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s, Te
hni
al UniversityPod
hor¡»y
h 1, 30-084 Kraków, Poland(Re
eived November 29, 2001)We study properties of the proton 
omponent of neutron star matterfor a number of realisti
 nu
lear models. Protons whi
h form a few per
entadmixture tend to be lo
alized in potential wells 
orresponding to neutronmatter inhomogeneities 
reated by the protons in the neutron medium.We 
al
ulate the energy of the Wigner�Seitz 
ell en
losing a single lo
al-ized proton. The neutron ba
kground is treated in the Thomas�Fermiapproximation and the lo
alized proton is des
ribed by the Gaussian wavefun
tion. The neutron density pro�le is obtained by solving the appropri-ate variational equation. This approa
h gives lower energies of lo
alizedprotons than obtained previously with less sophisti
ated methods.PACS numbers: 21.65.+f, 97.60.Jd1. Introdu
tionPhysi
al properties of the neutron star interior relevant to ma
ros
opi
observables are rather sensitive to the the mi
ros
opi
 stru
ture of densenu
lear matter in neutron stars. For example, the transport and magneti
properties of neutron stars depend strongly on the stru
ture of the so 
alledliquid 
ore. Parti
ularly important is the stru
ture of the proton 
ompo-nent. A uniform proton distribution and a periodi
 (
rystalline) proton ar-rangement result in very di�erent properties [1℄. The latter possibility wasdis
ussed in Refs. [2, 3℄ for strongly asymmetri
 nu
lear matter whi
h wasshown to be unstable with respe
t to proton lo
alization. The lo
alizatione�e
t is a result of the intera
tion of protons with small density os
illations(743)



744 M. Kuts
hera et al.of the neutron ba
kground [4℄. The protons behave as lo
alized polaronswhi
h form a periodi
 latti
e at high densities [5℄.The presen
e of the lo
alized protons inside neutron star 
ores wouldhave profound astrophysi
al 
onsequen
es. The transport properties of su
ha phase are rather di�erent from those of a uniform nu
lear matter [6℄.In parti
ular, the 
ooling pro
eeds in a quite di�erent way. Re
ent anal-ysis [6℄ shows that the presen
e of su
h lo
alized proton phase results inmore satisfa
tory �ts of temperatures of observed neutron stars. Also, spinordering of lo
alized protons 
ould strongly a�e
t magneti
 properties ofthe system [2,7℄. The spin ordered phase 
an 
ontribute signi�
antly to theobserved magneti
 moments of neutron stars [8, 9℄.The aim of this paper is to study the proton lo
alization for a numberof realisti
 nu
lear models with improved variational method. In original
al
ulations [3, 4℄ both the proton wave fun
tion and the neutron densitydistribution were assumed to be trial fun
tions whi
h in
luded variationalparameters. In this paper we �nd better estimates of energies of lo
alizedprotons by solving the appropriate variational equation for the neutron den-sity pro�le that gives the minimum energy for a �xed wave fun
tion of thelo
alized proton.The paper is organized as follows: In the next se
tion we des
ribe themodel of proton impurities in the neutron star matter. In Se
tion 3 simpleestimates of the proton lo
alization based on trial fun
tions are given. Se
-tion 4 
ontains the formulation and the solution of the variational problem.Results are dis
ussed in Se
tion 5.2. Model of proton impurities in the neutron star matterThe amount of protons present in the neutron star matter, whi
h is
harge neutral and �-stable, is 
ru
ial for the 
ooling rate of neutron starsand also plays an important role for magneti
 and transport properties ofneutron star matter. Nu
lear models do not uniquely predi
t the protonfra
tion of the neutron star matter at high densities. This 
ontroversy isdis
ussed in details in Refs. [1,10℄ where the dis
repan
y of the proton fra
-tion in various models is shown to re�e
t the un
ertainty of the nu
learsymmetry energy at high densities. In this paper we 
onsider a 
lass of nu-
lear intera
tion models for whi
h the proton fra
tion is of the order of a fewper
ent and de
reases at high densities � as shown in Fig. 1. For the 
al-
ulations we have 
hosen six realisti
 nu
lear intera
tion models. These areintera
tions derived by Myers and Swiate
ki [11℄(MS), the Skyrme potentialwith parameters from Ref. [12, 13℄ (Sk), the Friedman and Pandharipandeintera
tions [14℄ (as parametrized by Ravenhall in Ref. [15℄) (FPR) andthree models, UV14+TNI, AV14+UVII and UV14+UVII, from Ref. [16℄ byWiringa et al.
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Fig. 1. The proton fra
tion of the neutron star matter as a fun
tion of baryonnumber density for indi
ated nu
lear intera
tion models.Let us 
onsider a neutron star matter 
ontaining a small proton fra
tionx. To 
ompare the energy of a normal phase of uniform density and a phasewith lo
alized protons we apply the Wigner�Seitz approximation and dividethe system into 
ells, ea
h of them en
losing a single proton [2, 4℄. Forsimpli
ity, the 
ells are assumed to be spheri
al. The volume of the 
ell isV = 1=nP . The normal phase is of uniform density nN and the neutron
hemi
al potential is �N . In the uniform density phase protons are notlo
alized and their wave fun
tions are plane waves.The energy of the 
ell, whi
h is a sum of proton and neutron energies,reads E0 = V " (nN ; nP ) ; (1)where " (nN ; nP ) is the energy density of the uniform phase. For smallproton density, i.e. for low x, we 
an expand the energy density" (nN ; nP ) � " (nN ; 0) + �P (nN ; 0) nP : (2)In the following we shall adopt abbreviations " (nN) = " (nN ; 0) for theenergy density of pure neutron matter and �P (nN) = �P (nN ; 0) for theproton 
hemi
al potential in pure neutron matter. The energy of the 
ell isthus approximately E0 = �P (nN ) + V " (nN ) : (3)Our aim is to 
ompare the energy of the normal phase, where protonsare nonlo
alized, with the energy of a phase where the protons are trapped



