUCK4 code [8] were employed
to successfully predict the angular distributions of 7% elastically scattered
from different nuclei in the (3,3) resonance region. This success motivated
us to apply the same method for kaon—nucleus elastic scattering with the
necessary modifications required for the present case.

Here, the angular distributions of kaons elastically scattered from SLi,
12¢C, and *°Ca at 635, 715, and 800 MeV/c kaon lab momenta are calcu-
lated using the local equivalent potential of Johnson and Satchler [9] and
DWUCK4 computer code. Reaction and total cross sections for elastically
scattered kaons from 6Li, 12C, 28Si, and 4°Ca in the momentum range from
488 to 714 MeV /c are calculated and compared to the corresponding cross
sections of Friedman et al. [10]. This is the first use of the DWUCK4 com-
puter code to describe kaon—nucleus scattering within the framework of the
local optical model.

Different forms of nuclear matter distribution for targets are used. In
Section 2 the method employed in this work is presented while Section 3
contains results and discussion. Conclusions are presented in Section 4.

2. Method

We have used the great similarity between the pion and kaon to carry
out a parallel analysis of K T-nucleus scattering, using a local optical po-
tential. Both mesons are pseudoscalar, and this limits their coupling with
nucleons in the same way. We began with the distorted-wave Born approxi-
mation code DWUCK4 [8], since the DWUCK4 program is widely available.
The DWUCK4 code solves the nonrelativistic Schrodinger equation and was
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originally written to calculate the scattering and reaction observables for
binary nuclear reactions.

The equivalent local potential of Johnson and Satchler [9] is used to
analyze the differential elastic, total and reaction cross sections of kaons
from SLi, 12C, 28Si, and °Ca at kaon lab momenta ranging from 488 to 800
MeV /¢, where the local potentials are easier to visualize than the nonlocal
versions. For the Kisslinger nonlocal potential, Johnson and Satchler [9]
used the Krell-Ericson transformation, which leads from the Klein—-Gordon
equation for pion scattering to a local potential for the transformed wave
function. Thus, a standard nonrelativistic optical model computer program
may be used to calculate the angular distribution for a kaon scattered from a
nucleus. Such a program should be provided with an effective kaon mass, the
target mass and an effective kaon energy. The transformed wave function )
satisfies a Schrodinger equation:

{=(W?/2u)V? + Ur + Vet = Bem ). (1)
Uy, is the nuclear local transformed potential and is used here as follows:
UL(r) = N(Un(r) + AUc(r)), (2)
N is the renormalization factor, the Coulomb correction term is [9]:

a(r)Ve — (V¢/2w)

A =
Ue 1—a(r) ’

(3)

and the nuclear local potential is decomposed [9] into:

UN(’I") = Ul(T) + UQ(’I") + U3(7‘) , (4)
where
_(0?_al)
i(r) 2w 1—ar)’
0)? kKa(r
alr) = _(ch 1k— 05(3)’
2 Iv2a(r 1a(r) )’
Us(r) = _(chj iv— a((r)) + (12Yoz((r))> ' (5)

The quantity ¢(r) mainly results from the s-wave part and «(r) results
from the p-wave part of the kaon-nucleon interaction, ¢(r) and «(r) can
be expressed in terms of the target nuclei density distributions and their
gradients. Both are complex and energy dependent.
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The predominantly s-wave interaction term ¢(r) may be written as [9]:

q(r) = qo(r) + Aq(r), (6)

where ¢, (r) is purely s-wave and is used here as:
qo(r) = —4mp1(bop — b1Ap) (7)
the p-wave part of ¢(r) is considered here as:
Aq(r) = —3eV2a(r). ®)

The p-wave part includes the Ericson—-Ericson Lorentz—Lorentz (EELL) [11]
correction { for the term linear in the density,

o)
olr) =17 Lean(r)’ ©)

where
051(’}”) — 47T(COIO ClA,O) ) (10)
Y4
The kinematic transformation factor is p; = (1+¢) with ¢ = w,/M¢c? and M
is the mass of a nucleon and w, is the total energy of the kaon in the centre-
of-mass system. We use py,, pp for the neutron, proton density distributions
of the target nucleus, with p = p, + p, for the total and Ap = p, — p, for
the difference; the excess neutron density. We also use pp, = p? as in [4];
other authors [12] replace pp, by 4pppp.
The first-order interaction parameters b; and c; are related to the free
pion—nucleon scattering through the phase shifts dy(¢) in the usual form [13],

