
Vol. 33 (2002) ACTA PHYSICA POLONICA B No 4
SIGNATURES OF RANDOMNESSIN QUANTUM SPECTRA�Piotr Garba
zewskiInstitute of Physi
s, University of Zielona Górapl. Sªowia«ski 6, 65-069 Zielona Góra, Poland(Re
eived O
tober 8, 2001)We investigate toy dynami
al models of energy-level repulsion in quan-tum (quasi) energy eigenvalue sequen
es. We fo
us on parametri
 (withrespe
t to a running 
oupling or �
omplexity� parameter) sto
hasti
 pro-
esses that are 
apable of relaxing towards a stationary regime (e.g. equilib-rium, steady state asymptoti
 measure). In view of ergodi
 property, thatmakes them appropriate for the study of short-range �u
tuations in anydisordered, randomly-looking spe
tral sequen
e (as exempli�ed e.g. by em-piri
al nearest-neighbor spa
ings histograms of various quantum systems).The pertinent Markov di�usion-type pro
esses (with values in the spa
e ofspa
ings) share a general form of forward drifts b(x) = (N � 1)=2x � x,where x > 0 stands for the spa
ing value. Here N = 2; 3, 5 
orrespond tothe familiar (generi
) random-matrix theory inspired 
ases, based on theexploitation of the Wigner surmise (usually regarded as an approximateformula). N = 4 
orresponds to the (non-generi
) non-Hermitian Ginibreensemble. The result appears to be exa
t in the 
ontext of 2 � 2 randommatri
es and indi
ates a potential validity of other non-generi
 N > 5 levelrepulsion laws.PACS numbers: 03.65.Ge, 02.50.Ga, 05.45.Mt1. Regular versus irregular in quantum theoryThe vague notion of so-
alled quantum 
haos, normally arising in 
on-jun
tion with semi
lassi
al quantum me
hani
s of 
haoti
 dynami
al sys-tems [1℄, 
urrently stands for a key-word 
apturing 
ontinued e�orts to givea proper a

ount to what extent quantization destroys, preserves, or qual-itatively reprodu
es major features of 
lassi
al 
haos. There is no generalagreement about what a
tually is to be interpreted as �quantum 
haos� or� Presented at the XIV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 9�14, 2001.(1001)



1002 P. Garba
zewskiits de�nite manifestations. That, in part, derives from an inherent ambigu-ity of quantization s
hemes for nonlinear, possibly non
onservative, drivenand damped 
lassi
al problems, and is intrinsi
ally entangled with a deli-
ate reverse problem of a reliable semi
lassi
al limit pro
edure for on
e givenquantum system. Other origins of this elusiveness seem to be rooted in thediversity of meanings attributed in the literature to the 
on
epts of regularand/or irregular behavior of a physi
al system, irrespe
tive of whether it is
lassi
al or quantum.Mathemati
al de�nitions of 
lassi
al 
haos emphasize an apparent ap-pearan
e of randomness in deterministi
 situations [2, 3℄. That involvesa deep question of when spe
i�
 features of a physi
al system appear tobe (or 
an be interpreted as) random. Quite typi
ally, while dealing withan irregular behavior, we need to quantify an interplay between 
han
e andorder in terms of suitable measures of randomness (if random, then �howmu
h?�) [4, 6, 7℄.Disorder, irregularity and randomness are 
asually per
eived as syn-onyms and are interpreted to stay at varian
e with notions of order andregularity. Albeit order and randomness may as well 
oexist as �two fa
esof the same mysterious 
oin� [4℄.One of basi
 problems in the quantum 
haos theory is to establish whetherthe 
lassi
al order�disorder interplay indu
es any unambiguous imprints(�signatures of 
haos� [5℄) in quantum systems. In this 
ontext, familiar
on
epts of regular and irregular spe
tra [8�10℄ were 
oined to 
hara
terizedistin
tive di�eren
es between semi
lassi
al distributions of energy eigenval-ues for generi
 quantum systems. The term �generi
� basi
ally means �moreor less typi
al�, sin
e one ex
ludes from 
onsiderations all systems whi
hdo not behave properly, although there are many of them. (More stringentde�nition invokes suitable symmetry properties of the quantum system.)Nowadays it is 
lear that an irregularity alone of any parti
ular spe
tralseries (possibly interpreted in terms of an irregular sequen
e of 
onse
utiveenergy or quasi-energy levels) is not an adequate 
riterion for quantum man-ifestations of 
haos. In fa
t, semi
lassi
al spe
tra 
orresponding to many [9℄
lassi
al systems, be them integrable or 
haoti
, have an irregular appear-an
e. That was the motivation for attempts to 
lassify su
h spe
tra in termsof the �degree of randomness of the sequen
e of eigenvalues� [11℄, 
f. also [6℄and [7℄ for related argumentation.Let us, however, stress that a primordial question of whether a givenenergy level sequen
e 
an at all be regarded as random has been left un-tou
hed. Seldom one may have at disposal a 
omplete analyti
 informationabout quantum spe
tra. Usually some experimentation is needed to extra
tthe data and most of available spe
tral information relevant for quantum
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haos studies, 
omes either from a genuine experiments (mi
rowave analogsof quantum billiards, realisti
 nu
lear data) or 
omputer simulations, alwayswith a de�nite beginning and an end. In ea
h 
ase that produ
es a �nitestring of data and it is known that no �nite sequen
e 
an be interpretedas truly random. Fortunately, if a data sequen
e generated by a sto
hasti
pro
ess of any origin (deterministi
 algorithms in
luded) is su�
iently long,then it will always satisfy a test for randomness with �ne-tuned 
on�den
elevel, 
f. [6, 12, 13℄.We emphasize an issue of randomness, be
ause various probability laws(and densities of invariant, steady state measures) are omnipresent in thequantum 
haos resear
h. In view of that, a sto
hasti
 modeling will be ourmajor tool in below.A ri
h 
lass of 
lassi
ally integrable (hen
e regarded as regular) systemsdisplays random-looking, lo
ally un
orrelated sequen
es of energy eigenval-ues [9,14,15℄. However, there are well known 
lassi
ally 
haoti
 (hen
e regar-ded as irregular) systems whose quantum spe
tral statisti
s appears to bearno distin
tive imprints of 
lassi
al 
haos and look appropriate for the 
om-pletely integrable 
ase, [14℄. Therefore, a supplementary rule is ne
essaryto typify various 
lasses of spe
tral irregularities and of the involved typesof randomness being random, but possibly �random otherwise�), if those areto be interpreted as 
onsequen
es of irregular 
hara
teristi
s of the related
lassi
al system.A possible hint might have originated from dis
riminating between thespatial regularity and irregularity of the 
orresponding quantum eigenfun
-tions. It is the spatial pattern of wave fun
tions that appears to have a de-
isive e�e
t on the spe
tral pattern of eigenvalues [10,15℄. However, a minorobsta
le still persists: not all 
lassi
ally ergodi
 systems (irregular 
ase ofRef. [8℄) would semi-
lassi
ally yield irregular eigenfun
tions [10℄. Conse-quently, one usually tries to narrow the 
lass of quantum system that aresuspe
ted to show un-doubtful �signatures of 
haos� to those whi
h haveirregular eigenfun
tions, with no spe
i�
 referen
e to their 
lassi
al (
haoti
or non-
haoti
) behavior. In this 
lass one ultimately attempts to spe
ifythose systems whi
h remain in a 
onsistent semi
lassi
al relationship withtheir 
haoti
 
