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REMARKS ON THE n = 1=2 DISCLINATION LINEIN LANDAU�DE GENNES THEORYOF NEMATIC LIQUID CRYSTALSH. Arod¹ and R. PeªkaInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Craow, Poland(Reeived September 7, 2001)Using Landau-de Gennes e�etive theory for nemati liquid rystalswe analyse struture of a retilinear, n = 12 ; smooth dislination line inthe ase of equal elasti onstants. We �nd that at ertain temperaturethere is an exat mathematial orrespondene with a retilinear vortex insuper�uid 4He. With a help of polynomial approximation di�erene of freeenergies of smooth and singular dislination lines is estimated. It turns outthat the smooth dislination line is energetially preferred only if temper-ature is low enough. At higher temperatures a disordered ore should beexpeted.PACS numbers: 61.30.Jf, 11.27.+d1. IntrodutionDislination lines in nemati liquid rystals are among the most populartopologial defets enountered in ondensed matter physis [1�4℄. In spiteof that, theoretial desription of them still poses rather interesting prob-lems. In the diretor formalism for uniaxial nemati liquid rystals there isthe question of struture of a singular ore of the dislination line. As it hasbeen pointed out in papers [5�7℄, it is also possible to have smooth disli-nation lines, provided one allows for biaxiality indued by torques whihare due to topologially nontrivial boundary onditions. This type of disli-nation lines has been investigated in the framework of Landau�de Gennese�etive theory for nemati liquid rystals, mainly with the help of numerialmethods. Analyti desription, exat or approximate, is still missing exeptfor speial ases. Yet another theoretial desription of the dislination linesan be found in [8℄, where Eriksen e�etive theory is used, or in [9℄ wherethe biaxiality is not introdued. There are also less fundamental but more(771)



772 H. Arod¹, R. Peªkadi�ult problems, like theoretial desription of evolution of a urved disli-nation line, see e.g. [10℄. Atually, the present work is the �rst step in ourattempt to solve the latter problem.We onsider the retilinear n = 12 dislination line within the frameworkof Landau�de Gennes e�etive theory. Review and disussion of this theoryis given in e.g. [11℄. In the present paper we assume that the onstant L2is equal to zero, what orresponds to equal elasti onstants in the diretorformalism. The ase of L2 6= 0 is muh more ompliated [12℄. First, wereformulate the theoretial desription of the smooth dislination line foundin [7℄, in partiular in order to prepare a onvenient starting point for theanalysis of the urved smooth dislination line. Next, we present ertain newresults. We �nd that there is a speial ase in whih the transverse pro�leof the smooth dislination line is given by one nontrivial funtion, insteadof two in the generi ase. We provide an approximate analyti desriptionof the dislination line by means of the polynomial approximation. Finally,omparing free energies of the smooth and singular dislination lines wenotie that as we vary parameters of the model eah of the two an beenergetially preferred.The ontents of our paper is as follows. In Setion 2 we reall formu-las from Landau�de Gennes theory whih we need in our onsiderations.Setion 3 is devoted to the analyti desription of the smooth retilineardislination line. This setion ontains our new results mentioned in thepreeding paragraph. In Setion 4 we have olleted several remarks.2. Landau�de Gennes theoryThe order parameter for the nemati liquid rystal in Landau�de Gennestheory has the form of a symmetri, traeless real tensor Q̂ = [Qij ℄, wherei; j =1, 2, 3. The orresponding free energy density is given by the followingformulas F = 12L1�iQjk�iQjk + 12L2�iQik�jQjk + V (Q̂) ; (1)where V (Q̂) = �a2 Tr (Q̂2)� b3 Tr (Q̂3) + 4(Tr (Q̂2))2 : (2)The onstants a; b; ; L1; L2 haraterise the liquid rystalline material, seee.g. [13℄. In the following we assume that all the onstants in (1), (2) arepositive. Then, the ground states obtained by minimising F are uniaxial, inaordane with what has been experimentally found for most of nematis.It is lear that in the ground state Q̂ is onstant. One an show by minimis-ing V (Q̂) that all ground states Q̂g an be obtained by uniform rotations or



