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1. Outline

In this contribution a few topics are discussed which, although seemingly
unrelated, are unified by the focus on interaction of photons with nuclear
systems and by the use of similar calculational techniques. First we discuss
the K-matrix approach to Compton and pion scattering on the free proton.
In such a relatively simple relativistic coupled channels approach most of the
important symmetries, such as unitarity, crossing and gauge invariance, are
obeyed. In the present approach a large number of resonances are included
in the description where the A-resonance is of particular interest for the
later discussions of the in-medium properties.

In Section 4 an extension of this approach, the “Dressed K-Matrix Model”,
is discussed where, without violating the other symmetries, an additional
constraint, that of analyticity (or causality), is incorporated approximately.
In this approach dressed self-energies and form factors are included in the
K-matrix. These functions are calculated self-consistently in an iteration
procedure where dispersion relations are used at each recursion step to re-
late real and imaginary parts.

The properties of the A-resonance in the medium are calculated in Sec-
tion 5 using a A-hole model. Two processes compete in determining the
in-medium width as function of density: the decay width narrows in the
medium due to the Pauli principle, and the spreading width strongly in-
creases with density. We incorporated mean-field effects through a nucleon
effective mass. From the width, i.e. the imaginary part of the self energy,
the real part is calculated via a dispersion relation, which is similar to the
dressing procedure in the vacuum. However, presently self-consistency is not
taken into account in this calculation, in which respect it differs from the
“Dressed K-Matrix” approach.

To compare our prediction with experiment we have used the impulse
and factorization approximations in which the coherent cross section on a nu-
cleus is calculated through scattering off a moving nucleon with momentum
chosen such that — without modifying the energy—-momentum transferred
to the nucleus — the energy—-momentum conservation on the nucleon is ful-
filled. To describe Compton scattering on the moving nucleon we employ
the aforementioned K-matrix approach where, however, a medium-modified
A self-energy is used. This procedure ensures that background processes are
included in the description and that furthermore gauge invariance is obeyed
at the one-body level.
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2. The K-matrix approach

In this section only a short overview of the K-matrix model is presented
with emphasis on the application to Compton scattering. A more complete
overview of the model and extensive comparisons with data is presented by
Bennhold in his contribution to this workshop.

In K-matrix models the T-matrix is written in the form,

T=0-Ki$) 'K, (1)

where § indicates that the intermediate particles have to be taken on the
mass shell and all physics is put in the kernel, the K-matrix. It is straight-
forward to check that S = 1 + 24T is unitary provided that the kernel K is
Hermitian. Since Eq. (1) involves integrals only over on-shell intermediate
particles, it reduces to a set of algebraic equations when one is working in
a partial wave basis. When both the 7—N and y-N channels are open, the
coupled-channel K-matrix becomes a 2 X 2 matrix in the channel space, i.e.

K K
K = 7Y o, 2
{Km Kor ] (2)

It should be noted that due to the coupled channels nature of this approach
the widths of resonances are generated dynamically.
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Fig.1. The sum of diagrams included in the K-matrix for Compton scattering.
A nucleon propagator is denoted by a solid line, the wiggly lines are photons, the
dashed lines denote pions, the dotted lines are o mesons, and the double lines
denote baryon resonances where a full spectrum has been included.
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In traditional K-matrix models the kernel, the K-matrix, is built from
tree-level diagrams [1-4|. In the present investigation the type of diagrams
included in K., are similar to that of Ref. [4] except that the A is treated
now as a genuine spin-3/2 resonance [5] in order to be compatible with the
later treatment of the in-medium A-resonance. This K-matrix is indicated
in Fig. 1. Most of the (non-strange) resonances below 1.7 GeV have been
included. The different coupling constants were fitted to reproduce pion
scattering, pion photoproduction and Compton scattering on the nucleon.
A comparable fit to the data as in Ref. [4] could be obtained. In Fig. 2 the
results for Compton scattering are compared to data.
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Fig.2. The calculated cross section for Compton scattering off the proton as a
function of angle at fixed photon energy, and as a function of photon energy at

fixed angle. Data are taken from Ref. [11].

3. Basic symmetries

A realistic scattering amplitude for a particular process should obey cer-

tain symmetry relations, such as Unitarity, Covariance, Gauge invariance,
Crossing symmetry and Causality. In the following each of these symme-
tries will be shortly addressed, stating its physical significance. It is also
indicated which of these is obeyed by the K-matrix approach discussed in
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the previous section. The comparative success of the K-matrix formalism
can be regarded as due to the large number of symmetries which are being
obeyed. A violation of anyone of these symmetries will directly imply some
problems in applications. Improvements are thus important.

3.1. Unitarity

The unitarity condition for the scattering matrix S reads STS = 1. Usu-
ally one works with the T-matrix operator which can be defined as S =
1+ 24T, and the unitarity condition is rewritten as 2i(TT")p; = Ty; — 1.
If the T-matrix is symmetric (which is related to time-reversal symmetry),
the last formula becomes Im Ty; = ), TynTjy,, where the sum runs over
physical intermediate states. The latter relation is the generalization of
the well-known optical theorem for the scattering amplitude. Unitarity can
only be obeyed in a coupled channel formulation; the imaginary part of the

amplitude “knows” about the flux that is lost in other channels.