4t

Ao = Wp1(2831+811),
by — M
0 dmpy
8
AaD = W}%(%l —S11) »
k2 M
by = —— (11)

8mp1
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and

47
)\po(l) = W(legg + 2p31 + 2p13 +p11),
1
plkz(ao)
cho = —(—,

47
(1) 871'

= —— (2 e —
Py 3k3p1( P33 + P31 — 2p13 — pu1),

1)
y4! >\p1 (
=2 12
“ 8t (12)
where for s-waves (s,; ,,(¢)) and for p-waves (p,,,;(q)) are related to the
phase shifts according to the equation:

8510 (@) (Or Py 5, (q)) = explide(q)]sin de(q) - (13)

Here I is the total isospin of a kaon and a nucleon, J is their total angular
momentum quantum number and £ is the orbital angular momentum quan-
tum number. The phase shifts dy(¢q) are extracted from the SP92 solution
of the phase shift compilation SAID code [14].

In this work, the second order interaction parameters are neglected [12]
and four values of the EELL parameter are considered, namely ¢ = 0.0, 1.0,
1.2, and 1.8, where we used these different values of { to show its effect
on our calculations. Here, Vi is the Coulomb potential due to the uniform
charge distribution of the target nucleus of radius Rc = r,AY3, A is the
target mass number, r¢ = 1.2 fm 7] and p = Mymt /(M) +mT), where mr
is the target mass and the effective kaon mass My, [15] is:

My, = ypmy (14)
where N K
_ YT _ Mg — ¢
T A2+ 2 1/2’y_mT’%Z 1+mk02.
) Y,

K, is the kaon bombarding energy in the laboratory system and m, is the
kaon mass. Here mk02:493.707 MeV has been used. The center-of-mass

kinetic energy E.m. is :
hk)?
Ec.m. = (213 ) (15)
with Ak is the center-of-mass momentum of the incident kaon. The effective
bombarding energy E, [15] is:

Eg — Ecm(Mk + mT)/mT ) (16)
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which will generate the appropriate wave number k value in the form:

b= () [ =17 = 472086m [y - 12t (17)
where m;=0.53 atomic mass unit (a.u.). The kinematic parameters for the
cases studied here are calculated using Eqgs. (14)—(17). The resulting kine-
matic parameter values for the cases studied here are collected in Table 1.

TABLE I
Kinematic factors for use in a nonrelativistic Schrédinger equation used in present work
with kaon lab. momentum Pj,y,.

Target Plap,(MeV/e)  Er(MeV) My (u) k (fm~—1) p1

614 715 318.23 0.85304 3.155 1.6224

2¢ 635 260.54 0.82852 3.012 1.7105

715 307.72 0.888776 3.368 1.7586

800 358.41 0.95457 3.751 1.8106

100y 800 346.34 0.99142 3.955 1.9433

To show the influence of density distribution of nucleons for the consid-
ered nuclei on our calculations we used different formulae of density shape.
The charge distribution of 6Li was described in the form [16]:

3 1 —r2 c? (662 — 7'2) —r2
pr) = o [a—gexp(w) e (E) ()

with ¢ = 0.928 fm, b = 1.26 fm, and ¢ = 0.48 fm. Here, distributions of
neutrons and protons within ®Li nucleus are taken to be the same, since it
is a light nucleus. We used the harmonic oscillator form for 6Li and '2C
nuclear densities:

r\2 —r?
pur) = pol1 + (L) Yexp (—) , (19)
a a
with parameters taken from Refs. [5,17]. Also, we used the three parameter
Fermi shape distribution of nucleons for '2C and *°Ca with parameters taken
from Ref. [7]:
ool + wr?/c?)

1 +exp((r —c)/a)]’
as well as two-parameter Fermi (2PF) form which is easily obtained from
the above expression of 3PF as w = 0.0. p, can be evaluated from the
normalization condition:

Pm (’r) = [ (20)

/pm(r)dr =A. (21)
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3. Results and discussion

To solve Eq. (1) for kaon elastic scattering from a nucleus we employed
the DWUCK4 computer code. Inserting the effective kaon mass My, given by
Eq. (14) and effective bombarding energy E; given by Eq. (16) together with
the local optical potential of Ref. [9] into the DWUCK4 code to calculate
kaon elastic, total and reaction cross section calculations at momenta 488,
531, 635, 656, 714, 715, and 800 MeV /c with the first-order kaon scattering
parameters. The local optical potential calculations give results quite similar
to recent data.