Remarks on the n = 12 Dislination Line in : : : 773by re�etions from Q̂0 = �00� 2 0 00 �1 00 0 �1 1A ; (3)where �0 = b+pb2 + 24a12 : (4)That is Q̂g = OQ̂0OT ; (5)where O 2O(3) is a onstant orthogonal matrix. The orresponding valueof V is equal to Vmin = �32a�20(1 + �) ; (6)where � = b�03a :By de�nition, in the uniaxial ase the matrix Q̂ has two idential eigen-values �1 = �2 = �: Then one an de�ne the diretor �eld ~n by writing Q̂in the form Q̂ = 3��13I � ~n~nT� ; (7)where I denotes the 3 by 3 unit matrix, the vetor ~n has unit length, and~n~nT is a matrix (dyad). It is lear from formula (7) that as the eigenvetorsorresponding to the degenerate eigenvalue � we an take any pair of linearlyindependent vetors orthogonal to ~n. The third eigenvetor is just ~n andthe orresponding eigenvalue is equal to �2�. For the partiular Q̂0 givenby formula (3) the diretor �eld an be taken in the form~n0 = 0� 100 1A ; � = ��0 ;and ~ng = O ~n0 (8)orresponds to Q̂g given by formula (5).The true value of the Landau�de Gennes theory is, of ourse, related tothe fat that it also desribes states whih are not the ground states. ThenQ̂ an be spae and time dependent, Q̂ = Q̂(~r; t). For example, one anonsider time evolution of inhomogeneous perturbations of the ground states.Another lass of states ontains topologial defets. These states are often



774 H. Arod¹, R. Peªkadisussed in London's approximation [14℄ whih onsists in restriting allon�gurations to the set of minima of V (Q̂), often alled the vauum mani-fold. Thus, in this approximation Q̂ has the form (7) where now ~n = ~n(~r; t)while � = ��0 remains onstant. In London's approximation free energiesof various states an di�er only by the derivative terms in (1). Formulas (1)and (7) give the well-known Oseen�Zöher�Frank free energyF = 12K11(div~n)2 + 12K22(~n � rot~n)2 + 12K33(~n� rot ~n)2+ 12K22 div [(~n � r)~n� ~ndiv~n℄ + Vmin ; (9)where K11 = K33 = 18�20(L1 + 12L2) ; K22 = 18�20L1 ; (10)and the onstant Vmin is given by formula (6). From formulas (10) we seethat L2 = 0 orresponds to K11 = K22 = K33:Unfortunately, in the ase of dislination lines London's approximationis too restritive. The point is that it allows only for dislination lines witha singular ore: due to the topologially nontrivial boundary onditions Q̂neessarily leaves the vauum manifold at ertain points in the spae. Onthe other hand, in the full framework of Landau�de Gennes theory alsoa smooth dislination line, whih does not ontain any singular ore, ispossible. Whih of the two types of dislination lines is expeted to ourin a onrete nemati material at a given temperature an be found out byheking the orresponding values of the free energy.3. The smooth n = 12 dislination line3.1. The axially symmetri AnsatzTopologial harge pertinent to the n = 12 dislination line is relatedto the fundamental group of onneted omponents of the vauum man-ifold, that is to �1(SO(3)=H), where H� SO(3) is the stability group ofQ̂0: It is a well-known fat that �1(SO(3)=H) = Z2; [15℄. Far away fromthe retilinear dislination line, that is at the spatial in�nity in diretionsperpendiular to the line, the order parameter Q̂ lies in the vauum man-ifold (5). The matries O in formula (5) taken along a large irle aroundthe dislination line should form a ontinuous path in the SO(3) group suhthat its projetion on the vauum manifold SO(3)=H gives a non-ontratible