In the K-matrix formalism the T-matrix is expressed as T = 15 7 Which
implies that S = EZ g is clearly unitary provided the kernel K is Hermitian.

This kernel is a matrix, where the different rows and columns correspond
to different physical outgoing (incoming) channels. The coupled-channels
nature is thus inherent in such an approach. As explained earlier the kernel
is usually written as the sum of all possible tree-level diagrams. In a partial-
wave basis K is a matrix of relatively low dimensionality and the inverse,
implied in the calculation of the T-matrix, can readily be calculated.

Above the two-pion production threshold, sizable inelasticities are ob-
served for pion scattering in certain partial waves. Since the 2-7 production
channel is not explicitly taken into account, purposely unitarity is broken
by adding an energy-dependent imaginary part to the self energies of reso-
nances (except for the Delta resonance) corresponding to the decay outside
the model space [4].

3.2. Covariance

The scattering amplitude is said to be covariant if it transforms properly
under Lorentz transformations. As a consequence the description of the
reaction observables is independent of the particular reference frame chosen
for the calculations. It naturally implies that relativistic kinematics is used.

Since the appropriate four-vector notation and y-matrix algebra are used
throughout our calculation, the condition of Lorentz covariance is fulfilled.
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3.3. Gauge invariance

Gauge invariance means that there is certain freedom in the choice of
the electromagnetic field, not affecting the observables. Its implication is
current conservation, VJ = g—g, or in four-vector notation, 9,J* = 0. Using
the well known correspondence between momenta and derivatives, current
conservation can be re-expressed as k,J# = 0. If the electromagnetic current
obeys this relation it can easily be shown that observables, such as a photo-
production cross section, are independent of the particular gauge used for
constructing the photon polarization vectors.

One of the sources for violation of gauge invariance is the form factors
used in the vertices. A form factor implies that at a certain (short range)
scale a particle appears ‘fuzzy’. At distances smaller than this scale devia-
tions from a point-like structure are important; however in the formulation
the dynamics at this short scale is not sufficiently accurate. For one thing,
the flow of charge at this scale is not properly accounted for, implying vi-
olation of charge conservation. To correct for this, so-called contact terms
are usually included in the K-matrix kernel. In the present model these
contact terms are constructed using the minimal substitution rules. The
corresponding T-matrix, as well as the observables, are independent of the
photon gauge.

3.4. Crossing symmetry

Physical consequences of the crossing symmetry are more difficult to
explain. It basically means that in a proper field-theoretical framework the
scattering amplitudes of processes in the so-called crossed channels can be
obtained from each other by appropriate replacements of kinematics. This
assumes that the amplitude can be analytically continued from the physical
region of one channel to the physical regions of other channels. An example
of the crossed channels is YN — 7N, 1N — yN and NN — .

Crossing symmetry puts a direct constraint on the amplitude for the
case that direct and crossed channels are identical, as for example for the
processes TN — wIN or YN — yN. In these reactions crossing symmetry
leads to important symmetry properties of the amplitudes under interchange
of s and u variables. Due to the fact that in the K-matrix formalism the
rescattering diagrams which are taken into account have only on-shell inter-
mediate particles, it can be shown that the s—u crossing symmetry is obeyed
provided that the kernel itself is crossing symmetric. Since the latter is the
case, crossing symmetry is obeyed.
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3.5. Analyticity

Analyticity of the scattering matrix is not really a symmetry. Rather, it
requires that the amplitude be an analytic function of the energy variable and
in particular that it obeys dispersion relations. The physics of analyticity is
closely related to causality of the amplitude as is illustrated in the following
example.

Assume that a signal is emitted by an antenna at time ¢ = 0. At all sub-
sequent times the signal is given by a function F'(¢) while causality requires
that at earlier times there was no signal, F'(¢ < 0) = 0. This signal can be
Fourier-transformed, f(w) = 0+°Odt ¢! F(t) to explicitly show its energy
or frequency dependence. Note that the integration region from ¢t = —o0
to t = 0 gives zero contribution due to the causality requirement. This
transformation can also be considered for complex values of w. Since the
integration interval runs only over positive values for ¢ the Fourier integral
exists and is a well behaving function for all complex values of energy w for
which Im (w) > 0 4.e. it is an analytic function in the upper half plane. For
such a function contour integrals in the complex w plane can be performed
and the function obeys the Cauchy theorem which in this context is usually
formulated as a dispersion relation,

Re f(w) =~ /d 'Izlf_w

showing that for an analytic function the real and imaginary parts are closely
related. For example, if the imaginary part of an analytic function is given
by the curve on the left-hand side of Fig. 3 the real part of this function is
given by the right-hand side.

1} 't
Im f(w) Re f(w)
05 05
of 0
-05 55 ) 20 20 ~%339 0 26 40

Fig.3. An example of the real and imaginary parts of an analytic function which
are related through a dispersion relation.