2
10° | 715 MeV/c
K" - °Li

---------- Satchler et al.
—— DOKAYy calculations

do /dQ (mb/sr)

N
o
©

1 | L | ' 1 s | ' | '

5 10 15 20 25 30 35
ec.m (deg)

Fig.1. KT—SLi differential elastic cross sections at 715 MeV/c. The dotted-,
solid-, dashed-, dash-dotted curves use the harmonic oscillator distribution form
and (=0.0, 1.0, 1.2, and 1.8, respectively represent predictions of the present work.
The short dashed curve uses Eq. (19), while the thick solid curve uses DOKAY
code [5]. Solid points are the experimental data taken from Ref. [18].
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Using the interaction parameters for calculating the nuclear potential of
elastic scattering of kaon from SLi, 2C, ?8Si, and “°Ca and inserting this
potential Uy, added to Vi into DWUCK4 code to generate observables such
as those measured to investigate the validity of the present potential with
kaons. The obtained results for best fit angular distributions of differential
elastic cross section shown in Figs. 1-6 are obtained with the renormalization
constant of equation (2) N = 0.85. The first-order parameters b; and ¢;
(1 = 0,1) are calculated through the phase shifts, as they are computed in
the code of Ref. [5]. These parameters b; and ¢; are then used to generate
the complex local potential U, using the expressions from Ref. [9].

Examples are taken at momenta ranging from 488 to 800 MeV /¢, where
the experimental data are available. As it can be seen from Figs. 1,2,4 the
EELL parameter ( slightly affects the elastic scattering of K+ differential

s | . | X I d I . |
10" F K'-"c 3
Harmonic oscillator E
107 a=1.516 fm, a=2.234 -
10° =
10° =
10* =
= 3
2 10 . 635 MeV/c E
g/ *. ...
g s N S
S 10°
©
10"
10°
715 MeV/c
10" | o exp
e (20,0
[ £=1.0
2. A £=1.2
10° Z =1.8
DOKAY calculations
10° . 1 L 1 N 1 L 1 . 1
10 20 30 40 50

0, ,(deq)

Fig.2. Asin Fig. 1 but for K™ —'2C differential elastic cross sections at momenta
635 and 715 MeV /c. The experimental data are taken from Ref. [18].
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cross sections, this parameter was found to play a significant role in the
calculations of 7% at the (3,3) resonance region where the positions of the
minima seen in the pion data were reproduced by the calculations with
(=1.0, while these minima moved toward forward angles with the value
¢ =1.81]7].

K+-SLi differential elastic cross sections have been calculated at 715
MeV /¢ kaon lab momentum, where the local optical potential was com-
puted by our DWUCK4 code. The comparisons between our calculations
and the experimental data of [18] are represented in Fig. 1. We have ex-
cellent agreement between our calculations and data with the two forms of

UBmERll EERLllL

vovood vvvwwl v ovvd v vewnd b veml

715 MeV/ic

do /dQ (mb/sr)

a=1.516 fm, 0=2.234
----- a=1.65 fm, a=1.33
102 b e a=1.6879 fm, «=1.06838
£=1.0

LERLLL Rl Rl R EE R

A R R R R IR T I Y

10 20 30 40 50
8, (deg)

Fig.3. K*+—12C differential elastic cross sections at different momenta 635, 715,
and 800 MeV /c. The solid curves use a = 1.516 fm and a = 2.234, dashed curves use
a = 1.65 fm and o = 1.33, and dotted curves use a = 1.6879 fm and o = 1.06838,
all curves use ¢ = 1.0. The experimental data are taken from Ref. [1,18].
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density distribution given by Egs. (18),(19) specially at 0., > 122, and all
values of {(=0.0, 1.0, 1.2, and 1.8. Fig. 1 shows that our predictions using
the SLi density distribution given by Eq. (18) do not agree well with the
experimental data at forward angles 6. . < 12° and that the EELL param-
eter has a negligible effect on the predicted differential cross sections. Also,
shown in Fig. 1 are calculations based on DOKAY code as the thick solid
curve, these calculations are lower than the data by about 30%.

