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We study properties of the proton component of neutron star matter
for a number of realistic nuclear models. Protons which form a few percent
admixture tend to be localized in potential wells corresponding to neutron
matter inhomogeneities created by the protons in the neutron medium.
We calculate the energy of the Wigner—Seitz cell enclosing a single local-
ized proton. The neutron background is treated in the Thomas—Fermi
approximation and the localized proton is described by the Gaussian wave
function. The neutron density profile is obtained by solving the appropri-
ate variational equation. This approach gives lower energies of localized
protons than obtained previously with less sophisticated methods.

PACS numbers: 21.65.+f, 97.60.Jd

1. Introduction

Physical properties of the neutron star interior relevant to macroscopic
observables are rather sensitive to the the microscopic structure of dense
nuclear matter in neutron stars. For example, the transport and magnetic
properties of neutron stars depend strongly on the structure of the so called
liquid core. Particularly important is the structure of the proton compo-
nent. A uniform proton distribution and a periodic (crystalline) proton ar-
rangement result in very different properties [1]. The latter possibility was
discussed in Refs. [2,3] for strongly asymmetric nuclear matter which was
shown to be unstable with respect to proton localization. The localization
effect is a result of the interaction of protons with small density oscillations
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of the neutron background [4]. The protons behave as localized polarons
which form a periodic lattice at high densities [5].

The presence of the localized protons inside neutron star cores would
have profound astrophysical consequences. The transport properties of such
a phase are rather different from those of a uniform nuclear matter [6].
In particular, the cooling proceeds in a quite different way. Recent anal-
ysis [6] shows that the presence of such localized proton phase results in
more satisfactory fits of temperatures of observed neutron stars. Also, spin
ordering of localized protons could strongly affect magnetic properties of
the system [2,7]. The spin ordered phase can contribute significantly to the
observed magnetic moments of neutron stars [8,9].

The aim of this paper is to study the proton localization for a number
of realistic nuclear models with improved variational method. In original
calculations [3,4] both the proton wave function and the neutron density
distribution were assumed to be trial functions which included variational
parameters. In this paper we find better estimates of energies of localized
protons by solving the appropriate variational equation for the neutron den-
sity profile that gives the minimum energy for a fixed wave function of the
localized proton.

The paper is organized as follows: In the next section we describe the
model of proton impurities in the neutron star matter. In Section 3 simple
estimates of the proton localization based on trial functions are given. Sec-
tion 4 contains the formulation and the solution of the variational problem.
Results are discussed in Section 5.

2. Model of proton impurities in the neutron star matter

The amount of protons present in the neutron star matter, which is
charge neutral and B-stable, is crucial for the cooling rate of neutron stars
and also plays an important role for magnetic and transport properties of
neutron star matter. Nuclear models do not uniquely predict the proton
fraction of the neutron star matter at high densities. This controversy is
discussed in details in Refs. [1,10] where the discrepancy of the proton frac-
tion in various models is shown to reflect the uncertainty of the nuclear
symmetry energy at high densities. In this paper we consider a class of nu-
clear interaction models for which the proton fraction is of the order of a few
percent and decreases at high densities — as shown in Fig. 1. For the cal-
culations we have chosen six realistic nuclear interaction models. These are
interactions derived by Myers and Swiatecki [11](MS), the Skyrme potential
with parameters from Ref. [12,13] (Sk), the Friedman and Pandharipande
interactions [14] (as parametrized by Ravenhall in Ref. [15]) (FPR) and
three models, UV14+TNI, AV14+4+UVII and UV14+UVII, from Ref. [16] by
Wiringa et al.



Structure of Proton Component of Neutron Star Matter for . .. 745

0.1 T T T T B T T T
ovigsovi ]
0.08 - ~_ ]
0.06 L ows AVIA+UVI |
004 /5 .
- . FPR N J
0.02 -/ S UVL4+TNI N
L Sk R

O ! (IR ! I | !

0 0.4 0.8 1.2 1.6
n [fm]

Fig.1. The proton fraction of the neutron star matter as a function of baryon
number density for indicated nuclear interaction models.