In the traditionally used K-matrix approaches the analyticity constraint
is badly violated. The origin of this is explained in the following.
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In a field-theoretical calculation of a scattering amplitude one includes
rescattering contributions of intermediate particles which are expressed as
loop integrals. In Fig. 4 a typical loop contribution to the self energy is
shown. Ignoring terms in the numerator which are irrelevant for the analyt-
icity properties, the corresponding integral can be expressed as

] .
J(p2) _ /d4k [k? _MQ—{—i{;‘] [(p—k)2 —m2+i€] ZReJ(pQ) +ZImJ(p2()’)
3

where the right-hand side in this equation and in Fig. 4 expresses the fact
that this integral has a real and an imaginary part, each of which corresponds
to some particular physics. The imaginary part of the integral arises from
the integration region where the denominators vanish, corresponding to four-
momenta k where the intermediate particles in the loop are on the mass
shell, or equivalently, are physical particles with k2 = p? and (p— k)2 = m?.
Conventionally this is indicated by placing a slash through the loop (see
Fig. 4) to indicate that the loop can be cut at this place since it corresponds
to a physical state. The other parts of the integration region contribute to
the real part of the integral. In the latter case the particles in the loop are
off the mass shell.

p—K
7 P “Res T m~

Kk

Fig.4. Loop integral contributing to the self energy.

It can be shown that the K-matrix formulation for the T-matrix cor-
responds to including only the imaginary (or cut-loop) contributions of a
certain class of loop diagrams. This guarantees (as was shown before) that
unitarity is obeyed. Analyticity of the scattering amplitude is however vi-
olated due to ignoring the real contributions of these loop integrals. As a
consequence causality will be violated!

To (partially) recover analyticity of the scattering amplitude the so-called
“Dressed K-matrix approach” [9] has been developed. It is described in the
following section.

4. The dressed K-matrix model

As discussed in the previous section, the coupled channels K-matrix ap-
proach is quite successful in reproducing Compton scattering. However it
fails in predicting nucleon polarizabilities. The reason is that, in spite of
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the many symmetry properties that are satisfied, analyticity or causality of
the amplitude is badly violated. In the “Dressed K-matrix” approach the
constraint of analyticity is incorporated in an approximate manner without
spoiling the other symmetries. In fact analyticity is used as a kind of expan-
sion parameter where presently only the leading contributions are included.
The ingredients of the Dressed K-Matrix Model were described in Refs. [6-8]
and the main results were presented in Ref. [9]. The essence of this approach
lies in the use of dressed vertices and propagators in the kernel K.

The objective of dressing the vertices and propagators is solely to improve
on the analytic properties of the amplitude. The imaginary parts of the
amplitude are generated through the K-matrix formalism (as imposed by
unitarity) and correspond to cut loop corrections where the intermediate
particles are taken on their mass shell. The real parts have to follow from
applying dispersion relations to the imaginary parts. We incorporate these
real parts as real vertex and self-energy functions. Investigating this in detail
(for a more extensive discussion we refer to [6]) shows that the dressing can
be formulated in terms of coupled equations, schematically shown in Fig. 5,
which generate multiple overlapping loop corrections. The coupled nature of
the equations is necessary to obey simultaneously unitarity and analyticity
at the level of vertices and propagators.

Off-shell On-shell Bare TINN vertex
. , are T
\9—;—{/ = & /

[t
SN -

Disp.

_\4##

Free N propagator

Fig.5. Graphical representation of the equation for the dressed irreducible 7NNV
vertex, denoted by an open circle, and the dressed nucleon propagator, denoted by
a solid line. The dashed lines denote pions, the double lines denote As and the
zigzag and dotted lines are p and ¢ mesons, respectively. The resonance propaga-
tors are dressed. The last term in the second equation denotes the counter-term
contribution to the nucleon propagator, necessary for the renormalization.
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The equations presented in Fig. 5 are solved by iteration where every it-
eration step proceeds as follows. The imaginary — or pole — contributions
of the loop integrals for both the propagators and the vertices are obtained
by applying cutting rules. Since the outgoing nucleon and the pion are on-
shell, the only kinematically allowed cuts are those shown in Fig. 5. The
principal-value part of the vertex (i.e. the real parts of the form factors)
and self-energy functions are calculated at every iteration step by applying
dispersion relations to the imaginary parts just calculated, where only the
physical one-pion-one-nucleon cut on the real axis in the complex p?-plane
is considered. These real functions are used to calculate the pole contri-
bution for the next iteration step. This procedure is repeated to obtain a
converged solution i.e. the square deviation between the different vertex and
self-energy functions for two successive iterations is less than a certain limit.
We consider irreducible vertices, which means that the external propagators
are not included in the dressing of the vertices.

Bare m NN form factors have been introduced in the dressing procedure
to regularize the dispersion integrals. The bare form factor reflects physics
at energy scales beyond those of the included mesons and which has been
left out of the dressing procedure. One thus expects a large width for this
factor, as is indeed the case.

The dressed nucleon propagator is renormalized (through a wave function
renormalization factor Z and a bare mass myg) to have a pole with a unit
residue at the physical mass. The nucleon self-energy is expressed in terms
of self-energy functions A(p?) and B(p?) as Yn(p) = An(p?) ¥ + By (p?) m.

The procedure of obtaining the YN N vertex [7] is in principle the same
as for the tNN vertex. Contact yrNN and yyN N vertices, necessary for
gauge invariance of the model, are constructed by minimal substitution in
the dressed T NN vertex and nucleon propagator, as was explained in [7].

