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Using Landau-de Gennes effective theory for nematic liquid crystals
we analyse structure of a rectilinear, n = %, smooth disclination line in
the case of equal elastic constants. We find that at certain temperature
there is an exact mathematical correspondence with a rectilinear vortex in
superfluid “He. With a help of polynomial approximation difference of free
energies of smooth and singular disclination lines is estimated. It turns out
that the smooth disclination line is energetically preferred only if temper-
ature is low enough. At higher temperatures a disordered core should be
expected.

PACS numbers: 61.30.Jf, 11.27.+d

1. Introduction

Disclination lines in nematic liquid crystals are among the most popular
topological defects encountered in condensed matter physics [1-4]. In spite
of that, theoretical description of them still poses rather interesting prob-
lems. In the director formalism for uniaxial nematic liquid crystals there is
the question of structure of a singular core of the disclination line. As it has
been pointed out in papers [5-7|, it is also possible to have smooth discli-
nation lines, provided one allows for biaxiality induced by torques which
are due to topologically nontrivial boundary conditions. This type of discli-
nation lines has been investigated in the framework of Landau—de Gennes
effective theory for nematic liquid crystals, mainly with the help of numerical
methods. Analytic description, exact or approximate, is still missing except
for special cases. Yet another theoretical description of the disclination lines
can be found in [8], where Ericksen effective theory is used, or in [9] where
the biaxiality is not introduced. There are also less fundamental but more
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difficult problems, like theoretical description of evolution of a curved discli-
nation line, see e.g. [10]. Actually, the present work is the first step in our
attempt to solve the latter problem.

We consider the rectilinear n = % disclination line within the framework
of Landau—de Gennes effective theory. Review and discussion of this theory
is given in e.g. [11]. In the present paper we assume that the constant Lo
is equal to zero, what corresponds to equal elastic constants in the director
formalism. The case of Ly # 0 is much more complicated [12]. First, we
reformulate the theoretical description of the smooth disclination line found
in [7], in particular in order to prepare a convenient starting point for the
analysis of the curved smooth disclination line. Next, we present certain new
results. We find that there is a special case in which the transverse profile
of the smooth disclination line is given by one nontrivial function, instead
of two in the generic case. We provide an approximate analytic description
of the disclination line by means of the polynomial approximation. Finally,
comparing free energies of the smooth and singular disclination lines we
notice that as we vary parameters of the model each of the two can be
energetically preferred.

The contents of our paper is as follows. In Section 2 we recall formu-
las from Landau—de Gennes theory which we need in our considerations.
Section 3 is devoted to the analytic description of the smooth rectilinear
disclination line. This section contains our new results mentioned in the
preceding paragraph. In Section 4 we have collected several remarks.

2. Landau—de Gennes theory

The order parameter for the nematic liquid crystal in Landau-de Gennes
theory has the form of a symmetric, traceless real tensor @ = [Q;;], where
1,7 =1, 2, 3. The corresponding free energy density is given by the following
formulas

F = %Llainkaink + %LQ(?iQikanjk +V(Q), (1)
where
a a b ~ ~
V(Q) = 5 Tr(Q*) — 5 Tr(Q%) + 7(Tr (@), @)

The constants a, b, ¢, L1, Lo characterise the liquid crystalline material, see
e.g. [13]. In the following we assume that all the constants in (1), (2) are
positive. Then, the ground states obtained by minimising F are uniaxial, in
accordance with what has been experimentally found for most of nematics.
It is clear that in the ground state @) is constant. One can show by minimis-

ing V(Q) that all ground states ()4 can be obtained by uniform rotations or
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by reflections from

) 2 0 0
Qo=m| 0 -1 0 ) (3)
0 O -1
where
b+ Vb? + 24ac (1)
0= 12¢ ‘
That is . .
Qg = 0QO", (5)

where O € O(3) is a constant orthogonal matrix. The corresponding value
of V is equal to