746 M. Kuts
hera et al.into potential wells, 
orresponding to the nonuniform neutron density distri-bution, whi
h most likely form a regular arrangement. We treat this proton�
rystal� in the Wigner�Seitz approximation.Let us 
onsider a Wigner�Seitz 
ell with nonuniform neutron matterdistribution n (r) surrounding the proton whose wave fun
tion is 	P . In thelo
al density approximation one 
an identify the proton e�e
tive potentialwith the lo
al proton 
hemi
al potential �P (n) [2℄. The proton's e�e
tivepotential varies lo
ally with neutron matter density n (r). This results in apotential well �P (n (r)) whi
h a�e
ts the single proton wave fun
tion. Theenergy of the Wigner�Seitz 
ell, EL, is:EL = ZV �	�P (r) �� r22mP + �P (n (r))�	P (r)+" (n (r)) +BN ��!rn (r)�2� d3r : (4)The �rst term is the energy of the proton in the e�e
tive potentialve� (r) = �P (n (r)). It is by 
onstru
tion the attra
tive potential well.At high densities the derivative of the proton 
hemi
al potential is positive,��P�n > 0, for all intera
tions we use. This 
an be seen in Fig. 2 where theproton 
hemi
al potential in pure neutron matter is shown for nu
lear inter-a
tion models from Fig. 1. The neutron density pro�le n (r) is thus assumedto have a minimum at the 
enter of the 
ell.
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Fig. 2. The proton 
hemi
al potential in pure neutron matter as a fun
tion ofbaryon number density for the same intera
tions as in Fig. 1.



Stru
ture of Proton Component of Neutron Star Matter for . . . 747The two other terms in Eq. (4) des
ribe the neutron ba
kground 
ontri-butions to the energy. These represent the neutron Fermi sea energy andthe 
urvature energy due to the gradient of the neutron distribution, re-spe
tively, in the Thomas�Fermi approximation. Here " (n (r)) is the lo
alneutron matter energy per unit volume. The parameter BN is the 
urvature
oe�
ient for pure neutron matter [2℄.To de
ide whi
h is the ground state 
on�guration we 
ompare the en-ergies E0 and EL assuming the same number of neutrons in the 
ell. Thismeans that the neutron density variation 
onserves the baryon number:ZV (n (r)� nN ) d3r = 0 : (5)In the next se
tion the minimum of the energy di�eren
e �E = EL �E0 is
al
ulated in a simple variational approa
h and in Se
tion 4 more sophisti-
ated method is developed.3. Simple estimate of the lo
alized proton energyWe assume a simple trial form of the proton wave fun
tion and theneutron density variation. For the proton wave fun
tion we use a Gaussianform: 	P (r) = �23�R2P�� 34 exp��34 r2R2P � : (6)Here RP is the rms radius of the lo
alized proton probability distribution.We treat this quantity as a variational parameter and minimize the energydi�eren
e �E with respe
t to RP .Using the trial form of the proton wave fun
tion 	P (r) the energy dif-feren
e �E be
omes�E = 98mPR2P + ZV �	2P (r) (�P (n (r))� �P (nN))+" (n (r))� " (nN ) +BN �dn (r)dr �2� d3r : (7)The neutron density n (r) is 
hosen to be [2, 4℄:n (r) = nN + � �	�P (r)	P (r)� 1V � : (8)Here � is the se
ond variational parameter; � > 0 
orresponds to the neutrondensity enhan
ement around the proton and � < 0 
orresponds to the bubblein the neutron density near the proton.