The present procedure restores analyticity at the level of one-particle
reducible diagrams in the T-matrix. In general, violation due to two- and
more-particle reducible diagrams can be regarded as higher order corrections.
An important exception to this general rule is formed by, for example, dia-
grams where both photons couple to the same intermediate pion in a loop
(so-called “handbag” diagrams). This term is exceptional since at the pion
threshold the S-wave contribution is large, due to the non-zero value of the
E’é_/f multipole (notation: Electric radiation, where the pion-nucleon state
has [ = 0 and thus parity 7 = (=1)*) = — J =1 4+1/2 = 1/2 and
T = 1/2) in pion-photoproduction, leading to a sharp near-threshold energy
dependence of the related f}j{g Compton amplitude [13] (notation: Electric
in and out-going photon with orbital angular momentum [ = 1 and thus
parity 7 = (—1)! = —, and total angular momentum J =1—1/2 =1/2). In
the K-matrix formalism, the imaginary (pole) contribution of this type of
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diagrams is taken into account. Not including the real part of such a large
contribution would entail a significant violation of analyticity. To correct
for this, the yyNN vertex also contains the (purely transverse) “cusp” con-
tact term whose construction is described in Section 4 of Ref. [7]. Since,
due to chiral symmetry, the S-wave pion scattering amplitude vanishes at
threshold, the mechanism that gives rise to the important “cusp” term in
Compton scattering does not contribute to 7t NN or myN N contact terms.
The analogons to the “cusp” yyNN term will thus be negligible and have
therefore not been considered.

4.1. Results

Results for pion—nucleon scattering and pion-photoproduction obtained
in the dressed K-matrix model and in the traditional K-matrix approach
are of comparable quality. One should, however, expect the two approaches
to have significant differences for Compton scattering since for this case
constraints imposed by analyticity will be most important [12,13].

The effect of the dressing on the f}j{g amplitude can be seen in Fig. 6,
where also the results of dispersion analyses are quoted for comparison. Note
that the imaginary parts of fé% from calculations B (Bare, corresponding
to the usual K-matrix approach) and D (Dressed, the full Dressed K-matrix
results) are rather similar in the vicinity of threshold.

41 1Im fEEl' |

Fig.6. The f}ﬂi partial amplitude of Compton scattering on the proton in units
10~*/my. Solid line: dressed K-matrix, D; dotted line: bare K-matrix, B. Also
shown are the results of the dispersion analyses of Ref. [12] (dash-dots) and Ref. [13]
(dashed).
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The polarizabilities characterize the response of the nucleon to an exter-
nally applied electromagnetic field [14,15]. They can be defined as coeffi-
cients in a low-energy expansion of the cross section or partial amplitudes
of Compton scattering. Since gauge invariance, unitarity, crossing and CPT
symmetries are fulfilled in both models the Thompson limit at vanishing
photon energy is reproduced. Our results for the electric, magnetic and spin
polarizabilities of the proton are given in Table I, where they are compared
with the results given in Refs. [14,16] and with the values extracted from
recent experiments. The contribution from the ¢-channel 7%-exchange dia-
gram has been subtracted. The effect of the dressing on the polarizabilities
can be seen by comparing the values given in columns D (dressed) and B
(bare). In particular, the dressing tends to decrease « while increasing f.
Among the spin polarizabilities, yg; is affected much more than the other
v’s. The effect of the additional “cusp” yyNN contact term [7], strongly
influences the electric polarizabilities rather than the magnetic ones. This is
because the “cusp” contact term affects primarily the electric partial ampli-
tude f é} (corresponding to the total angular momentum and parity of the

intermediate state J™ = 1/27) rather than the magnetic amplitude f]b;M
(JT=1/27).

TABLE 1

Polarizabilities of the proton. The units are 10~*fm?® for o and 4 and 10~ *fm*
for the 4’s (the anomalous 7° contribution is subtracted). The first two columns
contain the polarizabilities obtained from the present calculation; D (full, dressed)
and B (bare K-matrix). The two columns named xPT contain the polarizabilities
calculated in the chiral perturbation theory [14,16]. Results of recent dispersion
analyses are given in the last column (Ref. [17] for a and 3 and Ref. [18] for the v’s).

XPT DA
D B Gel00 Hem98

a 12.1 15.5 10.5 16.4 11.9
15} 2.4 1.7 3.5 9.1 1.9
vg1 | =50 —1.7| —-1.9  —54 | —43
VM1 3.4 3.8 0.4 1.4 2.9
YE2 1.1 1.0 1.9 1.0 2.2
e | —18 =23 | 07 10| 00
Y 24 -09| -1.1 2.0 | —-0.8
YV 114 89 3.5 68| 94

Of special interest is to check whether polarizabilities as extracted form
the low energy behavior of the amplitude are in agreement with the values
as extracted from energy weighted sum-rules. The derivation of sum-rules
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is based on the fact that the amplitudes obey certain symmetries where
analyticity is of particular importance. This comparison is still in progress
and results will be published in a forthcoming paper [10]. Preliminary results
indicate that the different sum rules are obeyed, with the exception of the
sum rule for the spin polarizability 9. This may be due to an incomplete
dressing of the A-resonance in the present calculational scheme.