Let us consider a neutron star matter containing a small proton fraction
z. To compare the energy of a normal phase of uniform density and a phase
with localized protons we apply the Wigner—Seitz approximation and divide
the system into cells, each of them enclosing a single proton [2,4]. For
simplicity, the cells are assumed to be spherical. The volume of the cell is
V = 1/np. The normal phase is of uniform density ny and the neutron
chemical potential is un. In the uniform density phase protons are not
localized and their wave functions are plane waves.
The energy of the cell, which is a sum of proton and neutron energies,
reads
E() =Ve (nN,'np) , (1)

where ¢ (ny,np) is the energy density of the uniform phase. For small
proton density, i.e. for low z, we can expand the energy density

e(ny,np)=e(nn,0) +up(ny,0)np. (2)

In the following we shall adopt abbreviations € (ny) = € (ny,0) for the
energy density of pure neutron matter and pup (ny) = pp (ny,0) for the
proton chemical potential in pure neutron matter. The energy of the cell is
thus approximately

Ey = pp(nn) +Ve(nn) (3)

Our aim is to compare the energy of the normal phase, where protons
are nonlocalized, with the energy of a phase where the protons are trapped
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into potential wells, corresponding to the nonuniform neutron density distri-
bution, which most likely form a regular arrangement. We treat this proton
“crystal” in the Wigner—Seitz approximation.

Let us consider a Wigner—Seitz cell with nonuniform neutron matter
distribution n (r) surrounding the proton whose wave function is ¥p. In the
local density approximation one can identify the proton effective potential
with the local proton chemical potential up (n) [2]. The proton’s effective
potential varies locally with neutron matter density n (r). This results in a
potential well up (n (r)) which affects the single proton wave function. The
energy of the Wigner—Seitz cell, Ey, is:

P

B - V/ {001 [~ + i ) 2 0

te(n(r) + By (Tn (7’))2 } B (4)

The first term is the energy of the proton in the effective potential
Vet (1) = pup (n(r)). It is by construction the attractive potential well.
At high densities the derivative of the proton chemical potential is positive,
ag_; > 0, for all interactions we use. This can be seen in Fig. 2 where the
proton chemical potential in pure neutron matter is shown for nuclear inter-
action models from Fig. 1. The neutron density profile n (r) is thus assumed

to have a minimum at the center of the cell.
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Fig.2. The proton chemical potential in pure neutron matter as a function of
baryon number density for the same interactions as in Fig. 1.
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The two other terms in Eq. (4) describe the neutron background contri-
butions to the energy. These represent the neutron Fermi sea energy and
the curvature energy due to the gradient of the neutron distribution, re-
spectively, in the Thomas—Fermi approximation. Here € (n (r)) is the local
neutron matter energy per unit volume. The parameter By is the curvature
coefficient for pure neutron matter [2].

To decide which is the ground state configuration we compare the en-
ergies Fy and Ej assuming the same number of neutrons in the cell. This
means that the neutron density variation conserves the baryon number:

/(n(r)—nN) d3r=0. (5)
4

In the next section the minimum of the energy difference AE = Ej, — Ey is
calculated in a simple variational approach and in Section 4 more sophisti-
cated method is developed.

3. Simple estimate of the localized proton energy

We assume a simple trial form of the proton wave function and the
neutron density variation. For the proton wave function we use a Gaussian

form: .
2 o1 3 r?

Here Rp is the rms radius of the localized proton probability distribution.
We treat this quantity as a variational parameter and minimize the energy
difference AFE with respect to Rp.