lassi
al partners. Those systems quite justi�ably would de-serve to be named generi
 and would more or less naturally fall into variousspe
tral universality 
lasses, in a

ordan
e with the random-matrix 
lassi�-
ation s
heme [17�19℄.Under rather plausible assumptions [10℄, quantum systems with spa-tially irregular wave fun
tions were found to exhibit level repulsion, hen
eto �avoid� degenera
ies whi
h is basi
ally an indi
ation of non-integrability,hen
e not ne
essarily that of any links with 
haos.
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zewskiWe re
all that an opposite spe
tral e�e
t of level 
lustering, 
ombinedwith the 
onje
tured absen
e of 
orrelations between levels, is 
hara
teristi
for a large 
lass (�almost all� a

ording to [15,16℄, see, however, [20℄) of 
las-si
ally integrable systems. Typi
ally they display so-
alled Poisson statisti
s(stri
tly speaking, there is an exponential law of probability involved [21℄) ofadja
ent level spa
ings: small spa
ings are predominant and there is enoughroom for multiply degenerate levels. One says then [22℄ that energy levelso

ur in a 
ompletely random way via a Poisson pro
ess on the energy axis.Therefore, level repulsion, when regarded as an emergent spe
tral symp-tom of level 
orrelations (usually interpreted as a 
ertain departure frompurely random behavior), may be viewed as a ne
essary 
ondition to dealeither with quantum imprints of 
lassi
al 
haos or, in the least, with a 
las-si
ally non integrable phase-spa
e irregularity.Interestingly enough, this viewpoint �nds some support in the dis
overyof pseudo integrable systems (variously shaped billiards, sometimes with sin-gular s
attering obsta
les) whi
h appear to be neither integrable nor 
haoti
,but give rise to various forms of �wave 
haos� while quantized [23, 24℄. The
orresponding distribution of adja
ent level spa
ings is named semi-Poissonand 
ombines various forms (in
luding fra
tional powers) of level repulsionwith Poisson (exponential) statisti
s, hen
e purely random behavior in thespe
tral series. The repulsion phenomenon is here a manifestation of thetopologi
ally 
ompli
ated phase spa
e (an invariant manifold is not topo-logi
ally equivalent to a torus but to a higher genus manifold), whi
h was
onje
tured to pre
lude integrability and thus the standard torus (EBK)semi
lassi
al quantization, see e.g. [23�26℄.In view of the wide usage of su
h terms like �universality� in the quantum
haos literature, one should always keep in mind that harmoni
 os
illatorsdisplay level repulsion [9℄, although they seem to be exemplary 
ases of 
las-si
al and quantum regularity at their extreme. Another spe
ta
ular ex
ep-tion is the hydrogen atom spe
trum. Like all higher dimensional harmoni
os
illators, or a square billiard [16, 27℄, the Coulomb spe
trum belongs toa distin
tive group of �pathologi
ally non-generi
� spe
tral problems [5℄.Nonetheless, we shall 
on�ne our attention to the suggestive, randommatrix theory universality 
lassi�
ation that is 
onsidered to be faithfulfor lo
al �u
tuations in quantum spe
tra of (generi
) systems that displayglobal 
haos in their 
lassi
al phase spa
es. Our hun
h is to mimi
 (orrather extra
t) those features of the level-spa
ing 
lassi�
ation whi
h maybear imprints of pure randomness or in reverse � depart from randomness.Studying 
lassi
al manifestations of 
haos in terms of probability mea-sures (in
luding their densities or distributions and their dynami
s) is a re-spe
table strategy [32℄. In quantum theory, in view of Born's statisti
alinterpretation postulate alone, probability measures are ubiquitous. On theother hand, various probability laws and distributions naturally pervade the
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tra 1005familiar random-matrix theory [17, 18℄. This statisti
al theory of spe
tra,models a symmetry-limited spe
tral disorder in terms of statisti
al ensemblesof 
omplex quantum systems (e.g. heavy nu
lei). Apart from an ensembleinput, random-matrix theory forms a 
onvenient vehi
le to interpret spe
-tros
opi
 properties of a 
on
rete (single!) quantized version of a 
omplex
lassi
al model. (The 
lassi
al 
omplexity notion refers e.g. to the phase-spa
e organization spe
i�
 to a system and various 
ompli
ation degrees ofits dynami
s related to ergodi
ity, mixing and exa
tness.)However, one should keep in mind that the universality hypothesis in the
ontext of quantum 
haos proper, derives from exploiting a spe
tral a�nityof an ensemble of large (with size ultimately growing to in�nity) random ma-tri
es, with a on
e given individual quantum system (take into 
onsiderationthe Sinai billiard or periodi
ally ki
ked pendulum/rotator). Therefore, wemay justi�ably ask how an individual (Hamiltonian or Floquet-type) quan-tum eigenvalue problem may 
apture all 
on
eivable statisti
al propertiesof suitable random-matrix ensemble spe
tra? Told otherwise, how may wejustify a 
omparison of a statisti
al ensemble of disordered spe
tral serieswith one only spe
i�
 energy (or quasi-energy) level sequen
e of an a priori
hosen quantum system?To our knowledge this 
on
eptual obsta
le, ex
ept for preliminary inves-tigations of Ref. [28℄, has not re
eived mu
h attention in the quantum 
haosliterature. A partial answer to that question [5℄, points towards 
ertain er-godi
ity properties appropriate for models of the parametri
 level dynami
s(Coulomb gas, plasma or else, evolving in ��
titious time�), that providea reinterpretation of random-matrix theory in terms of an equilibrium sta-tisti
al me
hani
s for a �
titious N -parti
le system (with N allowed to growinde�nitely), 
f. also [29, 30℄.In the framework of random-matrix theory, an ergodi
 problem for Gaus-sian ensembles was analyzed long ago in Ref. [31℄, with a fo
us on the er-godi
 behavior for the eigenvalue density and k-point 
orrelation fun
tionsof individual random matri
es and their statisti
al ensembles. That involvesa lo
al version of the ergodi
 theorem, where e.g. the spe
tral averagingover a �nite energy span of the level density is 
ompared with the matrixensemble mean of the level density. That suggests analogies with disorderedmany-body quantum systems where ensemble averaging is a standard ana-lyti
 tool, while for an individual system, only an energy averaging shouldbe employed [30℄.We know that the distribution of spa
ings of highly ex
ited quantumsystems may involve de�nite laws like e.g. the exponential or Wigner-typedistributions. Su
h laws may be related to de�nite sto
hasti
 pro
esses asinvariant (steady state) measures, in parti
ular as asymptoti
 measures towhi
h the pro
ess does relax.
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zewskiWe shall fo
us upon the parametri
 dynami
s (parametri
 interpolation)s
enario for the nearest-neighbor spa
ing distributions of irregular quantumsystems where asymptoti
 invariant (with respe
t to the parametri
 pro
ess)probability measures are ultimately involved. Let us mention that a 
on
eptof parametri
 dynami
s involves the possibly troublesome ��
titious time�parameter. Its possible interpretation is that of a running 
oupling 
onstantmeasuring the strength of the 
haotizing perturbation, or more generallythat of a �
omplexity parameter� whose growth to in�nity gives a