748 M. Kuts
hera et al.We 
al
ulate the energy di�eren
e �E, Eq. (7), for small proton fra
-tion x, i.e. in the limit of large volume V . The �rst and the last terms are
al
ulated assuming that the Wigner�Seitz 
ell radius RC is mu
h biggerthan RP , RC � RP . Denoting 	�P (r)	P (r) = p (r) and expanding in 1=Vwe have ZV p (r)��P �nN + �p (r)� � 1V �� �P (nN)� d3r= ZV p (r) (�P (nN + �p (r))� �P (nN )) d3r�� 1V ZV p (r) ��P�n (nN + �p (r)) d3r : (9)The integral in the last term does not depend on the 
ell volume so thatthis term vanishes in the limit V ! 1. Expanding in the same way theenergy density, we obtain from the third term in Eq. (7)ZV �"�nN + �p (r)� � 1V �� " (nN)� d3r= ZV [" (nN + �p (r))� " (nN )℄ d3r � ��N (nN )�� 1V ZV (�N (nN + �p (r))� �N (nN )) d3r : (10)Here also the integral in the last term does not depend on the 
ell volume,sin
e p (r) is a Gaussian, and this term vanishes for large V . The last term
ontaining the 
oe�
ient of 
urvature BN is easily evaluated to be:ZV BN ��!rn (r)�2 d3r = 92 �43��� 32 1R5P BN�2 : (11)The energy di�eren
e �E thus be
omes:�E = 98mPR2P + ZV f(�P (n (r))� �P (nN )) p (r)g d3r+ZV f" (n (r))� " (nN )g d3r � ��N (nN ) + 92 �43��� 32 1R5P BN�2 : (12)



Stru
ture of Proton Component of Neutron Star Matter for . . . 749We obtain physi
al parameters of the lo
alized phase for a given neutronmatter density nN by a straightforward minimization of �E with respe
t tothe two variational parameters � and RP .The results of the 
al
ulations for the MS and FPR nu
lear intera
tionsare presented, respe
tively, in Figs. 3 and 4 where we show the energy dif-feren
e �E as a fun
tion of the proton distribution rms radius RP for a
-20
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Fig. 3. The energy di�eren
e �E as a fun
tion of the proton rms radius for theMyers and Swiate
ki intera
tion. The 
urves 
orresponding to the self-
onsistent
al
ulations are labeled with the value of the neutron matter density in [fm�3℄.The 
urves labeled additionally with the letter � 
orrespond to the simple methodof Se
tion 3.
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Fig. 4. The same as in Fig. 3 for the Friedman�Pandharipande�Ravenhall nu
learintera
tion.



750 M. Kuts
hera et al.few values of the neutron density. The 
urves are labeled with the valueof the neutron matter density nN with subs
ript �. One 
an noti
e thatfor both MS and FPR intera
tions there appears a lo
al minimum abovea 
ertain density, for the proton rms radius RP in the range 1 fm�2 fm.We have 
hosen the results for MS and FPR intera
tions only as exam-ples of a general behavior whi
h is observed for all intera
tions we use inthe 
al
ulations (more detailed a

ount of our 
al
ulations will be presentedelsewhere). With in
reasing neutron matter density nN the depth of theminimum in
reases and above the threshold density the energy di�eren
ebe
omes negative. The negative value �E < 0 means that the energy of thelo
alized proton is lower than the energy of a nonlo
alized proton and thelo
alized proton state is preferred energeti
ally. The behavior of �E is verysimilar for all intera
tions we examine. This shows that the lo
alization isnot an e�e
t of some spe
i�
 intera
tion but rather is a general qualitativefeature of the physi
al system we 
onsider. Quantitative results, i.e. thelo
alization density, the value of �E at the minimum and the lo
alizationradius RP , depend on the spe
i�
 intera
tions. The proton lo
alization o
-
urs at the lowest density for the Skyrme intera
tions, nlo
 = 0:4 fm�3, andthe energy di�eren
e �E displays the fastest de
rease with the density. One
an say that the lo
alization is the strongest in this 
ase.To understand better the lo
alization me
hanism it seems useful to 
on-sider separately various 
ontributions to the total energy di�eren
e. InFigs. 5 and 6 we show the proton 
ontribution, EP , to the energy di�er-en
e �E, whi
h 
onsists of kineti
 and potential terms. Here the minimum
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ki model of nu
learintera
tions. Curves labeled as in Fig. 3.
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Fig. 6. The same as in Fig. 5 for the Friedman�Pandharipande�Ravenhall intera
-tions.o