Using the trial form of the proton wave function ¥p (r) the energy dif-
ference AE becomes

9

AE = ——
8mpR?3

+/{W]23 (7') (Mp (n(?"))—MP (nN))
\%4

+e(n(r)) —e(ny)+ By <d7;—7(f)>2 } d3r. (7)

The neutron density n (r) is chosen to be [2,4]:

1
n(r):nN—{—oz[Ll?;S(r)Wp(r)—v] . (8)
Here « is the second variational parameter; a > 0 corresponds to the neutron
density enhancement around the proton and a < 0 corresponds to the bubble
in the neutron density near the proton.
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We calculate the energy difference AE, Eq. (7), for small proton frac-
tion z, i.e. in the limit of large volume V. The first and the last terms are
calculated assuming that the Wigner—Seitz cell radius R¢ is much bigger
than Rp, Rc > Rp. Denoting ¥}, (r) ¥p (r) = p(r) and expanding in 1/V

we have
/P(T) <,uP <nN +ap(r) — a%) — pup (nN)> dr
7

= [20) Gur (ux + a0 (1)) = e ()

1%
—a% /p(r)
J

The integral in the last term does not depend on the cell volume so that
this term vanishes in the limit V' — oo. Expanding in the same way the
energy density, we obtain from the third term in Eq. (7)

[ (oo =) -cton]

/ e(ny +ap(r)) —e(ny)] d3r—auN (nn)
v
1

() d’r. (9)

—ag [ (pn (ny +ap (1) — pw (ny)) d’r . (10)

Here also the integral in the last term does not depend on the cell volume,
since p (r) is a Gaussian, and this term vanishes for large V. The last term
containing the coefficient of curvature By is easily evaluated to be:

s (@ne) =2 (4) " met.
\%4

The energy difference AFE thus becomes:

AR = ﬁ + V/ {(up (0 (r) = pp (nn) p (1)} dr

/{5 e (nn)} & — apun () + 2 <§w) _531; Bra?.(12)
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We obtain physical parameters of the localized phase for a given neutron
matter density ny by a straightforward minimization of AE with respect to
the two variational parameters o and Rp.

The results of the calculations for the MS and FPR nuclear interactions
are presented, respectively, in Figs. 3 and 4 where we show the energy dif-
ference AE as a function of the proton distribution rms radius Rp for a
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Fig.3. The energy difference AE as a function of the proton rms radius for the
Myers and Swiatecki interaction. The curves corresponding to the self-consistent
calculations are labeled with the value of the neutron matter density in [fm™?].
The curves labeled additionally with the letter o correspond to the simple method
of Section 3.
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Fig.4. The same as in Fig. 3 for the Friedman-Pandharipande-Ravenhall nuclear
interaction.
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few values of the neutron density. The curves are labeled with the value
of the neutron matter density ny with subscript . One can notice that
for both MS and FPR interactions there appears a local minimum above
a certain density, for the proton rms radius Rp in the range 1 fm—2 fm.
We have chosen the results for MS and FPR interactions only as exam-
ples of a general behavior which is observed for all interactions we use in
the calculations (more detailed account of our calculations will be presented
elsewhere). With increasing neutron matter density ny the depth of the
minimum increases and above the threshold density the energy difference
becomes negative. The negative value AE < 0 means that the energy of the
localized proton is lower than the energy of a nonlocalized proton and the
localized proton state is preferred energetically. The behavior of AFE is very
similar for all interactions we examine. This shows that the localization is
not an effect of some specific interaction but rather is a general qualitative
feature of the physical system we consider. Quantitative results, 4.e. the
localization density, the value of AFE at the minimum and the localization
radius Rp, depend on the specific interactions. The proton localization oc-
curs at the lowest density for the Skyrme interactions, njo. = 0.4 fm 3, and
the energy difference AF displays the fastest decrease with the density. One
can say that the localization is the strongest in this case.

To understand better the localization mechanism it seems useful to con-
sider separately various contributions to the total energy difference. In
Figs. 5 and 6 we show the proton contribution, Ep, to the energy differ-
ence AF, which consists of kinetic and potential terms. Here the minimum
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Fig.5. The proton contribution to A F for the Myers and Swiatecki model of nuclear
interactions. Curves labeled as in Fig. 3.
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Fig.6. The same as in Fig. 5 for the Friedman-Pandharipande-Ravenhall interac-
tions.

