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REMARKS ON THE n = 1=2 DISCLINATION LINEIN LANDAU�DE GENNES THEORYOF NEMATIC LIQUID CRYSTALSH. Arod¹ and R. PeªkaInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Cra
ow, Poland(Re
eived September 7, 2001)Using Landau-de Gennes e�e
tive theory for nemati
 liquid 
rystalswe analyse stru
ture of a re
tilinear, n = 12 ; smooth dis
lination line inthe 
ase of equal elasti
 
onstants. We �nd that at 
ertain temperaturethere is an exa
t mathemati
al 
orresponden
e with a re
tilinear vortex insuper�uid 4He. With a help of polynomial approximation di�eren
e of freeenergies of smooth and singular dis
lination lines is estimated. It turns outthat the smooth dis
lination line is energeti
ally preferred only if temper-ature is low enough. At higher temperatures a disordered 
ore should beexpe
ted.PACS numbers: 61.30.Jf, 11.27.+d1. Introdu
tionDis
lination lines in nemati
 liquid 
rystals are among the most populartopologi
al defe
ts en
ountered in 
ondensed matter physi
s [1�4℄. In spiteof that, theoreti
al des
ription of them still poses rather interesting prob-lems. In the dire
tor formalism for uniaxial nemati
 liquid 
rystals there isthe question of stru
ture of a singular 
ore of the dis
lination line. As it hasbeen pointed out in papers [5�7℄, it is also possible to have smooth dis
li-nation lines, provided one allows for biaxiality indu
ed by torques whi
hare due to topologi
ally nontrivial boundary 
onditions. This type of dis
li-nation lines has been investigated in the framework of Landau�de Gennese�e
tive theory for nemati
 liquid 
rystals, mainly with the help of numeri
almethods. Analyti
 des
ription, exa
t or approximate, is still missing ex
eptfor spe
ial 
ases. Yet another theoreti
al des
ription of the dis
lination lines
an be found in [8℄, where Eri
ksen e�e
tive theory is used, or in [9℄ wherethe biaxiality is not introdu
ed. There are also less fundamental but more(771)
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ult problems, like theoreti
al des
ription of evolution of a 
urved dis
li-nation line, see e.g. [10℄. A
tually, the present work is the �rst step in ourattempt to solve the latter problem.We 
onsider the re
tilinear n = 12 dis
lination line within the frameworkof Landau�de Gennes e�e
tive theory. Review and dis
ussion of this theoryis given in e.g. [11℄. In the present paper we assume that the 
onstant L2is equal to zero, what 
orresponds to equal elasti
 
onstants in the dire
torformalism. The 
ase of L2 6= 0 is mu
h more 
ompli
ated [12℄. First, wereformulate the theoreti
al des
ription of the smooth dis
lination line foundin [7℄, in parti
ular in order to prepare a 
onvenient starting point for theanalysis of the 
urved smooth dis
lination line. Next, we present 
ertain newresults. We �nd that there is a spe
ial 
ase in whi
h the transverse pro�leof the smooth dis
lination line is given by one nontrivial fun
tion, insteadof two in the generi
 
ase. We provide an approximate analyti
 des
riptionof the dis
lination line by means of the polynomial approximation. Finally,
omparing free energies of the smooth and singular dis
lination lines wenoti
e that as we vary parameters of the model ea
h of the two 
an beenergeti
ally preferred.The 
ontents of our paper is as follows. In Se
tion 2 we re
all formu-las from Landau�de Gennes theory whi
h we need in our 
onsiderations.Se
tion 3 is devoted to the analyti
 des
ription of the smooth re
tilineardis
lination line. This se
tion 
ontains our new results mentioned in thepre
eding paragraph. In Se
tion 4 we have 
olle
ted several remarks.2. Landau�de Gennes theoryThe order parameter for the nemati
 liquid 
rystal in Landau�de Gennestheory has the form of a symmetri
, tra
eless real tensor Q̂ = [Qij ℄, wherei; j =1, 2, 3. The 
orresponding free energy density is given by the followingformulas F = 12L1�iQjk�iQjk + 12L2�iQik�jQjk + V (Q̂) ; (1)where V (Q̂) = �a2 Tr (Q̂2)� b3 Tr (Q̂3) + 
4(Tr (Q̂2))2 : (2)The 
onstants a; b; 
; L1; L2 
hara
terise the liquid 
rystalline material, seee.g. [13℄. In the following we assume that all the 
onstants in (1), (2) arepositive. Then, the ground states obtained by minimising F are uniaxial, ina