urs at lower values of the proton rms radius RP . One should keep inmind that the proton energy 
ontribution represents a di�eren
e of the ki-neti
 and potential energies of a lo
alized proton and a single plane-waveproton. In the latter 
ase the kineti
 energy is zero. Next �gures, Figs. 7and 8, show the 
ontribution of the neutron ba
kground to the total energydi�eren
e. This 
ontribution is a monotoni
ally de
reasing fun
tion of theproton rms radius RP . It grows very fast for low values of RP . This rapidgrowth is similar to the behavior of the gradient term 
ontribution whi
h is
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lear intera
tions. Curves labeled as in Fig. 3.
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-tion.displayed in Figs. 9 and 10. Thus a sum of these 
ontributions also growsfast for low values of RP . Its values for a given radius RP in
rease with themean neutron density nN .The minimum of the total energy di�eren
e, �E, whi
h is a sum ofall 
ontributions shown in Figs. 5�10, is thus a result of a deli
ate balan
ebetween repulsive 
ontributions due to the neutron ba
kground, the protonkineti
 term and the neutron 
urvature energy, and the attra
tive part ofthe proton intera
tion energy. Results of our 
al
ulations for a number of
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Fig. 10. The same as in Fig. 9 for the Friedman�Pandharipande�Ravenhall inter-a
tions.e�e
tive nu
lear intera
tions show that su
h a minimum o

urs in all 
asesabove some density. One may thus 
on
lude that the lo
alization of protonimpurity in the neutron matter is a general predi
tion of nu
lear models ofthe 
lass we 
onsider here.The threshold density for proton lo
alization, nlo
, depends also on the
urvature 
oe�
ient BN entering the gradient term and the proton e�e
tivemass mP , whi
h are parameters of our model. In Fig. 11 we show how nlo