occurs at lower values of the proton rms radius Rp. One should keep in
mind that the proton energy contribution represents a difference of the ki-
netic and potential energies of a localized proton and a single plane-wave
proton. In the latter case the kinetic energy is zero. Next figures, Figs. 7
and 8, show the contribution of the neutron background to the total energy
difference. This contribution is a monotonically decreasing function of the
proton rms radius Rp. It grows very fast for low values of Rp. This rapid
growth is similar to the behavior of the gradient term contribution which is
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Fig. 7. The neutron background contribution to AFE for the Myers and Swiatecki
model of nuclear interactions. Curves labeled as in Fig. 3.
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Fig.8. The same as in Fig. 7 for the Friedman-Pandharipande-Ravenhall interac-
tion.

displayed in Figs. 9 and 10. Thus a sum of these contributions also grows
fast for low values of Rp. Its values for a given radius Rp increase with the
mean neutron density ny.

The minimum of the total energy difference, AFE, which is a sum of
all contributions shown in Figs. 5-10, is thus a result of a delicate balance
between repulsive contributions due to the neutron background, the proton
kinetic term and the neutron curvature energy, and the attractive part of
the proton interaction energy. Results of our calculations for a number of

Gradient term [MeV]

Rp [fm]

Fig.9. The gradient term contribution to AE for the Myers and Swiatecki nuclear
interactions. Curves labeled as in Fig. 3.



Structure of Proton Component of Neutron Star Matter for . ..

50

40

30

20 -

10 -

Gradient term [MeV]

0

| By=31.6 MeV fm®

0.5

1 1.

Rp [fm]

753

Fig.10. The same as in Fig. 9 for the Friedman-Pandharipande-Ravenhall inter-

actions.

effective nuclear interactions show that such a minimum occurs in all cases
above some density. One may thus conclude that the localization of proton
impurity in the neutron matter is a general prediction of nuclear models of
the class we consider here.

The threshold density for proton localization, mj., depends also on the
curvature coefficient By entering the gradient term and the proton effective
mass mp, which are parameters of our model. In Fig. 11 we show how m,¢
changes with By. One can notice that the localization density only weakly

0.6

mp=938 MeV

10 20
By [MeV fm?]

Fig.11. The threshold density for proton localization versus the curvature coeffi-
cient Byn. The curves MS1 and FPR1 correspond to the simple method of Sect. 3.

The curves MS2 and FPR2 correspond to the self-consistent calculations.
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increases with the curvature coefficient in a wide range of its values. Also,
the rms proton distribution radius at the threshold density RIISC increases
slowly with increasing curvature coefficient By, Fig. 12. This fact is rather
important in regard of validity of the Thomas—Fermi approach used in our
model.
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Fig.12. The rms proton distribution radius at the threshold density as a function
of the curvature coefficient By. Curves labeled as in Fig. 11.

The threshold density nj,. depends in a more sensitive way on the proton
effective mass, mp, as shown in Fig. 13. For values of mp less than the
bare proton mass the localization density increases. However, in the range
600938 MeV which is most likely physically relevant to neutron stars, the
threshold density changes by about 20%.
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Fig.13. The threshold density for proton localization as a function of the proton
effective mass. Curves labeled as in Fig. 11.
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4. The self-consistent method

Variational calculations of the localized proton energy presented in the
previous section used the trial functions with only two variational parame-
ters, a and Rp. In this section we develop more advanced variational method
which should give better estimate of the ground state energy of a localized
proton.

The energy difference AE, is a functional of two functions ¥ (r) and n (r).
The physical constraint is that the variation of the neutron background
conserves the baryon number. We should thus look for such functions ¥(r)
and n (r) that minimize the functional

f[n(r),Wp(r)]:AE—)\/[n(r)—nN]d3r—E
1%

/ T () Tp (1) dPr 1] ,
Vv

(13)
where we explicitly include constraints of the baryon number conservation,
Eq. (14), and the proton wave function normalization

/w;; (rY@p (r)d*r —1=0. (14)
v
The Euler-Lagrange equations corresponding to the functional (13) can

be found easily. The differentiation with respect to ¥ gives the Schrodinger
equation for the proton impurity:

_ﬁVQWP (r) +[pp (n(r)) = pp (nn)]¥p (r) = Ep¥p (r) . (15)

Differentiation with respect to n (r) gives the second-order equation for the
neutron density distribution n(r):

Ipp (n(r))
on (r)

d*n (r)
dr?