Fig. 2 shows the differential elastic cross sections of K+ from '2C at 635
and 715 MeV /c. Data [18] are compared to our first order local potential
calculations. The present local potential calculations using the harmonic
oscillator density distribution of the form given by Eq. (19) with parameters
a = 1.516 fm and o = 2.234 and the four values of { agree well with the

105 E I ! I L I < | . I ! I L I N

K. “Ca ]

800 MeV/c

do /dQ (mb/sr)

5 10 15 20 25 30 35 40
O (069)

Fig.4. As in Fig. 2, but for K*—9Ca differential elastic cross sections at 800
MeV /c using the 3PF density distributions. Solid points are the experimental data

taken from Ref. [1].
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data. Also calculations based on impulse approximation DOKAY code [5]
are lower than the data by about 10-20%, as the thick solid curves.

In Fig. 3 we show the differential elastic cross sections of '2C at 635, 715
and 800 MeV /¢ kaon lab momenta using different values of a and « of the
harmonic oscillator density distributions. The density parameters ¢ = 1.516
fm and o = 2.234 [5] produce predictions of the present calculations shown
as the solid curves better than the other values.

Fig. 4 shows the differential elastic cross sections data [1] with K+ at 800
MeV /¢ from 4°Ca, compared to the present local optical potential calcula-
tions. We have good agreement between our calculations and data when we
used the three parameter Fermi 3PF density distribution with parameters
taken from [7] and the four values of (.

10" E ‘ ' ' T
1010 3

10°

10°

LERELLL mm)

10’

635 MeV/c

10°

-
o
o

do /dQ (mb/sr)

800 MeV/c

- f- ——3pF
I -
10'3 s | ' 1 L 1 L 1 L 1
10 20 30 40 50
8, (deg)

Fig.5. KT—12C at 635, 715, and 800 MeV /¢ differential elastic cross sections. The
solid curves use the 3PF, while the dashed curves use the 2PF density distributions.
The experimental data are taken from Ref. [1,18].
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In Figs. 5, 6 we use the 2PF and 3PF density distribution of nucleons
of 12C and %°Ca to calculate the differential cross sections for K+ from 2C
and 4°Ca. The 3PF form as the solid curves gives results nearer to the data
than does use of the 2PF form, this was found to be true when we used the
local potential to describe the differential elastic cross sections of 7% from
the same nuclei [7].

L s S e LI e
: K+-4DCa
800 MeV/c
10" Fe E
10° 3
B .
s F 3
£ E
g
3 ,
10' | %5 =
10° - E
8 o o
3 ——3PF - e
. weeeee 2PF - :
10" =10 - 3
o ° 3
R AU U U RN SR SR S
5 10 15 20 25 30 35 40

0, . (deg)

Fig.6. As in Fig. 5, but for K*—49Ca differential elastic cross sections at
800 MeV /c. The experimental data are taken from Ref. [1].

Our first-order local optical potential is also used to predict total and
reaction cross sections of kaon scattering on °Li, 2C, 28Si and “°Ca at kaon
lab momenta 488, 531, 656, and 714 MeV /c. The comparisons between our
computations and Friedman et al. [10] are listed in Tables I, ITI. In Figs. 7,8
reaction and total cross sections computed by the present work as the solid
curves are in better agreement with Ref. [10] than reaction and total cross
sections calculated by DOKAY code [5] shown as dashed curves.
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TABLE II

Reaction cross sections (in mb) for KT interaction with various nuclei calculated at various
lab kaon momenta in MeV /c in the present work, and compared to calculations estimated
by [10].

This calculation From Ref. [10]
Prap  OLi 12C 288 1400y 6Li 12¢ 288 100y

488 66.5 124.3 271.45 355.25 | 65.0+1.3 120.4+2.3 265.5+ 5.1  349.9£7.7
531 71.5 1324 286.35 375.45 | 69.8+0.8 129.3+1.4  280.4+3.4  367.1%4.5
656 77.3  144.2  309.81 409.74 | 75.6+1.1 141.8+1.5  306.1+3.4  401.1£5.0
714 79.5 147.3 312.65 410.35 | 79.3£1.2 149.3+1.5  317.54+3.6  412.9£5.5

TABLE III

As in Table II but for total cross sections for K™ on several nuclei calculated in the present
work, and compared to calculations estimated by [10].