5. Medium modifications of the A resonance

The properties of the A in the nuclear medium are calculated [19] in
a relativistic framework for symmetrical (i.e. T' = 0) homogenous nuclear
matter, along the lines of Refs. [20-22]. The medium modifications are ex-
pressed through the dressing of the A propagator. The effects of the medium
are investigated using different levels of approximation. The imaginary part
of the A self-energy (or the A decay width) is calculated in different models
for the nuclear medium. Dispersion relations are used to determine the real
part (mass modification) of the A self-energy in a manner similar to the
dressed K-matrix approach, however without requiring self consistency.

In dressing the in-medium A-resonance we concentrate on the dominant
spin-3/2 component of the propagator. The spin-3/2 component of the self-
energy has the structure

53% = Capa) + Dalpa)pa., (4)

where pa = (p%, P'a). Note that in vacuum Cx(pa) and Da(pa) are func-
tions of the invariant W, = (p2A)1/ 2 only, while in the medium these func-
tions acquire additional dependences on the 3-momentum [Fa| and the nu-
clear density p.

The width of the resonance is defined by the imaginary part of the self-
energy at the pole position (Wa = M4). The contribution to the self-energy
for a A decaying into a nucleon and a pion is

~i(5a),, = (T22)’ P> / ‘“"mT Gy () (-a)TuDr(a),  (5)

=1,2,3

where ¢ = pa — k, and Gy (k) and D;(q) are the nucleon and pion prop-
agators, the structure of which depends on the model used for the nuclear
medium.

In the following two sections the density dependence of two contribu-
tions to the width of the A-resonance, the decay and spreading width, are
discussed in a Fermi gas model. In a subsequent section the effect of the
mean field is included within the ow-model of Walecka [23].



860 O. SCHOLTEN ET AL.

5.1. Decay width of the A-resonance

In a simple Fermi gas model A decay, corrected for the Pauli principle,
can be written as

F2ina (B, + My) k2

I-vD —_ I
4(pa) 24mm2|pal

[Ey —max(E_, Er)] 0(E, — Er), (6)

where Ey = (p%Ex, £ [palkr)/Wa and k, is the pion (nucleon) on-shell
3-momentum in the loop. The width becomes |pa|- and density-dependent.
In the limit [pa| — O the width reduces to its vacuum value if E_ > Ef,
and to zero if Ey_ < Ep;

2 (p.0p,0)

=
B
o

[MeV]
-
N
o

8
o
o LS TS W L L L L L LS U L

100

80

--- p=12p,
444444 p= 0.8 po
— p=04 Py
== p=0.05p,

60

40

20

200 400 600 800 1000
0p,0[MeV]
(b)

Fig.7. (a) In the left panel the A decay width is depicted as a function of the
density p (in units of the equilibrium density po [k% = 1.333 fm ']) and the A
3-momentum |Fa| at Wa = 1232 MeV calculated in the Fermi-gas model. (b) The
right panel shows the results for this calculation as a function of the A 3-momentum
|Pa| for the 4 different densities.

In Fig. 7(a) the full dependence on p and |pa| is shown for W =
1232 MeV. The results at densities 1.2, 0.8, 0.4 and 0.05 times normal nuclear
matter density py (k% = 1.333 fm™") are plotted separately in Fig. 7(b). At
high A-momenta and low densities the energy of the decay nucleon lies well
above the Fermi energy, and no blocking occurs. At somewhat lower mo-
menta of the A part of the momenta of the decay nucleon are Pauli blocked.
With increasing density this blocking may become complete for the lowest
A-momenta making the A unable to decay into a pion—nucleon pair (see
dashed and dotted curves in Fig. 7(b)). These phase-space considerations
result in a strong energy-dependence of the A decay width.
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5.2. Spreading width

In the nuclear medium the pion will strongly interact with the surround-
ing baryons creating nucleon—hole and A-hole excitations. This can be taken
into account by dressing the pion propagator with the proper pion self-energy

1
¢* —m3 — Iz(q) +ie ’

Dr(q) = (7)
where II:(q) = II,n(q) + IIan(q) is the polarization self-energy of the pion.
In our calculations we limit ourselves to forward and backward scattered
particle-hole excitations, and omit anti-nucleon excitations and A-hole sta-
tes. In principle, a complete calculation of the A-hole states would require
self-consistency between the pion and A self-energies, which falls outside the
scope of this work. We use the pion—nucleon pseudo-vector coupling with
the mN N-coupling constant fryy = 1.01 [21].

When summing the series of particle-hole bubbles in the pion-self en-
ergy, the effects of short-range correlations are important. These short-
range correlations are accounted for in the standard way by introducing the
Landau-Migdal parameter gy = 0.6 [24].
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Fig.8. (a) In the left panel the spreading width is depicted as a function of the
density p (in units of the equilibrium density po [k2 = 1.333fm']) and the A
3-momentum |pa| at Wa = 1232 MeV calculated in the Fermi-gas model. (b) The
right panel shows the results for this calculation as a function of the A 3-momentum
|p'a| for the 4 different densities.

