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STRUCTURE OF PROTON COMPONENTOF NEUTRON STAR MATTERFOR REALISTIC NUCLEAR MODELSM. Kutsheraa;b, S. Stahniewiza, A. Szmagli«skiand W. WójikaH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, PolandbM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandInstitute of Physis, Tehnial UniversityPodhor¡»yh 1, 30-084 Kraków, Poland(Reeived November 29, 2001)We study properties of the proton omponent of neutron star matterfor a number of realisti nulear models. Protons whih form a few perentadmixture tend to be loalized in potential wells orresponding to neutronmatter inhomogeneities reated by the protons in the neutron medium.We alulate the energy of the Wigner�Seitz ell enlosing a single loal-ized proton. The neutron bakground is treated in the Thomas�Fermiapproximation and the loalized proton is desribed by the Gaussian wavefuntion. The neutron density pro�le is obtained by solving the appropri-ate variational equation. This approah gives lower energies of loalizedprotons than obtained previously with less sophistiated methods.PACS numbers: 21.65.+f, 97.60.Jd1. IntrodutionPhysial properties of the neutron star interior relevant to marosopiobservables are rather sensitive to the the mirosopi struture of densenulear matter in neutron stars. For example, the transport and magnetiproperties of neutron stars depend strongly on the struture of the so alledliquid ore. Partiularly important is the struture of the proton ompo-nent. A uniform proton distribution and a periodi (rystalline) proton ar-rangement result in very di�erent properties [1℄. The latter possibility wasdisussed in Refs. [2, 3℄ for strongly asymmetri nulear matter whih wasshown to be unstable with respet to proton loalization. The loalizatione�et is a result of the interation of protons with small density osillations(743)



744 M. Kutshera et al.of the neutron bakground [4℄. The protons behave as loalized polaronswhih form a periodi lattie at high densities [5℄.The presene of the loalized protons inside neutron star ores wouldhave profound astrophysial onsequenes. The transport properties of suha phase are rather di�erent from those of a uniform nulear matter [6℄.In partiular, the ooling proeeds in a quite di�erent way. Reent anal-ysis [6℄ shows that the presene of suh loalized proton phase results inmore satisfatory �ts of temperatures of observed neutron stars. Also, spinordering of loalized protons ould strongly a�et magneti properties ofthe system [2,7℄. The spin ordered phase an ontribute signi�antly to theobserved magneti moments of neutron stars [8, 9℄.The aim of this paper is to study the proton loalization for a numberof realisti nulear models with improved variational method. In originalalulations [3, 4℄ both the proton wave funtion and the neutron densitydistribution were assumed to be trial funtions whih inluded variationalparameters. In this paper we �nd better estimates of energies of loalizedprotons by solving the appropriate variational equation for the neutron den-sity pro�le that gives the minimum energy for a �xed wave funtion of theloalized proton.The paper is organized as follows: In the next setion we desribe themodel of proton impurities in the neutron star matter. In Setion 3 simpleestimates of the proton loalization based on trial funtions are given. Se-tion 4 ontains the formulation and the solution of the variational problem.Results are disussed in Setion 5.2. Model of proton impurities in the neutron star matterThe amount of protons present in the neutron star matter, whih isharge neutral and �-stable, is ruial for the ooling rate of neutron starsand also plays an important role for magneti and transport properties ofneutron star matter. Nulear models do not uniquely predit the protonfration of the neutron star matter at high densities. This ontroversy isdisussed in details in Refs. [1,10℄ where the disrepany of the proton fra-tion in various models is shown to re�et the unertainty of the nulearsymmetry energy at high densities. In this paper we onsider a lass of nu-lear interation models for whih the proton fration is of the order of a fewperent and dereases at high densities � as shown in Fig. 1. For the al-ulations we have hosen six realisti nulear interation models. These areinterations derived by Myers and Swiateki [11℄(MS), the Skyrme potentialwith parameters from Ref. [12, 13℄ (Sk), the Friedman and Pandharipandeinterations [14℄ (as parametrized by Ravenhall in Ref. [15℄) (FPR) andthree models, UV14+TNI, AV14+UVII and UV14+UVII, from Ref. [16℄ byWiringa et al.
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Fig. 1. The proton fration of the neutron star matter as a funtion of baryonnumber density for indiated nulear interation models.Let us onsider a neutron star matter ontaining a small proton frationx. To ompare the energy of a normal phase of uniform density and a phasewith loalized protons we apply the Wigner�Seitz approximation and dividethe system into ells, eah of them enlosing a single proton [2, 4℄. Forsimpliity, the ells are assumed to be spherial. The volume of the ell isV = 1=nP . The normal phase is of uniform density nN and the neutronhemial potential is �N . In the uniform density phase protons are notloalized and their wave funtions are plane waves.The energy of the ell, whih is a sum of proton and neutron energies,reads E0 = V " (nN ; nP ) ; (1)where " (nN ; nP ) is the energy density of the uniform phase. For smallproton density, i.e. for low x, we an expand the energy density" (nN ; nP ) � " (nN ; 0) + �P (nN ; 0) nP : (2)In the following we shall adopt abbreviations " (nN) = " (nN ; 0) for theenergy density of pure neutron matter and �P (nN) = �P (nN ; 0) for theproton hemial potential in pure neutron matter. The energy of the ell isthus approximately E0 = �P (nN ) + V " (nN ) : (3)Our aim is to ompare the energy of the normal phase, where protonsare nonloalized, with the energy of a phase where the protons are trapped