This calculation From Ref. [10]
Pr.p 2H OLi 12¢c 285 40Ca 2H 614 12¢ 28gj 1400y

488 26.94 79.4 167.8 379.42 498.75|25.33+£0.61 76.6£1.1 162.41+1.9 366.5+4.8 494.6+7.7
531 28.03 82.4 167.9 388.88 515.72(27.15+0.32 78.84+0.7 166.6+1.3 374.8+3.3 500.2+4.4
656 28.9 89.2 176.9 400.55 533.66(28.15+0.24 84.31+0.7 174.9£0.8 396.1+£2.7 531.9+4.2
714 28.97 90.1 178.3 418.66 535.76|28.65+0.20 87.04+0.6 175.6+0.9 396.5+£2.3 528.4+2.8

Table IV shows the total cross section of K¥—12C and K*- deuteron.
The ratio is close to 6, this means that the K nucleon amplitudes are the
same in '2C and deuteron.

Table V shows the total KT cross section ratios calculated by the present
work for the SLi, '2C, ?8Si and “°Ca targets. These ratios are all near unity,
this reveals the near-linearity of the total cross section with mass number A.
This is a property unique to K+ mesons out of all hadronic probes in the
low energy range. This indicates a volume effect and establishes the low
momentum kaon as the preferred hadronic probe of nuclear matter.

TABLE IV
Total cross sections for K* on '2C and ?H nuclei calculated in the present work.

Prap,  2C 2H Ratio

488 167.8  26.94 6.22
531 167.9 28.03 5.99
656 176.9 28.9 6.12
714 178.3  28.97 6.15
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TABLE V

Total K cross sections ratios calculated in the present work for 6Li, 12C, 28Si, and *°Ca
targets.

Prap  (Li/6)/(H/2) (C/12)/(H/2) (Si/28)/(H/2) (Ca/40)/(H/2)

488 0.982 1.038 1.005 0.926
531 0.979 0.998 0.991 0.919
656 1.028 1.020 0.989 0.923
714 1.036 1.025 1.032 0.925

T T T T :

500 - -

I /c.nz
.

400 |- |
300 |- i
B “si
=
P S

200 - -

e '/'(_/—-r—/_"
BT I i
o
1 L | i L
450 500 550 600 650 700 750

P, (Mevic)

Lab

Fig. 7. Reaction cross sections for KT on several nuclei are shown, from Ref. [10].
Solid curves are from the present work and the dashed curves using calculations
from DOKAY code [5].

700 |- i
. *
600 |- )
“cax12
o L -

a’é 77777 *si
300 T -
k]
200 |- -
e — & 0 .
100 |- -
W Wy
1 1 1 1 1
450 500 550 600 650 700 750

P, (Mevic)

Fig.8. As in Fig. 7, but for K+ total cross sections on several nuclei are shown.
Data are from Ref. [10].
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4. Conclusions

We conclude from these calculations that the present first order renor-
malized local optical potential parameters using the distorted wave Born
approximation DWBA, which is based on the interaction between the pro-
jectile and the whole target nucleus, with a renormalization factor < 1 give
a good description for the differential, total, and reaction cross sections of
kaon-nucleus elastic scattering. This fact may indicate the need for better
optical potential and not enhanced in-medium K T-nucleon cross sections or
other improvements as found with free-space K *-nucleon.

The density distributions of the nucleons by the harmonic oscillator for
6Li and '2C gave results nearer to the data better than the other forms of
density shapes. The 3PF shape and not the 2PF of '2C, 28Si, and %°Ca is
more suitable for the nuclear density distributions of nucleons within these
nuclei when they react with mesons. The EELL parameter ( slightly affects
the kaon—nucleus scattering at the momentum range considered here.

The success of this analysis of kaons elastically scattered from nuclei with
the DWUCK4 program can be extended to compute the differential inelastic
cross sections and the coupled channels reactions for kaons from nuclei.

I would like to thank Professor S. A. E. Khallaf, Assiut University, for
his helpful discussions and careful reading of the manuscript.
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