Remarks on the n = 12 Dislination Line in : : : 775loop orresponding to the nontrivial element of �1(SO(3)=H). Let us assumethat the dislination line is perpendiular to the (x; y) plane. Then we maytake O(�) = 0� os �2 � sin �2 0sin �2 os �2 00 0 1 1A ; (11)where (�; �) are the polar oordinates in the (x; y) plane.The struture of the dislination line is determined from the requirementthat the total free energy F = Z d3xF (12)has a minimum within the hosen topologial lass of the order parameter Q̂.The neessary ondition for that has the formÆFÆQij(~x) + �ij � �ji + �Æij = 0 ; (13)where �ij; � are Lagrange multipliers orresponding to the onditionsQij � Qji = 0; Qkk = 0; respetively. In the disussed ase of equalelasti onstants one may expet that the minimal free energy is obtainedfor an axially symmetri on�guration. Therefore, we look for a smoothsolution of Eq. (13) assuming the following ylindrially symmetri AnsatzQ̂ = �02 O(�)0� S(�) + 3R(�) 0 00 S(�)� 3R(�) 00 0 �2S(�) 1AOT (�) ; (14)where �0 is given by formula (4), O(�) has the form (11), and S(�); R(�) areunknown funtions of the polar radius �. Ansatz (14) an be written also inthe formQ̂ = �02 24S(�)0� 1 0 00 1 00 0 �2 1A+ 3R(�)0� os� sin� 0sin� � os� 00 0 0 1A35 : (15)This Ansatz is equivalent to the one onsidered in [7℄, but the form (14) ismore transparent from the homotopy group viewpoint.



776 H. Arod¹, R. PeªkaThe appropriate boundary onditions for the funtions S(�); R(�) havethe form R(0) = 0; R(1) = 1; (16)S(0) = w0; S(1) = 1; (17)where w0 is a onstant. They follow from ontinuity of Q̂ at � = 0, andfrom the assumption that in the limit �!1 Q̂ has the form OQ̂0OT withQ̂0 given by formula (3). It is lear from the Ansatz (14) and from theonditions (16), (17) that Q̂ is not restrited to the vauum manifold.The free energy density (1) is now equal toF = 98a�20"S02 + 3R02 + 3s2R2 � 23S2 � 2R2� 6�S�R2 � 19S2�+ 112(1 + 3�) �S2 + 3R2�2 #; (18)where ' stands for d=ds. For onveniene we have introdued the dimen-sionless variable s = �=�0; where �0 =p2L1=3a.For Q̂ of the form (15) Eq. (13) redues to the following two equations(reall that L2 = 0)S00 + 1sS0 + 23S � 16(1 + 3�)S �S2 + 3R2�� � �S2 � 3R2� = 0 ; (19)R00 + 1sR0 � 1s2R+ 23R� 16(1 + 3�)R �S2 + 3R2�+ 2�SR = 0 : (20)Equations (19), (20) are quite ompliated. One an notie one simpleinteresting solution of them besides the trivial R = S = 0, namely R = 0;S = �2. This solution desribes the ground state on�guration equivalentto Q0: Another simple solution, namely R = 0; S = 2=(1 + 3�); is notinteresting beause it orresponds to a loal maximum of V (Q̂).Less trivial solutions an be studied with the help of numerial methods.In Figs. 1, 2 we present two examples of numerial solutions of Eqs. (19), (20)with the boundary onditions (16), (17). The solutions are represented bythe ontinuous lines. They were generated with the help of Maple . Thedotted lines in these �gures represent approximate forms of the funtionsR; S obtained in Subsetion 3.3 below.



Remarks on the n = 12 Dislination Line in : : : 777

s

R

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 

s

S

1

1.1

1.2

1.3

1.4

 

0 2 4 6 8 10 12 Fig. 1. The funtions R; S for � = 0:1. The numerial solutions are representedby the ontinuous lines, while the dotted lines represent the approximate forms ofR; S onstruted in Subsetion 3.3. For the numerial solution w0 = 1:35710(4).