3
Viin = _50”7(2)(1 +8), (6)
where b
_ b
A= 3a

By definition, in the uniaxial case the matrix Q has two identical eigen-
values A1 = Ay = A. Then one can define the director field 7 by writing )
in the form

A 1

Q:3AQ¥—ﬁ#j, (7)
where I denotes the 3 by 3 unit matrix, the vector 7 has unit length, and
Ain?’ is a matrix (dyad). It is clear from formula (7) that as the eigenvectors

corresponding to the degenerate eigenvalue A we can take any pair of linearly
independent vectors orthogonal to 7. The third eigenvector is just 7 and
the corresponding eigenvalue is equal to —2\. For the particular Qg given
by formula (3) the director field can be taken in the form

ﬁOZ 0 3 A:—an

and
fiyg = Oy (8)

corresponds to Qg given by formula (5).

The true value of the Landau—de Gennes theory is, of course, related to
the fact that it also describes states which are not the ground states. Then
() can be space and time dependent, ) = Q(7,t). For example, one can
consider time evolution of inhomogeneous perturbations of the ground states.
Another class of states contains topological defects. These states are often



774 H. AroDZ, R. PELKA

discussed in London’s approximation [14| which consists in restricting all
configurations to the set of minima of V(Q), often called the vacuum mani-
fold. Thus, in this approximation Q has the form (7) where now 7 = (7, t)
while A\ = —np remains constant. In London’s approximation free energies
of various states can differ only by the derivative terms in (1). Formulas (1)

and (7) give the well-known Oseen—Zocher-Frank free energy
F = 1K1(divii)? + $Koo(ii - rot i1)* + $ Ka3(7 x rot i7)?
+ L Koo div (7 - V)7 — 7idiv 73] + Vinin , (9)

where
Kll = K33 = 187](2)(111 + %LQ), KQ? — 1877(2)[/1’ (10)

and the constant V, ;. is given by formula (6). From formulas (10) we see

min
that Ly = 0 corresponds to K11 = K99 = Kss.

Unfortunately, in the case of disclination lines London’s approximation
is too restrictive. The point is that it allows only for disclination lines with
a singular core: due to the topologically nontrivial boundary conditions Q
necessarily leaves the vacuum manifold at certain points in the space. On
the other hand, in the full framework of Landau—de Gennes theory also
a smooth disclination line, which does not contain any singular core, is
possible. Which of the two types of disclination lines is expected to occur
in a concrete nematic material at a given temperature can be found out by
checking the corresponding values of the free energy.

3. The smooth n = % disclination line

3.1. The azxially symmetric Ansatz

Topological charge pertinent to the n = % disclination line is related
to the fundamental group of connected components of the vacuum man-
ifold, that is to m1(SO(3)/H), where HC SO(3) is the stability group of
Qo. It is a well-known fact that m(SO(3)/H) = Zo, [15|. Far away from
the rectilinear disclination line, that is at the spatial infinity in directions
perpendicular to the line, the order parameter Q lies in the vacuum man-
ifold (5). The matrices O in formula (5) taken along a large circle around
the disclination line should form a continuous path in the SO(3) group such
that its projection on the vacuum manifold SO(3)/H gives a non-contractible
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loop corresponding to the nontrivial element of 71 (SO(3)/H). Let us assume
that the disclination line is perpendicular to the (z,y) plane. Then we may
take

¢

cos g —sin 5 0
O(¢) =1 sin £ cos % 0 |, (11)
0 0 1

where (p, ¢) are the polar coordinates in the (x,y) plane.
The structure of the disclination line is determined from the requirement
that the total free energy

F= / Bz F (12)

has a minimum within the chosen topological class of the order parameter ().
The necessary condition for that has the form

oF
75@@' @) + Aij — Aji + )\(52'3' =0, (13)
where A;j, A\ are Lagrange multipliers corresponding to the conditions
Qij — Qji = 0, Qrr = 0, respectively. In the discussed case of equal
elastic constants one may expect that the minimal free energy is obtained
for an axially symmetric configuration. Therefore, we look for a smooth
solution of Eq. (13) assuming the following cylindrically symmetric Ansatz