hanges with BN . One 
an noti
e that the lo
alization density only weakly
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hera et al.in
reases with the 
urvature 
oe�
ient in a wide range of its values. Also,the rms proton distribution radius at the threshold density Rlo
P in
reasesslowly with in
reasing 
urvature 
oe�
ient BN , Fig. 12. This fa
t is ratherimportant in regard of validity of the Thomas�Fermi approa
h used in ourmodel.
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 depends in a more sensitive way on the protone�e
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h is most likely physi
ally relevant to neutron stars, thethreshold density 
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onsistent methodVariational 
al
ulations of the lo
alized proton energy presented in theprevious se
tion used the trial fun
tions with only two variational parame-ters, � and RP . In this se
tion we develop more advan
ed variational methodwhi
h should give better estimate of the ground state energy of a lo
alizedproton.The energy di�eren
e�E, is a fun
tional of two fun
tions 	 (r) and n (r).The physi
al 
onstraint is that the variation of the neutron ba
kground
onserves the baryon number. We should thus look for su
h fun
tions 	(r)and n (r) that minimize the fun
tionalf [n (r) ; 	P (r)℄ = �E��ZV [n (r)� nN ℄ d3r�E"ZV 	�P (r)	P (r) d3r� 1#;(13)where we expli
itly in
lude 
onstraints of the baryon number 
onservation,Eq. (14), and the proton wave fun
tion normalizationZV 	�P (r)	P (r) d3r � 1 = 0 : (14)The Euler�Lagrange equations 
orresponding to the fun
tional (13) 
anbe found easily. The di�erentiation with respe
t to 	�P gives the S
hrödingerequation for the proton impurity:� 12mP r2	P (r) + [�P (n (r))� �P (nN )℄	P (r) = EP	P (r) : (15)Di�erentiation with respe
t to n (r) gives the se
ond-order equation for theneutron density distribution n(r):��P (n (r))�n (r) 	�P (r)	P (r) + �N (n (r)) + 2BN d2n (r)dr2 � � = 0 : (16)The boundary 
onditions the fun
tions 	 (r) and n (r) obey at r !1 are:n (r) = nN , j	P (r)j2 = 0. This allows us to identify the Lagrange multiplier� with the neutron 
hemi
al potential,� = �N (nN ) : (17)To 
al
ulate the 
ell energy we adopt for the proton wave fun
tion theGaussian form used in the previous se
tion and solve with this ansatz theequation (16). The rms radius of the proton probability distribution, RP ,
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hera et al.is treated as a variational parameter. Numeri
al solutions of Eq. (16) arepresented in Figs. 14 and 15, where we show the neutron density distri-butions n(r) obtained from equation (16). As one 
an noti
e the neutronba
kground has somewhat di�erent shape than that used in Se
tion 3. Inparti
ular, at higher mean neutron densities nN there appears a signi�
antdensity enhan
ement at the well boundary whi
h 
onsiderably strengthensthe lo
alization e�e
t. With the simple method of Se
t.3 the neutron dis-tribution around the proton is a monotoni
ally in
reasing fun
tion of theradius.
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0.25Fig. 14. The neutron density distribution obtained from Eq.(16) for indi
ated neu-tron matter densities (in [fm�3℄) for the Myers and Swiate
ki intera
tions. Thelo
alized proton distribution nP is also shown.Results of 
al
ulations of the energy di�eren
e�E with the self-
onsistentmethod are presented in Figs. 3 and 4 as 
urves labeled with the value ofthe neutron matter density only. In Figs. 5�10 the proton 
ontribution andall 
omponents of the neutron ba
kground 
ontribution to the full energydi�eren
e are shown together with those obtained in Se
tion 3. The neutronba
kground energy, Figs. 7 and 8, 
al
ulated with the self-
onsistent methodis well below the simple estimate of Se
tion 3 for low values of the protondistribution radius RP . The redu
tion of the energy is even bigger for thegradient term 
ontribution, Figs. 9 and 10. An opposite e�e
t is observedfor the proton energy 
ontribution, Figs. 5 and 6, where the energy 
orre-sponding to the self-
onsistent method is higher than that 
al
ulated withsimple trial fun
tions in Se
tion 3.
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lusions and impli
ationsOur self-
onsistent method gives lower energies of lo
alized protons thanthe variational method used in Se
tion 3. In Figs. 3 and 4 we 
ompare the en-ergy di�eren
e�E obtained with both methods, for the MS and FPRmodelsof nu
lear intera
tions. As fun
tions of the radius RP the energy di�eren
es�E for the old variational method and for the self-
onsistent method departfrom one another only for small values of RP . At RP > 1 fm the 
urves forboth methods in Figs. 3 and 4 are pra
ti
ally identi
al. However, at smallRP the self-
onsistent method gives signi�
antly lower energies. The mini-mum values of �E are 
onsiderably below those found with the old methodand they o

ur at somewhat smaller radii. Our study indi
ates also thatwith the growing 
urvature 
oe�
ient the lo
alization density grows. Theresults presented in Fig. 11 show that this growth is weak and the values
orresponding to both methods are quite similar. Also, the dependen
e ofthe lo
alization density on the proton e�e
tive mass, Fig. 13 is very similarfor both methods.To 
on
lude, the self-
onsistent 
al
ulations improve the estimate of theenergy of the 
ell 
ontaining a lo
alized proton, espe
ially at small valuesof the rms proton radius RP . The proton 
ontribution EP and the gradientterm 
ontribution to�E are most a�e
ted by the new method. The ultimategoal is to 
al
ulate the proper wave fun
tion of the proton, whi
h would givethe true energy of the lo
alized state.
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hera et al.Results of our 
al
ulations for nu
lear intera
tions we use indi
ate thatthe proton impurity in neutron star matter be
omes lo
alized at densitiesabove 0.5�1.0 fm�3. The self-
onsistent method gives lower energies of lo-
alized protons and smaller threshold lo
alization densities than simple vari-ational method with trial fun
tions. This has important 
onsequen
es forneutron stars as densities in this range 
orrespond to inner 
ore of neutronstars with masses ex
eeding one solar mass, M > 1M�. In Fig. 16 we showneutron star masses 
orresponding to all nu
lear intera
tions used in the
al
ulations reported above.

0

0.5

1

1.5

2

2.5

3×1014 1×1015 3×1015 1×1016

M
/M

S
O

L

ρc [g/cm3]

MS
Sk

FPR
UV14+TNI

AV14+UVII
UV14+UVIIFig. 16. Neutron star masses (in solar units) as fun
tions of the 
entral density fornu
lear intera
tion models from Fig. 1.REFERENCES[1℄ M. Kuts
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