778 H. Arod¹, R. Peªka

s

R

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 

s

S

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 

1 2 3 4 5 6 Fig. 2. The funtions R; S for � = 1:0. The ontinuous and dotted lines have thesame meaning as in Fig. 1. For the numerial solution w0 = 0:79239(7).



Remarks on the n = 12 Dislination Line in : : : 7793.2. The onnetion with Ginzburg�Pitaevskii equationThe boundary onditions (16) imply that R(s) an not be onstant, whilefor S(s) this is not exluded. Atually, Figs. 1 and 2 suggest that for ertainvalue of � between 0.1 and 1 the funtion S is onstant. If we assume thatS = onst, then Eq. (19) splits into two independent algebrai equations(beause for R2 we an substitute, e.g., 0 and 1):16(1 + 3�)S � � = 0 ; 16(1 + 3�)S2 + �S � 23 = 0 :They imply that � = 13 ; S = 1 ; (21)and onsequently a = b23 :Now the remaining equation (20) has the formR00 + 1sR0 � 1s2R+R �1�R2� = 0 : (22)Preisely this equation appears also in the theory of super�uid 4He, namelyGinzburg�Pitaevskii equation for a retilinear vortex with the unit windingnumber an be written exatly in the form (22), [16℄. Certain similaritybetween the smooth dislination line and the super�uid vortex has alreadybeen notied in [9℄, where purely uniaxial nemati liquid rystal with Q̂restrited to the form (7) is onsidered. Now we see that in full Landau�de Gennes theory the pertinent equations just oinide.In the super�uid 4He ase the vauum manifold an be identi�ed withthe Abelian U(1) group, hene it is quite di�erent from SO(3)=H. In spiteof that, the oinidene of equations suggests that dynamial properties ofthe super�uid vortex and of the dislination line an be quite similar.The material onstant a linearly depends on temperature T , namelya = a0(T� � T ) :The nemati phase exists in ertain �nite temperature range,T� > T > Tm :The parameter � monotonially dereases from 1 to �m when T dereasesfrom T� to Tm.



780 H. Arod¹, R. PeªkaFor MBBA nemati liquid rystal the material onstants have the val-ues a0 = 42 � 103 Jm�3K�1; b = 64 � 104 Jm�3;  = 35 � 104 Jm�3 andT� = 320K; Tm = 29 4K, see e.g. [13℄. It follows from the de�nition of �given below formula (6) that �m � 0:174. The speial value � = 1=3 orre-sponds to the temperature T1=3 � 311K. This estimate of T1=3 for MBBAhas a blemish: in reality the elasti onstant L2 6= 0. Therefore, the obtainedvalue should be taken with a grain of salt.3.3. The polynomial approximationEven for relatively simple Eq. (22) the relevant exat analyti solutionis not known. Below we present an approximate solution of Eqs. (19), (20)obtained with the help of so alled polynomial approximation [17℄. Thisapproximation has turned out to be very useful in several ases. It wasompared with good results with purely numerial solutions in [18℄, wherea vortex in Abelian Higgs model was onsidered.We already know from Figs. 1, 2 the general shape of the solutions R; S.The pitures suggest the following approximate desription of these fun-tions. For small s we approximate R and S by the low order polynomials,R< = r1s ; (23)S< = w0 + w2s2 ; (24)whih an be regarded as trunated series solutions of Eqs. (19), (20). Equa-tion (19) gives the following reursive relationw2 = 14w0 �16(1 + 3�)w20 + �w0 � 23� : (25)Here r1 and w0 are unknown parameters as yet. On the other hand, when sis large we use the following approximate solutions of (19), (20)R> = 1� 1 + 15�12�(2 + 3�) 1s2 ; S> = 1 + 1� 3�4�(2 + 3�) 1s2 : (26)The exat solutions are expeted to be smooth for all s. Therefore, we pos-tulate that R< smoothly mathes R> at ertain point s1. To determine thetwo unknown parameters r1; s1 we may impose the two mathing onditionsR<(s1) = R>(s1) ; R0<(s1) = R0>(s1) : (27)They give r1 = 23s1 ; s1 = � 1 + 15�4�(2 + 3�)�1=2 : (28)