ount ofthe 
omplexity in
rease in the spe
tral properties of a quantum system.Disregarding the origins of randomness in diverse settings, we shall takethe view that sto
hasti
 pro
esses are mathemati
ally appropriate modelswhen the time evolution (parametri
 �dynami
s� being in
luded) of randomphenomena is involved. Whenever probability laws are in use, random phe-nomena and sto
hasti
 pro
esses are always at hand [32, 33℄.The major di�eren
e of our strategy, if 
ompared to other approa
hes,amounts to 
onsidering ex
lusively the parametri
 evolution (relaxation) to-wards equilibria of nearest neighbor spa
ing distributions as the major sour
eof probabilisti
 information. We arrive here at prototype invariant (equilib-rium) measures and stationary (steady state) probability densities of limit-ing stationary sto
hasti
 pro
esses. We do not invoke any expli
it eigenvalue(e.g. a solution of the spe
tral problem for the quantum system or the relatedrandom-matrix model) nor level dynami
s input, sin
e those data prove tobe irrelevant for the primary ergodi
 behavior that is displayed by the adja-
ent spa
ing probability densities. At least in the 
onsidered approximationregime, where probability densities surmised by Wigner are assumed to beadequate (in reality, they have the status of reliable approximate formulas).An exploitation of ergodi
ity (in fa
t strong mixing and/or exa
tness[32, 34, 35℄) of 
ertain (parametri
ally evolving) Markovian sto
hasti
 pro-
esses is here found to provide a supplementary (probabilisti
) 
hara
teriza-tion of quantum signatures of 
haos.2. Poissonian level sequen
es2.1. Exponential random variable and semi-Poisson laws�Poissonian� matrix ensembles with independent random diagonal ele-ments are often used to model spe
tral properties of integrable Hamiltoniansystems (we disregard an issue of various, even quite remarkable, deviationsfrom an exa
t Poisson-type statisti
s [16,20,36℄). Indeed, many regular (in-tegrable) systems, semi 
lassi
ally exhibit spa
ings between adja
ent energylevels whi
h are distributed a

ording to the exponential probability densityp(s) = exp(�s) on R+, where we ta
itly assume a normalization of the �rst
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tra 1007moment (mean spa
ing) of the probability measure (hen
e the unfolding ofthe energy spe
trum [5, 16℄).A 
anoni
al statement in this respe
t [9℄, 
onveys a message that �forgeneri
 regular systems� p(s) is �
hara
teristi
 of a Poisson pro
ess with lev-els distributed at random� and �the levels are not 
orrelated�. (A dis
ussionof serious violations of the Berry�Tabor 
onje
ture 
an be found in Ref. [20℄.)Sin
e the regular spe
trum is perfe
tly deterministi
 and for ea
h setof quantum numbers the 
orresponding energy level is obtained from anexpli
it formula (via Einstein�Brillouin�Keller semi
lassi
al argument, ordire
tly by solving the spe
tral problem for e.g. re
tangular billiard) it isfar from obvious that levels may 
ome as a realization of a random variable.Even though probability distributions are thought to arise in near 
lassi
alquantum systems, when the number of levels in any range of energy is verylarge (and inde�nitely in
reases when the 
lassi
al limit is approa
hed).Following Refs. [16, 19℄, let us 
onsider a sequen
e of numbers (we keepan expli
it energy notation, although an unfolded sequen
e is res
aled to benon-dimensional): Ei+1 = Ei + xi = E0 + iXj=1 xj ; (1)where E0 = 0 and xj with j = 1; 2; ::: are out
omes of independent trials ofthe exponentially distributed random variable X taking values in R+.The resulting sequen
e (E1; E2; :::) of nonnegative numbers is a parti
u-lar model realization (sample) for what is 
ommonly named a Poisson spe
-trum. Here, randomly sampled (independent, in a