ordan
e with what has been experimentally found for most of nemati
s.It is 
lear that in the ground state Q̂ is 
onstant. One 
an show by minimis-ing V (Q̂) that all ground states Q̂g 
an be obtained by uniform rotations or
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tions from Q̂0 = �00� 2 0 00 �1 00 0 �1 1A ; (3)where �0 = b+pb2 + 24a
12
 : (4)That is Q̂g = OQ̂0OT ; (5)where O 2O(3) is a 
onstant orthogonal matrix. The 
orresponding valueof V is equal to Vmin = �32a�20(1 + �) ; (6)where � = b�03a :By de�nition, in the uniaxial 
ase the matrix Q̂ has two identi
al eigen-values �1 = �2 = �: Then one 
an de�ne the dire
tor �eld ~n by writing Q̂in the form Q̂ = 3��13I � ~n~nT� ; (7)where I denotes the 3 by 3 unit matrix, the ve
tor ~n has unit length, and~n~nT is a matrix (dyad). It is 
lear from formula (7) that as the eigenve
tors
orresponding to the degenerate eigenvalue � we 
an take any pair of linearlyindependent ve
tors orthogonal to ~n. The third eigenve
tor is just ~n andthe 
orresponding eigenvalue is equal to �2�. For the parti
ular Q̂0 givenby formula (3) the dire
tor �eld 
an be taken in the form~n0 = 0� 100 1A ; � = ��0 ;and ~ng = O ~n0 (8)
orresponds to Q̂g given by formula (5).The true value of the Landau�de Gennes theory is, of 
ourse, related tothe fa
t that it also des
ribes states whi
h are not the ground states. ThenQ̂ 
an be spa
e and time dependent, Q̂ = Q̂(~r; t). For example, one 
an
onsider time evolution of inhomogeneous perturbations of the ground states.Another 
lass of states 
ontains topologi
al defe
ts. These states are often



774 H. Arod¹, R. Peªkadis
ussed in London's approximation [14℄ whi
h 
onsists in restri
ting all
on�gurations to the set of minima of V (Q̂), often 
alled the va
uum mani-fold. Thus, in this approximation Q̂ has the form (7) where now ~n = ~n(~r; t)while � = ��0 remains 
onstant. In London's approximation free energiesof various states 
an di�er only by the derivative terms in (1). Formulas (1)and (7) give the well-known Oseen�Zö
her�Frank free energyF = 12K11(div~n)2 + 12K22(~n � rot~n)2 + 12K33(~n� rot ~n)2+ 12K22 div [(~n � r)~n� ~ndiv~n℄ + Vmin ; (9)where K11 = K33 = 18�20(L1 + 12L2) ; K22 = 18�20L1 ; (10)and the 
onstant Vmin is given by formula (6). From formulas (10) we seethat L2 = 0 
orresponds to K11 = K22 = K33:Unfortunately, in the 
ase of dis
lination lines London's approximationis too restri
tive. The point is that it allows only for dis
lination lines witha singular 
ore: due to the topologi
ally nontrivial boundary 
onditions Q̂ne
essarily leaves the va
uum manifold at 
ertain points in the spa
e. Onthe other hand, in the full framework of Landau�de Gennes theory alsoa smooth dis
lination line, whi
h does not 
ontain any singular 
ore, ispossible. Whi
h of the two types of dis
lination lines is expe
ted to o

urin a 
on
rete nemati
 material at a given temperature 
an be found out by
he
king the 
orresponding values of the free energy.3. The smooth n = 12 dis
lination line3.1. The axially symmetri
 AnsatzTopologi
al 
harge pertinent to the n = 12 dis
lination line is relatedto the fundamental group of 
onne
ted 
omponents of the va
uum man-ifold, that is to �1(SO(3)=H), where H� SO(3) is the stability group ofQ̂0: It is a well-known fa
t that �1(SO(3)=H) = Z2; [15℄. Far away fromthe re
tilinear dis
lination line, that is at the spatial in�nity in dire
tionsperpendi
ular to the line, the order parameter Q̂ lies in the va
uum man-ifold (5). The matri
es O in formula (5) taken along a large 
ir
le aroundthe dis
lination line should form a 
ontinuous path in the SO(3) group su
hthat its proje
tion on the va
uum manifold SO(3)=H gives a non-
ontra
tible
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orresponding to the nontrivial element of �1(SO(3)=H). Let us assumethat the dis
lination line is perpendi
ular to the (x; y) plane. Then we maytake O(�) = 0� 
os �2 � sin �2 0sin �2 
os �2 00 0 1 1A ; (11)where (�; �) are the polar 
oordinates in the (x; y) plane.The stru
ture of the dis
lination line is determined from the requirementthat the total free energy F = Z d3xF (12)has a minimum within the 
hosen topologi
al 
lass of the order parameter Q̂.The ne
essary 
ondition for that has the formÆFÆQij(~x) + �ij � �ji + �Æij = 0 ; (13)where �ij; � are Lagrange multipliers 
orresponding to the 
onditionsQij � Qji = 0; Qkk = 0; respe
tively. In the dis
ussed 
ase of equalelasti
 