Using the pion propagator from Eq. (7) with the pion self-energy I,
in Eq. (5) the spreading width of the A-resonance in the medium can be
calculated. The results are shown in Fig. 8. The spreading width is roughly
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proportional to the density, which can be understood on the basis of the
phase space available for the hole states. As can be seen from Fig. 8(b) it is
only weakly dependent on the 3-momentum | 74 |. Also the dependence on
W turns out to be weak. The total width of the A in this non-interacting
Fermi-sea of nucleons is given by the sum of this spreading width and the
Pauli-corrected decay width from the previous section.

5.8. Mean-field effects in the nucleon and A self-energy

A refinement to the free Fermi-gas model can be made using the Walecka
ow-model [23] in the mean-field approximation. Here the o- and w-meson
couple to the nucleon resulting in the (classical) mean scalar and vector fields
(®;) and (VH).

In order to assess the sensitivity of the results to the mean-field pa-
rameters we have performed calculations taking 2 parameter sets from [25],
henceforth called set I and II. Set I, called QHD-I in [25], results from a
pure mean-field approximation to the binding energy. The ratios of cou-
pling constants and meson masses have values C? = (¢ My /m)? = 267.1,
C? = (gVMy/my)? = 195.9. The nuclear matter equilibrium density is
at k% = 1.42 fm !, with binding energy 15.75 MeV and an effective nu-
cleon mass My /My = 0.56 at po. Set II, called the relativistic Hartree
approximation in [25], takes into account vacuum fluctuation corrections to
the binding energy. The parameters are C2 = 228.2, C? = 147.8. The
equilibrium density is taken at k% = 1.30 fm~!, with a binding energy of
15.75 MeV leading to an effective nucleon mass My /My = 0.73 at equilib-
rium density. The full density dependence of the effective nucleon masses in
both cases are shown in Fig. 9. In both cases we see a strong reduction of
the effective nucleon mass with increasing density. In the extended mean-
field model of Ref. [20] the A is assumed to move in the mean ¢ and w
fields. The mean-field contributions to the A self-energy can be treated in
an analogous way as for the nucleon, 4.e. they are absorbed in the effective
A mass M7 and 4-momentum p%. Here we employ the so-called universal
couplings [20], and as a result the A effective mass M7 (p) may be expressed
as M} (p) = Ma — (My — MY,).

The effect of these mean-field modifications for the decay width Fg and
the spreading width I'§ at the on-shell point W% = M%(p) for both pa-
rameter sets are depicted in Fig. 10. It is seen that the structure of the
decay width hardly changes when effective masses are introduced; only the
limiting value at large | pa | now becomes density-dependent. Because of
the stronger reduction of the effective masses the Pauli-blocking is more
pronounced using parameter set I. The mean-field effects result in an overall
reduction of the spreading width as compared to the Fermi-gas calculation
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(see Fig. 8). For the relevant nuclear densities p/py < 1.2, this reduction is
stronger at larger densities. For larger densities the spreading width satu-
rates and eventually decreases in both mean-field models. The mean-field
model T yields a maximal spreading width at around the equilibrium den-
sity. In the mean-field model II, the spreading width saturates at much
larger densities.

5.4. Real part of the A self-energy

The full width, i.e. the sum of the decay and spreading widths, cor-
responds to the imaginary part of the A self-energy. This imaginary part
generates a contribution to the real part of the A self-energy, which can
in general be obtained via a dispersion relation. We make the assumption
that an unsubtracted dispersion relation holds at fixed values of [Fa|. The
propagator is renormalized in such a way that in vacuum it has a pole at
the physical mass M = 1.232 GeV with unit residue.

6. Coherent Compton scattering

Coherent Compton scattering on nuclei in the region of the A resonance
is of considerable interest. The reaction allows one to study the propagation
and decay of the A in the nuclear medium. In particular the shift of the
pole position and a change of the width of the A peak, reflect sensitively in
the cross section and polarization observables. For a comprehensive review
on Compton scattering we refer to the recent reference [26].

The amplitude for the process of Compton scattering on a finite nucleus
is calculated in the impulse approximation. We apply the so-called factor-
ization approximation (see |27, ch.11, sect.2) which was shown to work well
in pion photoproduction [28-30] and pion scattering [31,32] on nuclei, in
particular for light nuclei where the nuclear wave function is well described
by an harmonic oscillator model. A large part of the effects of the Fermi-
motion are accounted for by evaluating the amplitude on a nucleon moving
with the effective momentum p (p’ = p+ ¢) in the initial (final) state, where
g = k — k' is the momentum transfer. The momentum p is taken in such a
way that the energy—momentum conservation for the v N scattering holds.
The amplitude in this approximation is written as

Ka=A(Tn(P)) Fpla), (8)

where F,(q) is the Fourier-transform of the density distribution (form fac-
tor). In Eq. (8), the form factor of the 1s- 1p-shell nuclei with Z = N = A/2
is constructed on the basis of the experimental charge densities in [33] (see
Table V therein), correcting for proton finite size effects and assuming equal
proton and neutron densities. (T) is the spin averaged single-nucleon am-
plitude.
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The single-nucleon amplitude is decomposed into one part which corre-
sponds to the amplitude on the free nucleon, plus a term which accounts for
the modification of the A-resonance in the medium, i.e.

Ty = Tiee 4 (Kfv‘d — Ky ) . 9)

The first term is the T-matrix for Compton scattering on the free nucleon;
the term between brackets accounts for the nuclear-medium modification
of the A-resonance. To avoid double counting the vacuum contribution is
subtracted.