ordan
e with the ex-ponential distribution) in
rements xi = Ei+1 � Ei play the role of adja
entlevel spa
ings. Let us emphasize that the Poissonian random-matrix ensem-ble would 
omprise all possible sequen
es of the above form, ea
h obtainedas a result of independent sampling pro
edures.At this point let us turn to an expli
it probabilisti
 lore (
f. [21, 33℄)whose absen
e is painfully 
onspi
uous in major quantum 
haos publi
ations.Let X1;X2; ::: be independent random variables with 
ommon for allexponential probability law �(x) = � exp(��x), � > 0 with mean 1=� andvarian
e 1=�2.Furthermore let us denote Sn = X1 +X2 + ::: +Xn, n = 1; 2; ::: . Thenthe random variable Sn has a probability density:pn(x) = �n xn�1(n� 1)! exp(��x) ; (2)
oming from an (n� 1)-fold 
onvolution of exponential probability densities
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zewskion R+. The law (2) is in�nitely divisible [21, 33℄:pn+m(x) = (pn � pm)(x) = xZ0 pn(x� y)pm(y)dy ; (3)where p1(x) = �(x) and n;m = 1; 2; ::: .In parti
ular, note that Xi+Xj for any i; j;2 N has a probability densityp2(x) = �2 x exp(��x) : (4)whi
h upon setting � = 2 and x = s stands for an example of a semi-Poisson law P (s) = 4s exp(�2s) [5,26℄, whi
h has been identi�ed to governthe adja
ent level statisti
s for a sub
lass of pseudo integrable systems.It is also obvious that other (plasma-model related [26℄) semi-Poissonlaws 
ome dire
tly from distributions appropriate for Sn. For example, S3has a density p3(x) whi
h upon substituting � = 3 and x = s gives rise toP (s) = (27=2)s2 exp(�3s). Analogously, S5 yields p5(x) and upon setting� = 5 implies P (s) = (3125=24)s4 exp(�5s), 
f. Eq. (36) in Ref. [26℄.2.2. Gaussian regimeBoth in the quantum 
haos and random-matrix theory 
ontexts, theregime of n� 1 is of utmost importan
e. Sin
e the primary random variableX has an exponential density with mean � = 1=� and varian
e �2 = 1=�2,we stay within the 
onditions of the 
entral limit theorem [21℄. First of allwe know that for every " > 0:P "�����Snn � ������ > "# �! 0 (5)when n!1. Hen
e (1=n)Sn ! � with probability 1.Furthermore, we have:P �a < Sn � n��pn < b� �! 1�p2� bZa exp��(x� �)22�2 � dx : (6)To give a pedestrian intuition about the above formal observations, letus ask for a probability that there holds�����Snn � ������ < a �pn (7)
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tra 1009for any a > 0. In the regime of large n, an integral1p2� aZ�a exp(�y2) dygives a reliable answer. The same integral determines the probability thatjSn � n�j < a�pn, hen
e tells us how Sn �u
tuates about n� (andSn=n about �) with the growth of n.2.3. When
e Poisson pro
ess on the energy axis?The probability density of the random variable Sn allows us to evaluatea probability that the n-th level energy value En is a
tually lo
ated in aninterval [E;E + �E℄ about a �xed nonnegative number E. It is easilyobtained by rede�ning the previous pn(x), 
f. Eq. (2)P [E � Sn � E +�E℄ = �nEn�1(n� 1)! exp(��E)�E= Sn�1(n� 1)! exp(�S)�S= Pn(S)�S ; (8)where x = E, S = (E=hEi) and 1=� = hEi is the mean adja
ent level spa
-ing. The probability density Pn(S), in Ref. [5℄ is interpreted as �probabilitydensity for �nding the n-th neighbor of a level in the distan
e in
rement[S; S + dS℄, for a stationary Poisson pro
ess�, while in Ref. [16℄, while de-noted E(k; L) ! E(n � 1; S) where L is repla
ed by our S, stands for the�probability that inside an interval of length S we �nd exa
tly n� 1 levels�.Sin
e E(k; L) has the form of a standard Poisson probability law with mean-value and varian
e L, one may also follow [16℄ to tell that �if they are on theaverage L events, then the probability to a
tually observe k events is givenby EPoisson(k; L) = (Lk=k!) exp(�L)�.Indeed, if E > 0 is a �xed energy value and we ask for a probability thatthere are exa
tly n energy levels below E, then probability distributionsfor Sn and Sn+1 
ombine together to yield the Poisson distribution withmean �E:P [Sn � E < Sn+1℄ = P [N(E) = n℄ = (�E)nn! exp(��E) : (9)
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zewskiIn this 
onne
tion, let us re
all that a random variable N taking dis-
rete integer values 0; 1; 2; ::: is said to have Poisson distribution with themean (and varian
e) � if the probability of N = k reads P [N = k℄= �k=k! exp(��). Clearly, 1Pk=0P [N=k℄=1 and E[N ℄ = 1P0 kP [N=k℄=�.Let us, however, stress that no expli
it Poisson pro
ess was involvedanywhere in the above, sin
e its pre
ise mathemati
al de�nition [21,37℄ refersto a 
ounting pro
ess with a one parameter family of random variables [Nt =N(t) = n℄ = [Sn � t < Sn+1℄ obeying the Poisson probability law for allt 2 R+: P [Sn � t < Sn+1℄ = P [Nt = n℄ = (�t)nn! exp(��t) : (10)The Poisson pro
ess has stationary independent in
rements: Nt1 ; Nt2�Nt1 ; :::for 0 < t1 < t2 < ::: with the Poisson probability distribution for ea
hin
rement P [Nt �Ns = n℄ = [�(t� s)℄nn! exp [��(t� s)℄ ; (11)where N0 =0 with probability 1. Here, by denoting Pn(t) =P [Nt =n℄ andPn(t�s) = P [Nt�Ns = n℄ we easily 
he
k that tR0 Pn(t�s)Pm(s)(�ds) =Pn+m(t) :The related intensity (parameter, mean) of the Poisson �pro
ess� equalsE[Nt℄ = �t and displays the linear growth when t in
reases. Noti
e alsothat Nt=t! � with probability 1 as t!1.(The Poisson pro
ess is a parti
ular example of a Markovian pro
ess in law[33℄. We deal here with a temporally homogeneous pro
ess Nt; t > 0 asso
i-ated with an in�nitely divisible probability distribution �(k) = 
kk! exp(�
),The pro
ess in law is here re
overed by simply setting �t(k) = (
t)kk! exp(�
t)where �1(k) = �(k).)The Poisson pro
ess involves time dependent probabilities: P0(t) =exp(��t), P1(t) = �t exp(��t), ... , whi
h should be 
ompared with previ-ous out
omes for the exponential random variable. By re
alling Eq. (2) weimmediately arrive at a formal identi�
ation of probability distributions:pk+1(t) = �Pk(t) : (12)In the above, the exponential probability density is labeled by time t. Letus stress that pk+1(t)�t stands for a probability that the random variableSk+1 takes its value in the interval [t; t + �t℄, while Pk(t) is a probabilitythat Nt = n.
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tra 1011Notwithstanding, Eq. (9) is formally identi
al with Eq. (10) and, there-fore, we 
an in prin
iple vary the parameter E, so setting (9) in a dire
tequivalen
e with a parametri
 (evolving in �
titious time) Poisson pro
ess.This formal equivalen
e underlies a Poisson pro
ess lore of the quantum
haos literature.Instead of paying attention to the exponential probability rule whi
h isresponsible for the randomness of the 
olle
tion of �time� instants on R+;one is tempted to tell that it is the Poisson pro
ess whi
h di
tates thoserules of the game. The standard way of thinking refers to the observationof the number of signals re
orded up to an instant t (a
tually, number ofjumps of Nt or the number of levels that are below E) [21℄.2.4. Ergodi
itySample paths of the Poisson pro
ess Nt are nonde
reasing fun
tions oft with integer values. If we attempt to draw a sample path, we begin fromthe value Nt = 0 whi
h is maintained up to the time instant S1 = t1 whenthe jump o