onstants one may expe
t that the minimal free energy is obtainedfor an axially symmetri
 
on�guration. Therefore, we look for a smoothsolution of Eq. (13) assuming the following 
ylindri
ally symmetri
 AnsatzQ̂ = �02 O(�)0� S(�) + 3R(�) 0 00 S(�)� 3R(�) 00 0 �2S(�) 1AOT (�) ; (14)where �0 is given by formula (4), O(�) has the form (11), and S(�); R(�) areunknown fun
tions of the polar radius �. Ansatz (14) 
an be written also inthe formQ̂ = �02 24S(�)0� 1 0 00 1 00 0 �2 1A+ 3R(�)0� 
os� sin� 0sin� � 
os� 00 0 0 1A35 : (15)This Ansatz is equivalent to the one 
onsidered in [7℄, but the form (14) ismore transparent from the homotopy group viewpoint.
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onditions for the fun
tions S(�); R(�) havethe form R(0) = 0; R(1) = 1; (16)S(0) = w0; S(1) = 1; (17)where w0 is a 
onstant. They follow from 
ontinuity of Q̂ at � = 0, andfrom the assumption that in the limit �!1 Q̂ has the form OQ̂0OT withQ̂0 given by formula (3). It is 
lear from the Ansatz (14) and from the
onditions (16), (17) that Q̂ is not restri
ted to the va
uum manifold.The free energy density (1) is now equal toF = 98a�20"S02 + 3R02 + 3s2R2 � 23S2 � 2R2� 6�S�R2 � 19S2�+ 112(1 + 3�) �S2 + 3R2�2 #; (18)where ' stands for d=ds. For 
onvenien
e we have introdu
ed the dimen-sionless variable s = �=�0; where �0 =p2L1=3a.For Q̂ of the form (15) Eq. (13) redu
es to the following two equations(re
all that L2 = 0)S00 + 1sS0 + 23S � 16(1 + 3�)S �S2 + 3R2�� � �S2 � 3R2� = 0 ; (19)R00 + 1sR0 � 1s2R+ 23R� 16(1 + 3�)R �S2 + 3R2�+ 2�SR = 0 : (20)Equations (19), (20) are quite 
ompli
ated. One 
an noti
e one simpleinteresting solution of them besides the trivial R = S = 0, namely R = 0;S = �2. This solution des
ribes the ground state 
on�guration equivalentto Q0: Another simple solution, namely R = 0; S = 2=(1 + 3�); is notinteresting be
ause it 
orresponds to a lo
al maximum of V (Q̂).Less trivial solutions 
an be studied with the help of numeri
al methods.In Figs. 1, 2 we present two examples of numeri
al solutions of Eqs. (19), (20)with the boundary 
onditions (16), (17). The solutions are represented bythe 
ontinuous lines. They were generated with the help of Maple 