Remarks on the n = 12 Dislination Line in : : : 781Similarly, for S we impose the following two mathing onditions at s = s2S<(s2) = S>(s2) ; S0<(s2) = S0>(s2) ; (29)from whih we determine w0 and s2. Spei�ally, we obtain the followingrelation between w0 and s2w0 = 1 + 1� 3�2�(2 + 3�) 1s22 ; (30)and the algebrai ubi equation for w0(1�9�2)w30+54�(1+�)w20�4 �1 + 21� + 36�2�w0+24�(2+3�) = 0 : (31)This last equation an easily be solved numerially for eah given value of �.It is lear from formula (30) that if 0 < � < 1=3 the relevant solution w0 ofEq. (31) should be greater than 1, while w0 < 1 for � > 1=3; and, of ourse,w0 = 1 for � = 1=3. We have obtained the following approximate formulasfor s2 and w0 when � � 1s2 � 1:171p� �1 + 0:239� +O ���2�� ; w0 � 0:635+0:190� +O ���2� ; (32)when � ! 0s2 � 12p� �1 + 15�4 +O ��2�� ; w0 = 2� 12� +O ��2� : (33)In this way we have obtained the approximate forms of R;S in the fullrange of the s variable. They are presented in Figs. 1, 2 (the dotted lines) for� = 0:1 and � = 1:0. In partiular, the approximate values of w0 followingfrom Eq. (31) are equal to 1.36360(9) and 0.79234(4), orrespondingly. Theyare in quite good agreement with the values for the numerial solutions givenin the �gure aptions.The approximate solutions R;S are ontinuous together with their �rstderivatives (the C1 lass) for all s, they onverge to the exat solutions atsmall and large s, and they obey the boundary onditions (16), (17). There-fore, these approximate forms of R;S give a smooth dislination line whihbelongs to the right topologial lass. Its free energy (in a �nite volume) isa little bit larger than the one for the exat solutions of Eqs. (19), (20).The Ansatz (14) and our approximate solution imply that at the entreof the smooth dislination lineTr (Q̂2)(s = 0) = 32�20w20 ;



782 H. Arod¹, R. Peªkawhile in the ground state (3) Tr (Q̂20) = 6�20 :We see that degree of ordering (i.e. Tr (Q̂2)) inside the smooth dislinationline is smaller than in the ground state. Only in the limit � ! 0, whenw0 ! 2, the degree of ordering approahes its ground state value.Let us end this subsetion with two remarks about the polynomial ap-proximation. First, there is a aveat in onstruting the approximate formsof R and S. If we inlude more terms in the expansions (23�26), then itturns out that always R0> > 0, while the trunated series R0< has oe�ientswith alternating signs. Therefore, it may happen that the mathing on-ditions (27) an not be satis�ed if R< ontains a wrong number of terms:at the mathing point s1 the highest order term in the polynomial R0< andominate and if the sign is minus the mathing is not possible at all. Inthe ase at hand it turns out that we may take either �rst or �fth orderpolynomials, but not of the third order one. Analogously, one has to beautious when hoosing a polynomial for S<.Seond, inluding more and more terms in the polynomials R<; S< ingeneral does not seem to be the most e�ient way to improve the approx-imation. The point is that the in�nite series expansions for R;S in s atsmall s, and in s�1 at large s, an be slowly onvergent, or even they anhave a �nite and too small radius of onvergene. We think that it is bet-ter to take the polynomials of the lowest possible order, to onstrut theapproximate solution, and then to ompute orretions ÆR; ÆS to it by lin-earising equations (19), (20) around the approximate solution. The reasonis that the approximate solution onstruted above already takes are of thenontrivial, nonlinear struture of the dislination line, inluding the bound-ary onditions (16), (17), and therefore we expet that ÆR; ÆS will be small.The solutions of the resulting linear equations for ÆR; ÆS are aessible bymany tehniques.3.4. Free energy of the smooth dislination lineThe approximate formulas for the funtions R and S an be used toestimate the free energy per unit length of the smooth dislination line.The free energy density dereases at large s rather slowly: the polynomialapproximation inserted in formula (18) gives for s!1F �= Vmin + 27a�208 1s2 ; (34)