urs to Nt = 1. This value stays 
onstant up to the timeS2 = x1 + x2. Then, a new jump to Nt = 3 o

urs, and that value survivesuntil S3 = x1 + x2 + x3 is sampled. The sample path 
onstru
tion forthe Poisson pro
ess stri
tly parallels a time series 
onstru
tion in terms ofpoints on R+ at whi
h jumps of Nt o

ur. Intervals between 
onse
utivetime instant form the sequen
e (x1; x2; x3:::) of adja
ent level spa
ings.On the other hand, it is Eq. (1) whi
h provides us with a 
on
rete sam-ple sequen
e of levels (E1; E2; :::), drawn in a

ordan
e with the exponentialprobability law for adja
ent level spa
ings xi; i � 1. Thus, the set of allrealizations of the random variable E = (S1; S2; :::) 
omprises a statisti-
al ensemble of sample sequen
es ! : E(!) = (E1; E2; :::). In fa
t, thosesequen
es exemplify the Poissonian ensemble of spe
tra.(If we set � = 1, then a 
onne
tion with the standard Poissonian rea-soning in the random-matrix approa
h to quantum 
haos is immediate.A 
ataloge of various statisti
al measures for the Poissonian spe
tra 
anbe found in [19℄.)If we would 
onstru
t a histogram of adja
ent level spa
ings for a singlesequen
e (E1; E2; ; ; ) whi
h was 
ompiled in a

ordan
e with the exponentialdistribution, the familiar Poissonian shape would be revealed.As well, the very same pi
ture would emerge if we would randomly 
olle
tand make a statisti
al analysis of various �nite strings of neighboring energylevels, like in 
ase of the so 
alled nu
lear data ensemble 
omposition (theree.g. one makes a 
ompilation of 1407 data points from 30 sequen
es of levelsexperimentally found for 27 di�erent nu
lei) [17, 19℄.
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zewskiAll that is 
onne
ted with a primitive at this stage notion of ergodi
ityof the exponential pro
ess .Namely, let us 
onsider a one-parameter family (Xn; n = 1; 2; :::) of expo-nential random variables as a sto
hasti
 pro
ess with �dis
rete time�. Sin
eXn are independent random variables with the same for all n probabilitydistribution, then for any real fun
tion (f : x 2 R+ ! f(x) 2 R) su
h thathfi = E[f(X1)℄ exists, we havelimn!1 1n nXk=1 f(Xk) = hfi = ZR+ f(x)�(dx) (13)for all sample sequen
es X(!) = (x1; x2; :::). In that 
ase the random se-quen
e Xn; n � 1 is known to be ergodi
 with respe
t to f . That is a standardlink between the �time average� and �ensemble average�, whi
h is here a
-
omplished by means of the exponential probability measure �. Indeed, asoften happens in the 
ontext of stationary sto
hasti
 pro
esses, ergodi
ityproperty allows us to repla
e an average over the set of all realizations ofthe pro
ess at a 
hosen time instant, by the time average evaluated alongone sample traje
tory.If we 
onsider f(Xn) = Xn for all n � 1, then the ergodi
ity notionrefers to limiting properties of Sn=n. A

ordingly, in view of the law of largenumbers Eq. (5) and (13) hold true.Presently, there is no wonder in the fa
t that single eigenvalue series of asuitable integrable quantum system (like e.g. the re
tangle billiard of Refs.[9, 16, 27, 36℄) may be utilized to generate a statisti
al information in (ap-proximate [20℄) a�nity with the ensemble statisti
s. Numeri
al resear
h in-volving e.g. about 106�1019 levels for the eigenvalue series Em;n=m2+
n2,
 = �=3, 
f. [16℄, allows to generate various statisti
al data. The nearestneighbor spa
ing histograms show a very 
lose resemblan
e to the exponen-tial distribution 
urve, in agreement with the 
onje
ture of Ref. [9℄. E�e
-tively, the eigenvalue sequen
e of the re
tangle billiard 
an be interpreted as(in fa
t mimi
s) a sample path E(!) = (E1; E2; :::) with adja
ent spa
ingsxi distributed a

ording to the exponential law.A standard (Poissonian) way of thinking in this 
ontext, refers to an�observation of the number of signals re
orded up to an instant t� (a
tually,jumps of Nt or number of levels that are below E) [21℄. However, the samplepath E(!) en
odes also a 
omplete information about a sample path of theinvolved exponential pro
ess X = (X1;X2; :::).Our ergodi
 argument is valid with respe
t to any 
hosen sample pathX(!) = (X1(!) = x1; X2(!) = x2; :::) of X. An ensemble average isprovided by RR+ x�(dx) = 1=� and that value is to 
oin
ide with
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tra 1013limn!1 1n nXk=1 xnirrespe
tive of the parti
ular 
hoi
e of a sample path ! of the exponentialpro
ess Xn; n � 1.Ergodi
ity property normally embodies the weakest form of 
ompli
a-tions present in the evolution of physi
al systems, in
luding those modeledby sto
hasti
 pro
esses. There is a well established 
atalog of irregular be-haviors that the dynami
s of any type may exhibit and there are strongertypes of irregularity than those 
onne
ted with ergodi
ity. A 
orrespond-ing hierar
hy of irregularities refers to the properties of mixing and exa
t-ness [34, 35℄ whi
h will be exploited in below.3. Gaussian universality 
lasses: generalitiesIn the random matrix approa
h we have a priori involved random-lookingsequen
es of energy levels [38℄, whi
h well agrees with the phenomenologyof nu
lei where inadequa
ies of fundamental theoreti
al models are 
ompen-sated by resorting to statisti
al matrix ensembles with appropriate symme-tries. The roots of randomness presumably 
an be attributed to randomdeformations of the �shape of the nu
lei� (bag) in the independent-parti
lemodel of nu
lear dynami
s, [39℄. An analog of this reasoning 
an be foundin a re
ent analysis [40℄ of a 
haoti
 system in a 
avity (billiard) with a para-metri
 