746 M. Kutshera et al.into potential wells, orresponding to the nonuniform neutron density distri-bution, whih most likely form a regular arrangement. We treat this proton�rystal� in the Wigner�Seitz approximation.Let us onsider a Wigner�Seitz ell with nonuniform neutron matterdistribution n (r) surrounding the proton whose wave funtion is 	P . In theloal density approximation one an identify the proton e�etive potentialwith the loal proton hemial potential �P (n) [2℄. The proton's e�etivepotential varies loally with neutron matter density n (r). This results in apotential well �P (n (r)) whih a�ets the single proton wave funtion. Theenergy of the Wigner�Seitz ell, EL, is:EL = ZV �	�P (r) �� r22mP + �P (n (r))�	P (r)+" (n (r)) +BN ��!rn (r)�2� d3r : (4)The �rst term is the energy of the proton in the e�etive potentialve� (r) = �P (n (r)). It is by onstrution the attrative potential well.At high densities the derivative of the proton hemial potential is positive,��P�n > 0, for all interations we use. This an be seen in Fig. 2 where theproton hemial potential in pure neutron matter is shown for nulear inter-ation models from Fig. 1. The neutron density pro�le n (r) is thus assumedto have a minimum at the enter of the ell.
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Fig. 2. The proton hemial potential in pure neutron matter as a funtion ofbaryon number density for the same interations as in Fig. 1.



Struture of Proton Component of Neutron Star Matter for . . . 747The two other terms in Eq. (4) desribe the neutron bakground ontri-butions to the energy. These represent the neutron Fermi sea energy andthe urvature energy due to the gradient of the neutron distribution, re-spetively, in the Thomas�Fermi approximation. Here " (n (r)) is the loalneutron matter energy per unit volume. The parameter BN is the urvatureoe�ient for pure neutron matter [2℄.To deide whih is the ground state on�guration we ompare the en-ergies E0 and EL assuming the same number of neutrons in the ell. Thismeans that the neutron density variation onserves the baryon number:ZV (n (r)� nN ) d3r = 0 : (5)In the next setion the minimum of the energy di�erene �E = EL �E0 isalulated in a simple variational approah and in Setion 4 more sophisti-ated method is developed.3. Simple estimate of the loalized proton energyWe assume a simple trial form of the proton wave funtion and theneutron density variation. For the proton wave funtion we use a Gaussianform: 	P (r) = �23�R2P�� 34 exp��34 r2R2P � : (6)Here RP is the rms radius of the loalized proton probability distribution.We treat this quantity as a variational parameter and minimize the energydi�erene �E with respet to RP .Using the trial form of the proton wave funtion 	P (r) the energy dif-ferene �E beomes�E = 98mPR2P + ZV �	2P (r) (�P (n (r))� �P (nN))+" (n (r))� " (nN ) +BN �dn (r)dr �2� d3r : (7)The neutron density n (r) is hosen to be [2, 4℄:n (r) = nN + � �	�P (r)	P (r)� 1V � : (8)Here � is the seond variational parameter; � > 0 orresponds to the neutrondensity enhanement around the proton and � < 0 orresponds to the bubblein the neutron density near the proton.