Remarks on the n = 12 Dislination Line in : : : 783where Vmin is given by formula (6). This asymptoti behaviour is the same asfor the singular dislination line. General shape of the free energy density anbe seen from Fig. 3, where we have plotted f (s) = 8(F(s)�Vmin)=(9a�20) for� = 0:1. Beause of the slow fall o� at large s, the total free energy per unitlength of the dislination line in in�nite volume is logarithmially divergent.On the other hand, the integral of the di�erene of the free energies densitiesof the smooth and singular dislination lines is onvergent, but it requiresan estimate of the ontribution of the ore of the singular dislination lineto the free energy.Let us estimate the free energy density of the singular dislination line.Outside the ore the potential energy V (Q̂) has the ground state value Vmin,and the elasti energy density given by the L1 term in formula (1) has theform 27a�208s2 :We assume that the ore is formed when the total free energy density ap-proahes 0, beause in the disordered phase Q̂ = 0 and then F vanishes.This means that the elasti energy at the boundary of the ore is equal tojVminj. This ondition gives the radius of the oreR = 3�02p1 + � :
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784 H. Arod¹, R. PeªkaFurthermore, we assume that also inside the ore the total free energy densityvanishes. Then, the total free energy F of the singular dislination linestored inside a onentri with it ylinder of unit height and of radius L�0is given by the integralF = 2��20 9a�208 LZR=�0 ds s� 3s2 � 43(1 + �)� :The fator 2� omes from the integration over the angle �. Note that Finludes the ground state energy Vmin.Now we an ompare the free energy Fb of the smooth dislination line(inside the ylinder of radius L�0), whih is given by the formulaFb = 2��20 LZ0 dssF ;with F. For the smooth dislination line we use the polynomial approxima-tion onstruted in the previous Subsetion. We have alulated numeriallythe di�erene Fb � F for � from 0.01 to 0.2 in steps of 0.01 taking L = 35.The results are plotted in Fig. 4.
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Remarks on the n = 12 Dislination Line in : : : 785We see that only for � < 0:12 the smooth dislination line has smallertotal free energy. One an say that then the energeti ost of leaving thevauum manifold is not too large. On the other hand, for larger � it isenergetially favourable to form the disordered ore. Of ourse, our esti-mate of the �ritial� value 0.12 of � depends on the assumptions about theformation and energy of the ore.In Setion 3.2 we have noted that in the ase of nemati MBBA� > 0:174. Therefore, our alulations suggest that in that nemati ma-terial the n = 12 dislination line has the singular ore in the whole relevantrange of temperature. 4. Disussion1. Let us reapitulate the main results of our work. We have found thatthere exists the speial value 1/3 of the parameter � for whih thesmooth dislination line has partiularly simple mathematial stru-ture. We have obtained the approximate analyti formulas for thefuntions R;S. Finally, we have pointed out that for small � thesmooth dislination line is energetially preferred, while for � largeenough the singular ore will appear. The ritial value of � that wehave obtained is approximately equal to 0.12. This result is based onseveral assumptions and, therefore, should rather be regarded as anestimate only.2. The approximate analyti desription of the smooth dislination linepresented in subsetion 3.3 has several advantages. First, at small andlarge s it approahes the exat solution by onstrution. The om-parison with purely numerial solutions, see Figs. 1, 2, shows that itis quite good also for intermediate values of s. Seond, it has rela-tively simple form and it is easy to obtain. Moreover, it gives R; S inthe full range [0;1) of the independent variable s, as opposed to thenumerial solution. Therefore, we think that in many ases the ap-proximate analyti desription an be quite a satisfatory substitutefor the unknown exat analyti solution, as well as for the umbersomepurely numerial solution. Yet another argument for this omes fromthe fat that Landau�de Gennes model itself is also an approximation.Therefore, even the exat analyti or very preise numerial solutionsof Eq. (13) provide only approximate desription of situation in a realnemati material.3. From physial viewpoint, perhaps the most interesting result of ourpaper is the suggestion that in the nemati MBBA the n = 12 dislina-tion lines have singular, disordered ores. However, let us remind our