ontrol of shape deformations. Then a quantum parti
le is 
on�nedwithin a 
ontinuously deformed boundary, whose parametri
 dynami
s 
anbe as well represented by a sto
hasti
 pro
ess of any kind.A 
on
rete quantum system (like e.g. a spe
tral problem for 
on
retelyshaped billiard) usually indu
es its own unique spe
trum and there is noneed, nor room for any statisti
al ensemble of systems unless we shall in-deed 
onsider a family of quantum systems with a suitable sele
tion of ran-dom potentials. We must thus 
ope with obvious dis
repan
ies underlyingotherwise attra
tive a�nities (e.g. the universality 
lasses idea for spe
tralstatisti
s). Useful a�nities appear to mask quite deep di�eren
es betweenthe underlying physi
al me
hanisms.It is the level repulsion whi
h is routinely interpreted as a quantum man-ifestation of 
lassi
al non integrability and ultimately also of 
haos, 
f. [10℄.Normally that is quanti�ed by means of polynomial modi�
ations of theGaussian probability law (in asso
iation with the Wigner�Dyson statisti
sof adja
ent level spa
ings for e.g. unitary, orthogonal and symple
ti
 ran-dom matrix ensembles). For 
ompleteness of the argument, let us list thestandard formulas:
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zewskiP1(s) = s�2 exp��s2�4 � ; P2(s) = s2 32�2 exp��s2�4 �and P4(s) = s4 21836�3 exp��s2649� � ;
orresponding, respe
tively, to the GOE, GUE and GSE random-matrixtheory predi
tions.Let us point out [5℄ that for the most pra
ti
al 
ases the Wigner distri-butions (albeit exa
t in the 2 � 2 random-matrix 
ase only) are adequate.Typi
al spa
ing histograms drawn from experimental or numeri
ally gener-ated (quasi)energy spe
tra are too rugged to allow subtle distin
tions againstthe n!1 random-matrix size related predi
tions.We shall 
onsider mostly the Wigner-type 
ases, even though neither ofthose probability laws deserves the status of being an exa
t representation ofthe real state of a�airs. Remember that also in the 
ontext of random ma-trix theories the Wigner spa
ing formulas are approximations whi
h usuallyimprove in the large matrix size regime.The nearest neighbor spa
ing distributions, in the random-matrix ap-proa
h are the se
ondary notions and 
an be derived from an expli
it formulafor the joint probability density to �nd the (dimensionless) energy eigenval-ues in respe
tive in�nitesimal intervals [xi; xi +�xi℄ with i = 1; 2; ::: ; NP (x1; x2; ::: ; xN ) = CN� 24 NYi>j=1 ���xi � xj���� exp �12 NXi=1 x2i!35 ; (14)where � = 1; 2; 4 and CN� is a normalization 
onstant [5, 17℄. The levelrepulsion has been built into the framework from the very beginning andappropriate level spa
ing distributions (in
luding the adja
ent level 
ase)
an be dire
tly evaluated on that basis [17, 41, 42℄.There were many attempts to provide 
onvin
ing (and independent fromthe de�nite symmetry and Gaussian randomness inputs, proper to random-matrix theory) arguments that would generate level repulsion through wellde�ned dynami
al me
hanisms (like e.g. the parametri
 level dynami
s) andwould lead to statisti
al predi
tions as well. A suitable level dynami
s s
e-nario may as well give rise to the so-
alled intermediate statisti
s and pos-sibly a 
ontinuous (parametri
) interpolation among them.In the random matrix theory 
ontext a radi
al probabilisti
 attempt dueto Dyson expli
itly involves the (parametri
) Brownian motion assumptionfor ea
h energy level separately [17, 42, 43℄.
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tra 1015More satisfa
tory results were obtained by resorting to a �
titious gas ofintera
ting parti
le representatives of individual energy levels. A 
orrespond-ing many-parti
le system is then investigated at suitable �thermal equilib-rium� 
onditions. Then, without introdu
ing a priori statisti
al ensemblesof random matri
es, level distribution fun
tions are derived by means of or-dinary statisti
al me
hani
s methods. That approa
h expli
itly involves themany-body Hamiltonian (Calogero model)H = � nXi=1 �2�xi2 + �(� � 2)4 Xi<j 1(xi � xj)2 + nXi=1 x2i ; (15)whose squared ground state fun
tion (equilibrium measure density) has theform (14) [30, 41, 42℄.Apart from that, expli
it quantum me
hani
al investigations for billiard-type systems provide hints about the potential importan
e of interpolationstudies, espe
ially sin
e various intermediate types of statisti
s were reportedto o

ur, see e.g. [1, 40, 50℄.There are two basi
 approa
hes to an interpolation issue. One refers ex-pli
itly to random matrix theories and their �a�nity� with quantum 
haoti
systems [41, 44, 45℄. Another refers to the �
titious gas, intera
ting many-body analogy, [5, 10, 46�49℄. Re
ently, a related short-range plasma modelwas proposed to analyze an emergen
e of the �pseudo-Poisson statisti
s� [26℄.4. Parametri
 dynami
s of adja
ent level spa
ings4.1. Markov pro
esses de�ned through their steady state measuresOn
e we have en
ountered probability densities on the positive half-linein R1, it is rather natural to investigate a general issue of parametri
 sto
has-ti
 pro
esses whi
h would provide a dynami
al model of level repulsion in anirregular quantum system and generate at the same time spa
ing densitiesas those of asymptoti
 invariant (equilibrium) probability measures. Su
hrandom pro
esses 
learly must run with respe
t to the previously mentioned��
titious� time-parameter and take values in the set of all level spa
ingswhi
h are appropriate for a 
omplex quantum system or the 
orrespondingrandom-matrix ensemble.E�e
tively, we wish to introdu
e a Markovian di�usion-type pro
esswhi
h might stand for a reliable approximation of a random walk over levelspa
ing sizes.For future referen
e let us mention that in the regime of equilibrium(when a stationary measure appears in the large �time� asymptoti
), a sam-ple path of su
h random walk would take the form of an ordered sequen
eof spa
ings whi
h are sampled (drawn) a