748 M. Kutshera et al.We alulate the energy di�erene �E, Eq. (7), for small proton fra-tion x, i.e. in the limit of large volume V . The �rst and the last terms arealulated assuming that the Wigner�Seitz ell radius RC is muh biggerthan RP , RC � RP . Denoting 	�P (r)	P (r) = p (r) and expanding in 1=Vwe have ZV p (r)��P �nN + �p (r)� � 1V �� �P (nN)� d3r= ZV p (r) (�P (nN + �p (r))� �P (nN )) d3r�� 1V ZV p (r) ��P�n (nN + �p (r)) d3r : (9)The integral in the last term does not depend on the ell volume so thatthis term vanishes in the limit V ! 1. Expanding in the same way theenergy density, we obtain from the third term in Eq. (7)ZV �"�nN + �p (r)� � 1V �� " (nN)� d3r= ZV [" (nN + �p (r))� " (nN )℄ d3r � ��N (nN )�� 1V ZV (�N (nN + �p (r))� �N (nN )) d3r : (10)Here also the integral in the last term does not depend on the ell volume,sine p (r) is a Gaussian, and this term vanishes for large V . The last termontaining the oe�ient of urvature BN is easily evaluated to be:ZV BN ��!rn (r)�2 d3r = 92 �43��� 32 1R5P BN�2 : (11)The energy di�erene �E thus beomes:�E = 98mPR2P + ZV f(�P (n (r))� �P (nN )) p (r)g d3r+ZV f" (n (r))� " (nN )g d3r � ��N (nN ) + 92 �43��� 32 1R5P BN�2 : (12)



Struture of Proton Component of Neutron Star Matter for . . . 749We obtain physial parameters of the loalized phase for a given neutronmatter density nN by a straightforward minimization of �E with respet tothe two variational parameters � and RP .The results of the alulations for the MS and FPR nulear interationsare presented, respetively, in Figs. 3 and 4 where we show the energy dif-ferene �E as a funtion of the proton distribution rms radius RP for a
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Fig. 3. The energy di�erene �E as a funtion of the proton rms radius for theMyers and Swiateki interation. The urves orresponding to the self-onsistentalulations are labeled with the value of the neutron matter density in [fm�3℄.The urves labeled additionally with the letter � orrespond to the simple methodof Setion 3.
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Fig. 4. The same as in Fig. 3 for the Friedman�Pandharipande�Ravenhall nulearinteration.