The T-matrix for Compton scattering off a free proton, T]f\}”ee, is calcu-
lated in a K-matrix model as described in Section 2. The main difference
of the present calculation from that of Ref. [4] is that the A is treated as
a genuine spin-3/2 resonance [5] in order to be compatible with the present
treatment of the in-medium A-resonance. The change in the structure of the
vN A and 7w N A-vertices necessitated modification of parameters of the p and
o exchanges in the t-channel. A comparable fit to the data as in Ref. [4] could
be obtained. In the dressed A-contribution Kﬁd only the s-type tree-level
contribution is taken into account, using the medium-modified A propagator
as defined previously.

Cross sections have been calculated for *He and '2C at several densi-
ties to investigate medium effects. To compare with data an average over
density (pa), based on the Local Density Approximation (LDA), has been
performed. The density profile (p4) was taken consistently with the form
factor.

In Fig. 11 we have plotted, for various nuclear densities, the cross section
and photon asymmetry for Compton scattering on *He in mean-field model I,
both at fixed 0., = 37° and E,jap = 206 MeV. The results show a strong
density dependence. In order to obtain more insight we have plotted in the
upper panels of Fig. 12 the values of the 3-momentum |74 | and (kinematical)
invariant mass Wx of the A as enter in the calculations presented in Fig. 11.
In the lower panels we show the real and imaginary part of the A self-energy.

One may want to compare the results we have obtained for the in-
medium correction to the self-energy of the A-resonance to results obtained
in Ref. [30] from fitting to coherent pion photoproduction. In making this
comparison one has to be careful since we include explicitly in calculations
the density and momentum dependencies of the A self-energy, while both
effects are neglected in [30]. Keeping this in mind, the results of [30] agree
reasonably well with ours.

In Fig. 12 at E, = 350 MeV the real part of the self-energy is of the
order of 45 MeV (taking the p = 0.8pg result at 40°), while Ref. [30] finds a
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value of 30 MeV. Both figures show that this value decreases towards lower
energies to vanish in our case at about 200 MeV photons, while in Ref. [30]
there is an additional bump at the lower energies.

The imaginary part shows a similar agreement. Plotted in Ref. [30] is the
modification of the free width which is about —60 MeV and is taken energy
independent. At a photon energy of 350 MeV the additional in-medium
contribution is about —55 MeV giving —115 MeV for the imaginary part of
the self-energy, to decrease (in absolute magnitude) for lower energies. The
values we obtain are similar (see Fig. 12), however with a slower decrease
towards lower energies. Besides, at these lower energies we find that the
density dependence becomes quite significant and should not be ignored.

Much of the density dependence of the cross sections in Fig. 11 can be
understood from the density dependence of the imaginary part of the A self-
energy. At a photon energy of 206 MeV one is relatively far from the peak of
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Fig.11. Differential cross section and photon asymmetry for Compton scattering
off *He at an energy of 206 MeV as a function of angle and at an angle of 37° as
a function of energy. Densities are given in units of saturation density. Data are
taken from [35].
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Fig.12. Values of the parameters which define the self-energy of the A-resonance
evaluated at the A invariant mass (W) and three momentum (|fa|) appropriate
for Compton scattering off *He as shown in Fig. 11.

the A-resonance. An increase in the width of the resonance therefore results
in an increase of the cross section at this energy. The opposite happens
when one approaches the peak of the resonance, where the cross section
decreases with density. The data show clear evidence that this is indeed the
correct mechanism, at 206 MeV the vacuum calculation falls below the data
while the LDA result shows a good correspondence with the data at forward
angles. Near the resonance the vacuum calculation overestimates the data
by a factor 2 while the LDA result gives a much better prediction or even
lies below. The sharp fall-off of the cross section with angle is mostly due to
the form factor which falls off strongly with increasing momentum transfer.
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At backward angles the cross section is not reproduced, which is probably
due to the double-scattering contribution which is missing from the present
calculations. The photon asymmetry at 206 MeV shows only a minor density
dependence as compared to the error bars on the data.
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Fig.13. LDA calculation of coherent Compton scattering off *He in the Fermi-gas
model and the mean-field models I and II. The data are from Ref. [34].

In Fig. 13 we compare the *He cross section and asymmetry with LDA
calculations for the Fermi-gas and mean-field calculations I and II. The
Fermi-gas calculation undershoots the data at small angles for £, = 206
MeV and at large energies for 6, = 37°, and deviates from the asymmetry
data points. The mean-field calculations tend to improve this.

The cross sections for 2C is shown in Fig. 14. Because of the larger
radius of 12C the cross section falls off faster with angle than that for “He.
The drop in the cross section at energies beyond 250 MeV is partly due to
an increased width of the A-resonance and partly due to the form factor
cutting the cross section at larger momentum transfers. This effect is also
seen in the data.
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7. Summary and conclusions

Results are presented for Compton scattering on a free proton as well
as on a nucleus. For processes on the proton the usual K-matrix model as
well as the recently developed dressed K-matrix model are discussed. In
the latter approach the real self energies and vertex functions are obtained
from the imaginary parts using dispersion relations imposing self-consistency
conditions. It is indicated that such an approach is essential to understand
features seen in the data, in particular at energies around and below the
pion production threshold.