786 H. Arod¹, R. Peªkaassumptions: L2 = 0, Q̂ = 0 inside the ore, the polynomial approxi-mation for the smooth dislination line. In several papers, see e.g. [19℄,struture of defets in nematis on�ned in spherial droplets or in aapillary has been analysed in the framework of Landau�de Gennestheory. The defets orrespond to hedgehogs or to n = 1 dislina-tion lines. Various possibilities for the struture of the ore have beenfound. We think that all these results are su�iently interesting tomotivate experimental investigations of the struture of the ore.This work was supported in part by the ESF Programme �COSLAB�.REFERENCES[1℄ S. Chandrasekhar, Liquid Crystals, 2nd edition, Cambridge University Press,Cambridge 1992.[2℄ P.G. de Gennes, J. Prost, The Physis of Liquid Crystals, 2nd edition, OxfordUniversity Press, 1993.[3℄ P.M. Chaikin, T.C. Lubensky, Priniples of Condensed Matter Physis, Cam-bridge University Press, 1995.[4℄ S. Chandrasekhar, G.S. Ranganath, Adv. Phys., 35, 507 (1986).[5℄ I.F. Lyuksyutov, Sov. Phys. JETP 75, 358 (1978).[6℄ N. Shopohl, T.J. Slukin, Phys. Rev. Lett. 59, 2582 (1987).[7℄ S. Meiboom, M. Sammon, W.F. Brinkman, Phys. Rev. A27, 438 (1983).[8℄ N.J. Mottram, S.J. Hogan, Phil. Trans. R. So. A355, 2045 (1997).[9℄ C. Fan,. Phys. Lett. A34, 335 (1971); G. Kurz, S. Sarkar, Ann. Phys. (NY)282, 1 (2000).[10℄ A.M. Sonnet, E.G. Virga, Phys. Rev. E56, 6834 (1997).[11℄ E.F. Gramsbergen, L. Longa, W.H. de Jeu, Phys. Rep. 135, 195 (1986).[12℄ H. Arod¹, R. Peªka, work in progress.[13℄ G. Vertogen, W.H. de Jeu, Thermotropi Liquid Crystals Fundamentals,Springer�Verlag, Berlin 1988, hapt. 12.[14℄ G.E. Volovik, Exoti Properties of Super�uid 3He, World Sienti�, Singapore1992.[15℄ see e.g. H.-R. Trebin, Adv. Phys. 31, 195 (1982).[16℄ R.J. Donnelly, Quantized Vorties in Helium II, Cambridge Univ. Press, 1991,hapt. 2.[17℄ J. Stelzer, H. Arod¹, Phys. Rev. E56, 1784 (1997); Phys. Rev. E57, 3007(1998).[18℄ J. Karkowski, Z. �wierzy«ski, Ata Phys. Pol. B30, 73 (1999).[19℄ E. Penzenstadler, H.-R. Trebin, J. Phys. (Frane) 50, 1027 (1989); A. Sonnet,A. Kilian, S. Hess, Phys. Rev. E52, 718 (1995); S. Mhaddem, E.C. Gart-land Jr., Phys. Rev. E62, 6694 (2000).