N S(p) + 3R(p) 0 0
Q=50(9) 0 S(p) = 3R(p) 0 o'(¢), (14)
0 0 —25(p)

where 79 is given by formula (4), O(¢) has the form (11), and S(p), R(p) are
unknown functions of the polar radius p. Ansatz (14) can be written also in
the form

A 1 0 0 cos¢p sing 0
Q:Z—O S| 0 1 0 | +3R(p)| sing —cosgp 0 ||. (15)
0 0 -2 0 0 0

This Ansatz is equivalent to the one considered in [7], but the form (14) is
more transparent from the homotopy group viewpoint.
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The appropriate boundary conditions for the functions S(p), R(p) have
the form

R(0) =0, R(co) =1, (16)
S(0) =wy, S(c0) =1, (17)

where wg is a constant. They follow from continuity of Q at p = 0, and
from the assumption that in the limit p — oo Q has the form OQOOT with
Qo given by formula (3). It is clear from the Ansatz (14) and from the
conditions (16), (17) that Q is not restricted to the vacuum manifold.

The free energy density (1) is now equal to

9 2 2 2 3 2 2 2 2
F = gano Sl +3Rl +$_2R —55 —2R
2 1 2 1 9 2\ 2
—68S (R = 55 ) + 5 (1+36) (82 + 3R?)" |, (18)

7

where ’ stands for d/ds. For convenience we have introduced the dimen-

sionless variable s = p/&,, where {, = \/2L1/3a.

For () of the form (15) Eq. (13) reduces to the following two equations
(recall that Ly = 0)

1, 2, 1
§"+ 28"+ 35— c(1+38)S (S* +3R*) —B(S*—3R*) =0, (19)
nylp 1p,2p 1 2, 3R? _

R'+ R — SR+ ZR—c(1+3)R (S +3R%) +265R=0.  (20)

Equations (19), (20) are quite complicated. One can notice one simple
interesting solution of them besides the trivial R = S = 0, namely R = 0,
S = —2. This solution describes the ground state configuration equivalent
to Qo. Another simple solution, namely R = 0, S = 2/(1 + 30), is not
interesting because it corresponds to a local maximum of V(Q).

Less trivial solutions can be studied with the help of numerical methods.
In Figs. 1, 2 we present two examples of numerical solutions of Eqs. (19), (20)
with the boundary conditions (16), (17). The solutions are represented by
the continuous lines. They were generated with the help of Maple©. The
dotted lines in these figures represent approximate forms of the functions
R, S obtained in Subsection 3.3 below.
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Fig.1. The functions R, S for § = 0.1. The numerical solutions are represented
by the continuous lines, while the dotted lines represent the approximate forms of
R, S constructed in Subsection 3.3. For the numerical solution wo = 1.35710(4).
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Fig.2. The functions R, S for f = 1.0. The continuous and dotted lines have the
same meaning as in Fig. 1. For the numerical solution wg = 0.79239(7).



Remarks on the n = % Disclination Line in ... 779

3.2. The connection with Ginzburg—Pitaevskii equation

The boundary conditions (16) imply that R(s) can not be constant, while
for S(s) this is not excluded. Actually, Figs. 1 and 2 suggest that for certain
value of 8 between 0.1 and 1 the function S is constant. If we assume that
S = const, then Eq. (19) splits into two independent algebraic equations
(because for R? we can substitute, e.g., 0 and 1):

1 _ 1 9 2
g(1+3ﬁ)5—ﬂ—0, 6(1+35)s + 8BS 5 =0.

They imply that

1
and consequently
b2
ac = ? .