It is shown that 200-300 MeV coherent Compton scattering is sensitive
to the in-medium modification of the properties of the A-resonance. The
imaginary part of the A self-energy in the nuclear medium includes two con-
tributions, the decay width and the spreading width, which show opposite
dependences on the density. The net effect for realistic nuclei of these coun-
teracting mechanisms is an increase of the width. The real part, calculated
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using dispersion integrals, is small. These predictions for the modification
of the A in the nuclear medium are shown to give good predictions for
the differential Compton cross section at forward angles for *He and '2C.
The present one-body reaction mechanism is unable to describe the data at
backward angles. In order to improve this, it is imperative that multiple
scattering should be incorporated in the model.

0.S. thanks the Stichting voor Fundamenteel Onderzoek der Materie
(FOM) for their financial support. A.Yu. K. thanks the Foundation for Fun-
damental Research of the Netherlands (NWO) for financial support. The
work of L. V.D. and D. V.N. was supported by the Fund for Scientific Re-
search — Flanders (FWO) and the Research Board of Ghent University. S.K.
thanks the National Sciences and Engineering Research Council of Canada
for their financial support.

REFERENCES

[1] P.F. A. Goudsmit, H.J. Leisi, E. Matsinos, B.L. Birbrair, A.B. Gridnev,
Nucl. Phys. A575, 673 (1994).
[2] O. Scholten, A.Yu. Korchin, V. Pascalutsa, D. Van Neck, Phys. Lett. B384,
13 (1996).
[3] T.Feuster, U. Mosel, Phys. Rev. C58, 457 (1998); Phys. Rev. C59, 460 (1999).
[4] A.Yu. Korchin, O. Scholten, R.G.E. Timmermans, Phys. Lett. B438, 1 (1998).
[5] V. Pascalutsa, Phys. Lett. B503, 85 (2001).
[6] S. Kondratyuk, O. Scholten, Phys. Rev. C59, 1070 (1999); Phys. Rev. C62,
025203 (2000).
[7] S. Kondratyuk, O. Scholten, Nucl. Phys. A677, 396 (2000).
[8] S. Kondratyuk, O. Scholten, Nucl. Phys. A680, 175¢ (2001).
[9] S. Kondratyuk, O. Scholten, Phys. Rev. C64, 024005 (2001).
[10] S. Kondratyuk, O. Scholten, nuc1-th/0109038.
[11] E.L. Hallin et al., Phys. Rev. C48, 1497 (1993).
[12] W. Pfeil, H. Rollnik, S. Stankowski, Nucl. Phys. B73, 166 (1974).
[13] J.C. Bergstrom, E.L. Hallin, Phys. Rev. C48, 1508 (1993).
[14] T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Rev. D57, 5746 (1998).
[15] B.R. Holstein, hep-ph/0010129.
[16] G.C. Gellas, T.R. Hemmert, Ulf-G. Meissner, Phys. Rev. Lett. 85, 14 (2000).
[17] AL L’vov, V.A. Petrun’kin, M. Schumacher, Phys. Rev. C55, 359 (1997).
[18] D. Drechsel, M. Gorchtein, B. Pasquini, M. Vanderhaeghen, Phys. Rev. C61,
015204 (2000).
[19] L. Van Daele et al., Phys. Rev. C65, 014613 (2001).
[20] T. Herbert, K. Wehrberger, F. Beck, Nucl. Phys. A541, 699 (1992).
[21] H. Kim, S. Schramm, S.H. Lee, Phys. Rev. C56, 1582 (1997).



Compton Scattering on the Proton and Light Nuclei ... 871

[22] L. Liu, X. Luo, Q. Zhou, W. Chen, M. Nakano, Phys. Rev. C51, 3421 (1995).

[23] J.D. Walecka, Ann. Phys. 83, 491 (1974).

[24] T. Suzuki, H. Sakai, Phys. Lett. B455, 25 (1999).

[25] B.D. Serot, J.D Walecka, Adv. Nucl. Phys. 16, 1 (1986).

[26] M.-Th. Hiitt, A.I. L’vov, A.I. Milstein, M. Schumacher, Phys. Rep. 323, 457
(2000).

[27] M.L. Goldberger, K.M. Watson, Collision Theory, John Wiley and Sons, Inc.,
1964.

[28] L. Tiator, A.K. Rej, D. Drechsel, Nucl. Phys. A333, 343 (1980).

[29] R.A. Eramzhyan, M. Gmitro, S.S. Kamalov, Phys. Rev. C41, 2685 (1990).

[30] D. Drechsel, L. Tiator, S.S. Kamalov, Shin Nan Yang Nucl. Phys. A660, 423
(1999).

[31] R.H. Landau, S.C. Phatak, F. Tabakin, Ann. Phys. 78, 299 (1973).

[32] R.H. Landau, A. W. Thomas, Phys. Lett. B61, 361 (1976).

[33] H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36, 495
(1987).

[34] F. Wissmann et al. Phys. Lett. B335, 119 (1994).

[35] A. Kraus, O. Selke, F. Wissmann et al., Phys. Lett. B432, 45 (1998).