ording to the pres
ribed invariant



1016 P. Garba
zewskiprobability distribution. That is pre
isely one expli
it example of the lad-der of energy levels, understood as a random sample drawn from a suitableensemble.An analysis of statisti
al features of this spe
tral sequen
e involves an er-godi
ity notion to stay in 
onformity with the ensemble evaluation of variousaverages (
arried out with respe
t to the invariant density), [32, 51℄.We shall 
onsider the previously listed GOE, GUE and GSE probabilitydensities on R+ (up to suitable res
alings!) as, distorted in view of the spa
-ing size normalization, asymptoti
 invariant densities of 
ertain parametri
Markovian sto
hasti
 pro
esses whose uniqueness status 
an be unambigu-ously settled.Let as begin from the observation that probability densities on R+, ofthe 
hara
teristi
 form f(x) � x exp(�x2=4), g(x) � x2 exp(�x2=2) andh(x) � (x4=4) exp(�x2) appear notoriously in various quantum me
hani
al
ontexts (harmoni
 os
illator or 
entrifugal-harmoni
 eigenvalue problems),
f. [52, 54�57℄. Notwithstanding, as notoriously they 
an be identi�ed in
onne
tion with spe
ial 
lasses of stationary Markovian di�usion pro
esseson R+ [58℄.Anti
ipating further dis
ussion, let us 
onsider a Fokker�Plan
k equationon the positive half-line in the form:�t� = 12���r �� �2x � x� �� ; (16)whi
h may be set in 
orresponden
e with the sto
hasti
 di�erential equationdXt=(�=(2Xt)�Xt)dt+dWt formally valid for a random variable Xt withvalues 
ontained in (0;1). Here ��0 andWt represents the Wiener pro
ess.A

ordingly, if �0(x) with x 2 R+ is regarded as the density of distribu-tion of X0 then for ea
h t > 0 the fun
tion �(x; t), solving Eq. (16), is thedensity of Xt. In view of a singularity of the forward drift at the origin, werefrain from looking for strong solutions of the above sto
hasti
 di�erentialequation and 
on�ne attention to weak solutions only and the asso
iatedtra
table paraboli
 problem (16) with suitable boundary data, 
f. [58℄.In all those 
ases a me
hanism of repulsion is modeled by the 1=x termin the forward drift expression. The 
ompensating harmoni
 attra
tionwhi
h is modeled by the �x term, saturates the long distan
e e�e
ts ofrepulsion-indu
ed s
attering and ultimately yields asymptoti
 steady (sta-tionary) probability densities.To interpret a density �(x) as an asymptoti
 steady state (stationary,invariant) density of a well de�ned Markovian di�usion pro
ess we shallutilize the rudiments of the so-
alled S
hrödinger boundary and sto
hasti
interpolation problem, [52,55,59℄, see also [53℄ when spe
ialized to invariantmeasures.
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tra 1017Let us noti
e that both in 
ase of the standard Ornstein�Uhlenbe
k pro-
ess and its Bessel (radial) variant, we have emphasized the role of a sto
has-ti
 pro
ess with an asymptoti
 invariant density. To dedu
e su
h pro
esses,in prin
iple we 
an start from an invariant density and address an easierissue of the asso
iated measure preserving sto
hasti
 dynami
s. Next we
an 
onsider whether the obtained pro
ess would drive a given initial den-sity towards a pres
ribed invariant measure (in that 
ase we 
an tell aboutan asymptoti
 state of equilibrium to whi
h the pro
ess relaxes). That fea-ture involves the notion of exa
tness of the related sto
hasti
 pro
ess, whosestraightforward 
onsequen
es are the properties of mixing and ergodi
ity ofthe 
orresponding random dynami
s [32℄.There is a general formula [52, 53, 59℄ relating the forward drift of thesought for stationary pro
ess with an expli
it fun
tional form of an invariantprobability density. We 
on�ne our attention to Markov di�usion pro
esseswith a 
onstant di�usion 
oe�
ient, denoted D > 0. Then, the pertinentformula reads: b(x) = 2Dr�1=2�1=2 : (17)In parti
ular, for the familiar Ornstein�Uhlenbe
k pro
ess we have�1=2(x) = (1=�)1=4 exp (�x2=2) and D = 1=2, so we 
learly arrive atb(x) = �x as should be. Quite analogously, in 
ase of the GUE-type spa
-ing density, we have D = 1=2 and �1=2(x) = 2=(�1=4)x exp (�x2=2). Thus,a