Now the remaining equation (20) has the form
/" 1 / 1 2
R'"+-R - R+ R(1-R%) =0. (22)
s s

Precisely this equation appears also in the theory of superfluid ‘He, namely
Ginzburg—Pitaevskii equation for a rectilinear vortex with the unit winding
number can be written exactly in the form (22), [16]. Certain similarity
between the smooth disclination line and the superfluid vortex has already
been noticed in [9], where purely uniaxial nematic liquid crystal with Q
restricted to the form (7) is considered. Now we see that in full Landau-
de Gennes theory the pertinent equations just coincide.

In the superfluid ‘He case the vacuum manifold can be identified with
the Abelian U(1) group, hence it is quite different from SO(3)/H. In spite
of that, the coincidence of equations suggests that dynamical properties of
the superfluid vortex and of the disclination line can be quite similar.

The material constant a linearly depends on temperature T', namely

a=ay(T, —T).
The nematic phase exists in certain finite temperature range,
T, >T >T,,.

The parameter 8 monotonically decreases from oo to S, when T' decreases
from Ty to T),.
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For MBBA nematic liquid crystal the material constants have the val-
ues ag = 42 x 103 Jm 3K, b =64 x 10* Jm 3, ¢ = 35 x 10* Jm 3 and
T, = 320K, T, = 294K, see e.g. [13]. It follows from the definition of S
given below formula (6) that S, = 0.174. The special value 8 = 1/3 corre-
sponds to the temperature Ty /3 ~ 311 K. This estimate of T},3 for MBBA
has a blemish: in reality the elastic constant Ly # 0. Therefore, the obtained
value should be taken with a grain of salt.

3.8. The polynomial approximation

Even for relatively simple Eq. (22) the relevant exact analytic solution
is not known. Below we present an approximate solution of Egs. (19), (20)
obtained with the help of so called polynomial approximation [17]. This
approximation has turned out to be very useful in several cases. It was
compared with good results with purely numerical solutions in [18], where
a vortex in Abelian Higgs model was considered.

We already know from Figs. 1, 2 the general shape of the solutions R, S.
The pictures suggest the following approximate description of these func-
tions. For small s we approximate R and S by the low order polynomials,

R. =rys, (23)

S. = wy + was?, (24)

which can be regarded as truncated series solutions of Eqs. (19), (20). Equa-
tion (19) gives the following recursive relation

1 1

wo = —Wo | =

1 6(1 + 38)wi + Pwg — 2 . (25)

3

Here 1 and wg are unknown parameters as yet. On the other hand, when s
is large we use the following approximate solutions of (19), (20)

1+156 1 1-38 1

Bl e e T g e

(26)

The exact solutions are expected to be smooth for all s. Therefore, we pos-
tulate that R smoothly matches R~ at certain point s;. To determine the
two unknown parameters r1, 1 we may impose the two matching conditions

Re(s1) = Rs(s1),  Rl(s1) = Ri(s1). (27)

They give

2 (14158 '
=g o= (merem) 25)
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Similarly, for S we impose the following two matching conditions at s = s

S<(s2) = 85(s2),  Si(sa) = S5(s2), (29)

from which we determine wy and sy. Specifically, we obtain the following
relation between wg and s9

B 1-38 1
W=l e 30

and the algebraic cubic equation for wq
(1-96%)wi +54B(1+ p)ws —4(1+218+ 36ﬁ2) wo+246(2+35) =0. (31)

This last equation can easily be solved numerically for each given value of S.
It is clear from formula (30) that if 0 < 8 < 1/3 the relevant solution wq of
Eq. (31) should be greater than 1, while wy < 1 for § > 1/3, and, of course,
wg = 1 for § = 1/3. We have obtained the following approximate formulas
for s and wy when 8 >> 1

1.171 <1 0.239
VB p

when 8 — 0

+(9(,6’2)>, w0~0635+%+0(ﬁ %), (32)

SS9 X

So A 2\1/_<1+155 0(52)>, wy =2— 128+ 0 (7). (33)

In this way we have obtained the approximate forms of R, S in the full
range of the s variable. They are presented in Figs. 1, 2 (the dotted lines) for
f =0.1 and 8 = 1.0. In particular, the approximate values of wq following
from Eq. (31) are equal to 1.36360(9) and 0.79234(4), correspondingly. They
are in quite good agreement with the values for the numerical solutions given
in the figure captions.