. Thedotted lines in these �gures represent approximate forms of the fun
tionsR; S obtained in Subse
tion 3.3 below.
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0 2 4 6 8 10 12 Fig. 1. The fun
tions R; S for � = 0:1. The numeri
al solutions are representedby the 
ontinuous lines, while the dotted lines represent the approximate forms ofR; S 
onstru
ted in Subse
tion 3.3. For the numeri
al solution w0 = 1:35710(4).
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tions R; S for � = 1:0. The 
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al solution w0 = 0:79239(7).
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onne
tion with Ginzburg�Pitaevskii equationThe boundary 
onditions (16) imply that R(s) 
an not be 
onstant, whilefor S(s) this is not ex
luded. A
tually, Figs. 1 and 2 suggest that for 
ertainvalue of � between 0.1 and 1 the fun
tion S is 
onstant. If we assume thatS = 
onst, then Eq. (19) splits into two independent algebrai
 equations(be
ause for R2 we 
an substitute, e.g., 0 and 1):16(1 + 3�)S � � = 0 ; 16(1 + 3�)S2 + �S � 23 = 0 :They imply that � = 13 ; S = 1 ; (21)and 
onsequently a
 = b23 :Now the remaining equation (20) has the formR00 + 1sR0 � 1s2R+R �1�R2� = 0 : (22)Pre
isely this equation appears also in the theory of super�uid 4He, namelyGinzburg�Pitaevskii equation for a re
tilinear vortex with the unit windingnumber 
an be written exa
tly in the form (22), [16℄. Certain similaritybetween the smooth dis
lination line and the super�uid vortex has alreadybeen noti
ed in [9℄, where purely uniaxial nemati
 liquid 
rystal with Q̂restri
ted to the form (7) is 
onsidered. Now we see that in full Landau�de Gennes theory the pertinent equations just 
oin
ide.In the super�uid 4He 
ase the va
uum manifold 
an be identi�ed withthe Abelian U(1) group, hen
e it is quite di�erent from SO(3)=H. In spiteof that, the 
oin
iden
e of equations suggests that dynami
al properties ofthe super�uid vortex and of the dis
lination line 
an be quite similar.The material 
onstant a linearly depends on temperature T , namelya = a0(T� � T ) :The nemati
 phase exists in 
ertain �nite temperature range,T� > T > Tm :The parameter � monotoni
ally de
reases from 1 to �m when T de
reasesfrom T� to Tm.
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 liquid 
rystal the material 
onstants have the val-ues a0 = 42 � 103 Jm�3K�1; b = 64 � 104 Jm�3; 
 = 35 � 104 Jm�3 andT� = 320K; Tm = 29 4K, see e.g. [13℄. It follows from the de�nition of �given below formula (6) that �m � 0:174. The spe
ial value � = 1=3 
orre-sponds to the temperature T1=3 � 311K. This estimate of T1=3 for MBBAhas a blemish: in reality the elasti
 
onstant L2 6= 0. Therefore, the obtainedvalue should be taken with a grain of salt.3.3. The polynomial approximationEven for relatively simple Eq. (22) the relevant exa
t analyti
 solutionis not known. Below we present an approximate solution of Eqs. (19), (20)obtained with the help of so 
alled polynomial approximation [17℄. Thisapproximation has turned out to be very useful in several 
ases. It was
ompared with good results with purely numeri
al solutions in [18℄, wherea vortex in Abelian Higgs model was 
onsidered.We already know from Figs. 1, 2 the general shape of the solutions R; S.The pi
tures suggest the following approximate des
ription of these fun
-tions. For small s we approximate R and S by the low order polynomials,R< = r1s ; (23)S< = w0 + w2s2 ; (24)whi
h 
an be regarded as trun
ated series solutions of Eqs. (19), (20). Equa-tion (19) gives the following re
ursive relationw2 = 14w0 �16(1 + 3�)w20 + �w0 � 23� : (25)Here r1 and w0 are unknown parameters as yet. On the other hand, when sis large we use the following approximate solutions of (19), (20)R> = 1� 1 + 15�12�(2 + 3�) 1s2 ; S> = 1 + 1� 3�4�(2 + 3�) 1s2 : (26)The exa
t solutions are expe
ted to be smooth for all s. Therefore, we pos-tulate that R< smoothly mat
hes R> at 
ertain point s1. To determine thetwo unknown parameters r1; s1 we may impose the two mat
hing 
onditionsR<(s1) = R>(s1) ; R0<(s1) = R0>(s1) : (27)They give r1 = 23s1 ; s1 = � 1 + 15�4�(2 + 3�)�1=2 : (28)
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lination Line in : : : 781Similarly, for S we impose the following two mat
hing 
onditions at s = s2S<(s2) = S>(s2) ; S0<(s2) = S0>(s2) ; (29)from whi
h we determine w0 and s2. Spe
i�
ally, we obtain the followingrelation between w0 and s2w0 = 1 + 1� 3�2�(2 + 3�) 1s22 ; (30)and the algebrai
 