Uy (r)¥p (r) + pn (n(r)) + 2By -A=0. (16)
The boundary conditions the functions ¥ (r) and n (r) obey at r — oo are:

n(r) = ny, [¥p ()] = 0. This allows us to identify the Lagrange multiplier
A with the neutron chemical potential,

A=y (ny) - (17)

To calculate the cell energy we adopt for the proton wave function the
Gaussian form used in the previous section and solve with this ansatz the
equation (16). The rms radius of the proton probability distribution, Rp,
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is treated as a variational parameter. Numerical solutions of Eq. (16) are
presented in Figs. 14 and 15, where we show the neutron density distri-
butions n(r) obtained from equation (16). As one can notice the neutron
background has somewhat different shape than that used in Section 3. In
particular, at higher mean neutron densities ny there appears a significant
density enhancement at the well boundary which considerably strengthens
the localization effect. With the simple method of Sect.3 the neutron dis-
tribution around the proton is a monotonically increasing function of the
radius.

T T
251 Rp=0.5 fm

By=31.6 MeV fm°

R/Rp

Fig. 14. The neutron density distribution obtained from Eq.(16) for indicated neu-
tron matter densities (in [fm~3]) for the Myers and Swiatecki interactions. The
localized proton distribution np is also shown.

Results of calculations of the energy difference AE with the self-consistent
method are presented in Figs. 3 and 4 as curves labeled with the value of
the neutron matter density only. In Figs. 5-10 the proton contribution and
all components of the neutron background contribution to the full energy
difference are shown together with those obtained in Section 3. The neutron
background energy, Figs. 7 and 8, calculated with the self-consistent method
is well below the simple estimate of Section 3 for low values of the proton
distribution radius Rp. The reduction of the energy is even bigger for the
gradient term contribution, Figs. 9 and 10. An opposite effect is observed
for the proton energy contribution, Figs. 5 and 6, where the energy corre-
sponding to the self-consistent method is higher than that calculated with
simple trial functions in Section 3.
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Fig.15. The same as in Fig. 14 for the Friedman—Pandharipande-Ravenhall inter-
actions.

5. Conclusions and implications

Our self-consistent method gives lower energies of localized protons than
the variational method used in Section 3. In Figs. 3 and 4 we compare the en-
ergy difference AFE obtained with both methods, for the MS and FPR models
of nuclear interactions. As functions of the radius Rp the energy differences
APF for the old variational method and for the self-consistent method depart
from one another only for small values of Rp. At Rp > 1 fm the curves for
both methods in Figs. 3 and 4 are practically identical. However, at small
Rp the self-consistent method gives significantly lower energies. The mini-
mum values of AFE are considerably below those found with the old method
and they occur at somewhat smaller radii. Our study indicates also that
with the growing curvature coefficient the localization density grows. The
results presented in Fig. 11 show that this growth is weak and the values
corresponding to both methods are quite similar. Also, the dependence of
the localization density on the proton effective mass, Fig. 13 is very similar
for both methods.

To conclude, the self-consistent calculations improve the estimate of the
energy of the cell containing a localized proton, especially at small values
of the rms proton radius Rp. The proton contribution Ep and the gradient
term contribution to AFE are most affected by the new method. The ultimate
goal is to calculate the proper wave function of the proton, which would give
the true energy of the localized state.
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Results of our calculations for nuclear interactions we use indicate that
the proton impurity in neutron star matter becomes localized at densities
above 0.5-1.0 fm 2. The self-consistent method gives lower energies of lo-
calized protons and smaller threshold localization densities than simple vari-
ational method with trial functions. This has important consequences for
neutron stars as densities in this range correspond to inner core of neutron
stars with masses exceeding one solar mass, M > 1My . In Fig. 16 we show
neutron star masses corresponding to all nuclear interactions used in the
calculations reported above.
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0~ 14 15 RE 16
3x10 1x10 3x10 1x10
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Fig. 16. Neutron star masses (in solar units) as functions of the central density for
nuclear interaction models from Fig. 1.
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