The approximate solutions R, S are continuous together with their first
derivatives (the C! class) for all s, they converge to the exact solutions at
small and large s, and they obey the boundary conditions (16), (17). There-
fore, these approximate forms of R, .S give a smooth disclination line which
belongs to the right topological class. Its free energy (in a finite volume) is
a little bit larger than the one for the exact solutions of Egs. (19), (20).

The Ansatz (14) and our approximate solution imply that at the centre
of the smooth disclination line

A 3
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while in the ground state (3)
T (Q3) = 6115 -

We see that degree of ordering (i.e. Tr (Q?)) inside the smooth disclination
line is smaller than in the ground state. Only in the limit § — 0, when
wo — 2, the degree of ordering approaches its ground state value.

Let us end this subsection with two remarks about the polynomial ap-
proximation. First, there is a caveat in constructing the approximate forms
of R and S. If we include more terms in the expansions (23-26), then it
turns out that always RY > 0, while the truncated series R_ has coefficients
with alternating signs. Therefore, it may happen that the matching con-
ditions (27) can not be satisfied if R. contains a wrong number of terms:
at the matching point s; the highest order term in the polynomial R’ can
dominate and if the sign is minus the matching is not possible at all. In
the case at hand it turns out that we may take either first or fifth order
polynomials, but not of the third order one. Analogously, one has to be
cautious when choosing a polynomial for S..

Second, including more and more terms in the polynomials R., S< in
general does not seem to be the most efficient way to improve the approx-
imation. The point is that the infinite series expansions for R, S in s at
small s, and in s~ at large s, can be slowly convergent, or even they can
have a finite and too small radius of convergence. We think that it is bet-
ter to take the polynomials of the lowest possible order, to construct the
approximate solution, and then to compute corrections dR, S to it by lin-
earising equations (19), (20) around the approximate solution. The reason
is that the approximate solution constructed above already takes care of the
nontrivial, nonlinear structure of the disclination line, including the bound-
ary conditions (16), (17), and therefore we expect that R, §S will be small.
The solutions of the resulting linear equations for JR, §.S are accessible by
many techniques.

3.4. Free energy of the smooth disclination line

The approximate formulas for the functions R and S can be used to
estimate the free energy per unit length of the smooth disclination line.
The free energy density decreases at large s rather slowly: the polynomial
approximation inserted in formula (18) gives for s — oo

27an 1

ngin 5 34
F t—g 2 (34)
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where Viyip is given by formula (6). This asymptotic behaviour is the same as
for the singular disclination line. General shape of the free energy density can
be seen from Fig. 3, where we have plotted f(s) = 8(F(s) — Vimin)/(9an3) for
B = 0.1. Because of the slow fall off at large s, the total free energy per unit
length of the disclination line in infinite volume is logarithmically divergent.
On the other hand, the integral of the difference of the free energies densities
of the smooth and singular disclination lines is convergent, but it requires
an estimate of the contribution of the core of the singular disclination line
to the free energy.

Let us estimate the free energy density of the singular disclination line.

Outside the core the potential energy V' (Q) has the ground state value Vi,
and the elastic energy density given by the L; term in formula (1) has the
form

27an?