ubi
 equation for w0(1�9�2)w30+54�(1+�)w20�4 �1 + 21� + 36�2�w0+24�(2+3�) = 0 : (31)This last equation 
an easily be solved numeri
ally for ea
h given value of �.It is 
lear from formula (30) that if 0 < � < 1=3 the relevant solution w0 ofEq. (31) should be greater than 1, while w0 < 1 for � > 1=3; and, of 
ourse,w0 = 1 for � = 1=3. We have obtained the following approximate formulasfor s2 and w0 when � � 1s2 � 1:171p� �1 + 0:239� +O ���2�� ; w0 � 0:635+0:190� +O ���2� ; (32)when � ! 0s2 � 12p� �1 + 15�4 +O ��2�� ; w0 = 2� 12� +O ��2� : (33)In this way we have obtained the approximate forms of R;S in the fullrange of the s variable. They are presented in Figs. 1, 2 (the dotted lines) for� = 0:1 and � = 1:0. In parti
ular, the approximate values of w0 followingfrom Eq. (31) are equal to 1.36360(9) and 0.79234(4), 
orrespondingly. Theyare in quite good agreement with the values for the numeri
al solutions givenin the �gure 
aptions.The approximate solutions R;S are 
ontinuous together with their �rstderivatives (the C1 
lass) for all s, they 
onverge to the exa
t solutions atsmall and large s, and they obey the boundary 
onditions (16), (17). There-fore, these approximate forms of R;S give a smooth dis
lination line whi
hbelongs to the right topologi
al 
lass. Its free energy (in a �nite volume) isa little bit larger than the one for the exa
t solutions of Eqs. (19), (20).The Ansatz (14) and our approximate solution imply that at the 
entreof the smooth dis
lination lineTr (Q̂2)(s = 0) = 32�20w20 ;



782 H. Arod¹, R. Peªkawhile in the ground state (3) Tr (Q̂20) = 6�20 :We see that degree of ordering (i.e. Tr (Q̂2)) inside the smooth dis
linationline is smaller than in the ground state. Only in the limit � ! 0, whenw0 ! 2, the degree of ordering approa
hes its ground state value.Let us end this subse
tion with two remarks about the polynomial ap-proximation. First, there is a 
aveat in 
onstru
ting the approximate formsof R and S. If we in
lude more terms in the expansions (23�26), then itturns out that always R0> > 0, while the trun
ated series R0< has 
oe�
ientswith alternating signs. Therefore, it may happen that the mat
hing 
on-ditions (27) 
an not be satis�ed if R< 
ontains a wrong number of terms:at the mat
hing point s1 the highest order term in the polynomial R0< 
andominate and if the sign is minus the mat
hing is not possible at all. Inthe 
ase at hand it turns out that we may take either �rst or �fth orderpolynomials, but not of the third order one. Analogously, one has to be
autious when 
hoosing a polynomial for S<.Se
ond, in
luding more and more terms in the polynomials R<; S< ingeneral does not seem to be the most e�
ient way to improve the approx-imation. The point is that the in�nite series expansions for R;S in s atsmall s, and in s�1 at large s, 
an be slowly 
onvergent, or even they 
anhave a �nite and too small radius of 
onvergen
e. We think that it is bet-ter to take the polynomials of the lowest possible order, to 
onstru
t theapproximate solution, and then to 
ompute 
orre
tions ÆR; ÆS to it by lin-earising equations (19), (20) around the approximate solution. The reasonis that the approximate solution 
onstru
ted above already takes 
are of thenontrivial, nonlinear stru
ture of the dis
lination line, in
luding the bound-ary 
onditions (16), (17), and therefore we expe
t that ÆR; ÆS will be small.The solutions of the resulting linear equations for ÆR; ÆS are a