750 M. Kutshera et al.few values of the neutron density. The urves are labeled with the valueof the neutron matter density nN with subsript �. One an notie thatfor both MS and FPR interations there appears a loal minimum abovea ertain density, for the proton rms radius RP in the range 1 fm�2 fm.We have hosen the results for MS and FPR interations only as exam-ples of a general behavior whih is observed for all interations we use inthe alulations (more detailed aount of our alulations will be presentedelsewhere). With inreasing neutron matter density nN the depth of theminimum inreases and above the threshold density the energy di�erenebeomes negative. The negative value �E < 0 means that the energy of theloalized proton is lower than the energy of a nonloalized proton and theloalized proton state is preferred energetially. The behavior of �E is verysimilar for all interations we examine. This shows that the loalization isnot an e�et of some spei� interation but rather is a general qualitativefeature of the physial system we onsider. Quantitative results, i.e. theloalization density, the value of �E at the minimum and the loalizationradius RP , depend on the spei� interations. The proton loalization o-urs at the lowest density for the Skyrme interations, nlo = 0:4 fm�3, andthe energy di�erene �E displays the fastest derease with the density. Onean say that the loalization is the strongest in this ase.To understand better the loalization mehanism it seems useful to on-sider separately various ontributions to the total energy di�erene. InFigs. 5 and 6 we show the proton ontribution, EP , to the energy di�er-ene �E, whih onsists of kineti and potential terms. Here the minimum
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Fig. 6. The same as in Fig. 5 for the Friedman�Pandharipande�Ravenhall intera-tions.ours at lower values of the proton rms radius RP . One should keep inmind that the proton energy ontribution represents a di�erene of the ki-neti and potential energies of a loalized proton and a single plane-waveproton. In the latter ase the kineti energy is zero. Next �gures, Figs. 7and 8, show the ontribution of the neutron bakground to the total energydi�erene. This ontribution is a monotonially dereasing funtion of theproton rms radius RP . It grows very fast for low values of RP . This rapidgrowth is similar to the behavior of the gradient term ontribution whih is
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Fig. 8. The same as in Fig. 7 for the Friedman�Pandharipande�Ravenhall intera-tion.displayed in Figs. 9 and 10. Thus a sum of these ontributions also growsfast for low values of RP . Its values for a given radius RP inrease with themean neutron density nN .The minimum of the total energy di�erene, �E, whih is a sum ofall ontributions shown in Figs. 5�10, is thus a result of a deliate balanebetween repulsive ontributions due to the neutron bakground, the protonkineti term and the neutron urvature energy, and the attrative part ofthe proton interation energy. Results of our alulations for a number of
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754 M. Kutshera et al.inreases with the urvature oe�ient in a wide range of its values. Also,the rms proton distribution radius at the threshold density RloP inreasesslowly with inreasing urvature oe�ient BN , Fig. 12. This fat is ratherimportant in regard of validity of the Thomas�Fermi approah used in ourmodel.
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Struture of Proton Component of Neutron Star Matter for . . . 7554. The self-onsistent methodVariational alulations of the loalized proton energy presented in theprevious setion used the trial funtions with only two variational parame-ters, � and RP . In this setion we develop more advaned variational methodwhih should give better estimate of the ground state energy of a loalizedproton.The energy di�erene�E, is a funtional of two funtions 	 (r) and n (r).The physial onstraint is that the variation of the neutron bakgroundonserves the baryon number. We should thus look for suh funtions 	(r)and n (r) that minimize the funtionalf [n (r) ; 	P (r)℄ = �E��ZV [n (r)� nN ℄ d3r�E"ZV 	�P (r)	P (r) d3r� 1#;(13)where we expliitly inlude onstraints of the baryon number onservation,Eq. (14), and the proton wave funtion normalizationZV 	�P (r)	P (r) d3r � 1 = 0 : (14)The Euler�Lagrange equations orresponding to the funtional (13) anbe found easily. The di�erentiation with respet to 	�P gives the Shrödingerequation for the proton impurity:� 12mP r2	P (r) + [�P (n (r))� �P (nN )℄	P (r) = EP	P (r) : (15)Di�erentiation with respet to n (r) gives the seond-order equation for theneutron density distribution n(r):��P (n (r))�n (r) 	�P (r)	P (r) + �N (n (r)) + 2BN d2n (r)dr2 � � = 0 : (16)The boundary onditions the funtions 	 (r) and n (r) obey at r !1 are:n (r) = nN , j	P (r)j2 = 0. This allows us to identify the Lagrange multiplier� with the neutron hemial potential,� = �N (nN ) : (17)To alulate the ell energy we adopt for the proton wave funtion theGaussian form used in the previous setion and solve with this ansatz theequation (16). The rms radius of the proton probability distribution, RP ,



756 M. Kutshera et al.is treated as a variational parameter. Numerial solutions of Eq. (16) arepresented in Figs. 14 and 15, where we show the neutron density distri-butions n(r) obtained from equation (16). As one an notie the neutronbakground has somewhat di�erent shape than that used in Setion 3. Inpartiular, at higher mean neutron densities nN there appears a signi�antdensity enhanement at the well boundary whih onsiderably strengthensthe loalization e�et. With the simple method of Set.3 the neutron dis-tribution around the proton is a monotonially inreasing funtion of theradius.
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758 M. Kutshera et al.Results of our alulations for nulear interations we use indiate thatthe proton impurity in neutron star matter beomes loalized at densitiesabove 0.5�1.0 fm�3. The self-onsistent method gives lower energies of lo-alized protons and smaller threshold loalization densities than simple vari-ational method with trial funtions. This has important onsequenes forneutron stars as densities in this range orrespond to inner ore of neutronstars with masses exeeding one solar mass, M > 1M�. In Fig. 16 we showneutron star masses orresponding to all nulear interations used in thealulations reported above.
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