8s2

We assume that the core is formed when the total free energy density ap-
proaches 0, because in the disordered phase Q = 0 and then F vanishes.
This means that the elastic energy at the boundary of the core is equal to
|Vinin!|- This condition gives the radius of the core

R 3o
/143

184 f
1.6
1.4
1.2

0.8]
0.6
0.4
0.2

0 2 4 6 8 10 12 14 16

Fig.3. The normalised free energy density ffor g = 0.1.
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Furthermore, we assume that also inside the core the total free energy density
vanishes. Then, the total free energy F. of the singular disclination line
stored inside a concentric with it cylinder of unit height and of radius Lé
is given by the integral

L
9an? 3 4
F, = 2n¢2 8% /dss(s—Q—g(l—i—ﬁ)).
RC/§0

The factor 2m comes from the integration over the angle ¢. Note that F¢
includes the ground state energy Vi,ip-

Now we can compare the free energy Fj of the smooth disclination line
(inside the cylinder of radius L&), which is given by the formula

L

Fy, = 27€2 /dss}",
0

with F. For the smooth disclination line we use the polynomial approxima-
tion constructed in the previous Subsection. We have calculated numerically
the difference Fy, — F¢ for § from 0.01 to 0.2 in steps of 0.01 taking L = 35.
The results are plotted in Fig. 4.

—2 B

0.01 0.05 0.1 0.15 0.2
Fig.4. Difference of the free energies of the smooth disclination line (F},) and of
the one with the singular core (F.), in units (97/4)an2&3.
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We see that only for 8 < 0.12 the smooth disclination line has smaller
total free energy. One can say that then the energetic cost of leaving the
vacuum manifold is not too large. On the other hand, for larger S it is
energetically favourable to form the disordered core. Of course, our esti-
mate of the “critical” value 0.12 of 8 depends on the assumptions about the
formation and energy of the core.

In Section 3.2 we have noted that in the case of nematic MBBA
B > 0.174. Therefore, our calculations suggest that in that nematic ma-
terial the n = % disclination line has the singular core in the whole relevant
range of temperature.

4. Discussion

1. Let us recapitulate the main results of our work. We have found that
there exists the special value 1/3 of the parameter § for which the
smooth disclination line has particularly simple mathematical struc-
ture. We have obtained the approximate analytic formulas for the
functions R,S. Finally, we have pointed out that for small S the
smooth disclination line is energetically preferred, while for g large
enough the singular core will appear. The critical value of § that we
have obtained is approximately equal to 0.12. This result is based on
several assumptions and, therefore, should rather be regarded as an
estimate only.

2. The approximate analytic description of the smooth disclination line
presented in subsection 3.3 has several advantages. First, at small and
large s it approaches the exact solution by construction. The com-
parison with purely numerical solutions, see Figs. 1, 2, shows that it
is quite good also for intermediate values of s. Second, it has rela-
tively simple form and it is easy to obtain. Moreover, it gives R, S in
the full range [0, 00) of the independent variable s, as opposed to the
numerical solution. Therefore, we think that in many cases the ap-
proximate analytic description can be quite a satisfactory substitute
for the unknown exact analytic solution, as well as for the cumbersome
purely numerical solution. Yet another argument for this comes from
the fact that Landau—de Gennes model itself is also an approximation.
Therefore, even the exact analytic or very precise numerical solutions
of Eq. (13) provide only approximate description of situation in a real
nematic material.

3. From physical viewpoint, perhaps the most interesting result of our
paper is the suggestion that in the nematic MBBA the n = % disclina-
tion lines have singular, disordered cores. However, let us remind our
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assumptions: Lo = 0, Q = 0 inside the core, the polynomial approxi-
mation for the smooth disclination line. In several papers, see e.g. [19],
structure of defects in nematics confined in spherical droplets or in a
capillary has been analysed in the framework of Landau—de Gennes
theory. The defects correspond to hedgehogs or to n = 1 disclina-
tion lines. Various possibilities for the structure of the core have been
found. We think that all these results are sufficiently interesting to
motivate experimental investigations of the structure of the core.

This work was supported in part by the ESF Programme “COSLAB”.
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