essible bymany te
hniques.3.4. Free energy of the smooth dis
lination lineThe approximate formulas for the fun
tions R and S 
an be used toestimate the free energy per unit length of the smooth dis
lination line.The free energy density de
reases at large s rather slowly: the polynomialapproximation inserted in formula (18) gives for s!1F �= Vmin + 27a�208 1s2 ; (34)
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lination Line in : : : 783where Vmin is given by formula (6). This asymptoti
 behaviour is the same asfor the singular dis
lination line. General shape of the free energy density 
anbe seen from Fig. 3, where we have plotted f (s) = 8(F(s)�Vmin)=(9a�20) for� = 0:1. Be
ause of the slow fall o� at large s, the total free energy per unitlength of the dis
lination line in in�nite volume is logarithmi
ally divergent.On the other hand, the integral of the di�eren
e of the free energies densitiesof the smooth and singular dis
lination lines is 
onvergent, but it requiresan estimate of the 
ontribution of the 
ore of the singular dis
lination lineto the free energy.Let us estimate the free energy density of the singular dis
lination line.Outside the 
ore the potential energy V (Q̂) has the ground state value Vmin,and the elasti
 energy density given by the L1 term in formula (1) has theform 27a�208s2 :We assume that the 
ore is formed when the total free energy density ap-proa
hes 0, be
ause in the disordered phase Q̂ = 0 and then F vanishes.This means that the elasti
 energy at the boundary of the 
ore is equal tojVminj. This 
ondition gives the radius of the 
oreR
 = 3�02p1 + � :
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784 H. Arod¹, R. PeªkaFurthermore, we assume that also inside the 
ore the total free energy densityvanishes. Then, the total free energy F
 of the singular dis
lination linestored inside a 
on
entri
 with it 
ylinder of unit height and of radius L�0is given by the integralF
 = 2��20 9a�208 LZR
=�0 ds s� 3s2 � 43(1 + �)� :The fa
tor 2� 
omes from the integration over the angle �. Note that F
in
ludes the ground state energy Vmin.Now we 
an 
ompare the free energy Fb of the smooth dis
lination line(inside the 
ylinder of radius L�0), whi
h is given by the formulaFb = 2��20 LZ0 dssF ;with F
. For the smooth dis
lination line we use the polynomial approxima-tion 
onstru
ted in the previous Subse
tion. We have 
al
ulated numeri
allythe di�eren
e Fb � F
 for � from 0.01 to 0.2 in steps of 0.01 taking L = 35.The results are plotted in Fig. 4.
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e of the free energies of the smooth dis
lination line (Fb) and ofthe one with the singular 
ore (F
), in units (9�=4)a�20�20 .
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lination Line in : : : 785We see that only for � < 0:12 the smooth dis
lination line has smallertotal free energy. One 
an say that then the energeti
 
ost of leaving theva
uum manifold is not too large. On the other hand, for larger � it isenergeti
ally favourable to form the disordered 
ore. Of 
ourse, our esti-mate of the �
riti
al� value 0.12 of � depends on the assumptions about theformation and energy of the 
ore.In Se
tion 3.2 we have noted that in the 
ase of nemati
 MBBA� > 0:174. Therefore, our 
al
ulations suggest that in that nemati
 ma-terial the n = 12 dis
lination line has the singular 
ore in the whole relevantrange of temperature. 4. Dis
ussion1. Let us re
apitulate the main results of our work. We have found thatthere exists the spe
ial value 1/3 of the parameter � for whi
h thesmooth dis
lination line has parti
ularly simple mathemati
al stru
-ture. We have obtained the approximate analyti
 formulas for thefun
tions R;S. Finally, we have pointed out that for small � thesmooth dis
lination line is energeti
ally preferred, while for � largeenough the singular 
ore will appear. The 
riti
al value of � that wehave obtained is approximately equal to 0.12. This result is based onseveral assumptions and, therefore, should rather be regarded as anestimate only.2. The approximate analyti
 des
ription of the smooth dis
lination linepresented in subse
tion 3.3 has several advantages. First, at small andlarge s it approa
hes the exa
t solution by 
onstru
tion. The 
om-parison with purely numeri
al solutions, see Figs. 1, 2, shows that itis quite good also for intermediate values of s. Se
ond, it has rela-tively simple form and it is easy to obtain. Moreover, it gives R; S inthe full range [0;1) of the independent variable s, as opposed to thenumeri
al solution. Therefore, we think that in many 
ases the ap-proximate analyti
 des
ription 
an be quite a satisfa
tory substitutefor the unknown exa
t analyti
 solution, as well as for the 
umbersomepurely numeri
al solution. Yet another argument for this 
omes fromthe fa
t that Landau�de Gennes model itself is also an approximation.Therefore, even the exa
t analyti
 or very pre
ise numeri
al solutionsof Eq. (13) provide only approximate des
ription of situation in a realnemati
 material.3. From physi
al viewpoint, perhaps the most interesting result of ourpaper is the suggestion that in the nemati
 MBBA the n = 12 dis
lina-tion lines have singular, disordered 
ores. However, let us remind our
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ore, the polynomial approxi-mation for the smooth dis
lination line. In several papers, see e.g. [19℄,stru
ture of defe
ts in nemati
s 
on�ned in spheri
al droplets or in a
apillary has been analysed in the framework of Landau�de Gennestheory. The defe
ts 
orrespond to hedgehogs or to n = 1 dis
lina-tion lines. Various possibilities for the stru
ture of the 
ore have beenfound. We think that all these results are su�
iently interesting tomotivate experimental investigations of the stru
ture of the 
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