ordingly b(x) = (1=x� x).The very same strategy allows us to identify a forward drift of the Marko-vian di�usion pro
ess supported by the GOE-type spa
ing density. By em-ploying �1=2(x) = p2x exp��x22 �and setting D = 1=2 we arrive at the formula: b(x; t) = (1=(2x) � x).We immediately identify the above forward drifts with the ones appro-priate for the time homogeneous radial Ornstein�Uhlenbe
k pro
esses, witha 
orresponding family of (N > 1 and otherwise arbitrary integer) transitionprobability densities, [58℄:pt(y; x) = p(y; 0; x; t)= 2xN�1 exp ��x2� 11� exp(�2t) exp ��x2 + y2� exp(�2t)1� exp(�2t) !� [xy exp(�t)℄��I�� 2xy exp(�t)1� exp(�2t)� ; (18)
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zewskiwhere � = (N � 2)=2 and I�(z) is a modi�ed Bessel fun
tion of order �I�(z) = 1Xk=0 (z=2)2k+�(k!)� ; (k + �+ 1) ; (19)while the Euler gamma fun
tion has a standard form� (x) = 1Z0 exp(�t)tx�1dt :We remember that � (n+ 1) = n! and � (1=2) = p�.The resultant forward drift has the general formb(x) = N � 12x � x ; (20)and 
orresponds to � = N � 1.By setting N = 2, and then employing the series representation of I0(z),we easily re
over the asymptoti
 invariant density for the pro
ess:limt!1 p(y; 0; x; t) = 2x exp(�x2) :We 
an also analyze the large time asymptoti
 of p(y; 0; x; t), in 
ase ofN=3 whi
h gives rise to an invariant density in the form 4=(p�)x2 exp(�x2).That obviously 
orresponds to the GUE-type 
ase with b(x) = (1=x� x).When passing to the GSE 
ase, we are interested in the Markovian dif-fusion pro
ess whi
h is supported by an invariant probability density�(x) = 2� (3=2)x4 exp(�x2) :Let us evaluate the forward drift of the sought for pro
ess (we set D=1=2):b(x; t) = 2=x � x. Clearly, we deal here with a radial Ornstein�Uhlenbe
kpro
ess 
orresponding to N = 5. The transition probability density of thepro
ess displays an expe
ted asymptoti
:limt!1 p(y; 0; x; t) = 4p� x4 exp(�x2) :Here we have exploited � (1=2) = p� to evaluate � (3=2) = 12p�.
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tra 1019The above formulas allow us to formulate a hypothesis that further non-generi
 repulsion laws may be appropriate for quantifying quantum 
haos.Straightforwardly, one 
an verify that our transition probability densitiesrefer to asymptoti
 invariant densities of the form:�(x) = 2� (N=2)xN�1 exp(�x2) : (21)In parti
ular we get a dire
t eviden
e in favor of N = 4, i.e. b(x) =(3=(2x) � x), universality 
lass whi
h in fa
t 
orresponds to the Ginibreensemble of non-Hermitian random matri
es [5℄, where a 
ubi
 level repul-sion appears: �(x) = 2x3 exp(�x2) (this formula is exa
t for 2 � 2 randommatri
es).In prin
iple, pro
esses 
orresponding to any N > 5 may be realizable aswell, and thus the related higher-power level repulsion might have relevan
ein the realm of quantum 
haos.In all 
onsidered 
ases, an asymptoti
 invarian
e of probability measures(densities) is su�
ient to yield ergodi
 behavior. For ea
h value of N > 1we deal with an independent repulsion me
hanism, albeit all of them belongto the radial Ornstein�Uhlenbe
k family.We have thus identi�ed a universal sto
hasti
 law (in fa
t, a family of thelike) behind the fun
tional form of basi
, Wigner surmise inspired, spa
ingprobability densities appropriate for quantum 
haos.Let us emphasize at this point that one should keep in mind a numberof possible reservations 
oming from the fa
t that neither of �universal� or�generi
� laws 
an be regarded as a faithful representation of a real state ofa�airs. Usually exa
t laws are derived for two by two (hen
e of the smallsize!) random matri
es, and are known to reappear again (at least in thegeneri
 
ases) as approximate spa
ing formulas in the large random-matrixsize regime. That in turn allows to a
hieve a 
orresponden
e with semi
las-si
al quantum spe
tra of 
omplex systems.There is no obvious explanation of a physi
al meaning of the integerparameter N in the radial sto
hasti
 pro
ess s
enario. One hypothesis 
omesfrom the random-matrix theory, where � = N�1 = 1; 2, 4 would 
orrespondto a number of independent 
omponents of a typi
al matrix entry whi
h isde
ided by the underlying symmetry of the problem (GOE, GUE, GSE).That 
an be presumably be extended to the 
ase of N = 4.4.2. Link with Calogero HamiltonianPreviously we have indi
ated that a 
ommon mathemati
al basis for var-ious level repulsion me
hanisms appropriate to quantum 
haos is set by theCalogero�Moser Hamiltonian. At the �rst glan
e, our sto
hasti
 arguments
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zewskimay leave an impression that something 
ompletely divor
ed from that set-ting has been obtained in the present paper. However, things look otherwiseand our theoreti
al framework proves to be 
ompatible with standard te
h-niques for spe
tral analysis of 
omplex quantum systems.It is pe
uliar to the general arguments of Refs. [52, 59℄ that invariantprobability densities give rise to measure preserving sto
hasti
 pro
esses ina fully 
ontrolled way. One of basi
 ingredients of the formalism is a proper
hoi
e of Feynman�Ka
 kernel fun
tions, whi
h are the building blo
k forthe 
onstru
tion of transition probability densities of the pertinent Markovpro
esses. Feynman�Ka
 semigroup operators (and their kernels) expli
itlyinvolve one parti
le Hamiltonian operators as generators (in less te
hni
alterms one may think at this point about rather standard transformationfrom the Fokker�Plan
k operator to the asso
iated self-adjoint one [60℄).For stationary pro
esses, a general formula relating forward drifts b(x)of the sto
hasti
 pro
ess with potentials of the 
onservative Hamiltoniansystem reads (we 
hoose a di�usion 
oe�
ient to be equal 1=2) [55, 59℄:V (x) = 12 �b2 +r b� : (22)Upon substituting the general expression for b(x) we arrive at:V (x) = 12 ��(� � 2)4x2 � (� + 1) + x2� ; (23)where � = N � 1. This potential fun
tion enters a standard de�nition ofthe one parti
le Hamiltonian operator (physi
al parameters have been s
aledaway): H = �12�+ V (x) ; (24)where � = d2=dx2. The operator (24) with V (x) de�ned by (23) is anequivalent form of a two-parti
le (a
tually two-level) version of the Calogero�Moser Hamiltonian, 
f. [54℄.Indeed, the 
lassi
 Calogero-type problem is de�ned byH = �12 d2dx2 + 12x2 + �(� � 2)8x2 (25)with the well known spe
tral solution. The eigenvalues read En(�) = 2n+1 + 1=2[1 + �(� � 2)℄1=2, where n � 0 and � > �1.By inspe
tion we 
an 
he
k that all previously 
onsidered N = 2; 3; 4; 5radial pro
esses 
orrespond to the Calogero operator of the form H � E0where E0 is the ground state (n = 0) eigenvalue. Its expli
it form relies on
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tra 1021the 
hoi
e of � and by substituting � = 1; 2; 3; 4 we easily 
he
k that anamusing identity generally holds true for natural numbers �E0(�) = 1 + 12h1 + �(� � 2)i1=2 = 12(� + 1) : (26)A

ordingly, all 
onsidered radial pro
esses arise as the so-
alled groundstate pro
esses asso
iated with the Calogero Hamiltonians (squared modu-lus of the ground state wave fun
tion stands for the pertinent probabilitydensity). Let us re
all that the 
lassi
 Ornstein�Uhlenbe
k pro
ess 
an beregarded as the ground state pro
ess of the harmoni
 os
illator Hamiltonianoperator. That by the way 
orresponds to 
hoosing N = 1 i.e. � = 0 in theabove, plus allowing the whole of R1 to the pro
ess, instead of R+ only. Likein the standard OU pro
ess 
ase, radial OU pro
esses share the property ofexa
tness (while driving any initial density towards suitable equilibrium)and hen
e ergodi
ity. 5. Dis
ussionOur motivations were essentially probabilisti
 and spe
tral series withspa
ing densities governed by Wigner-type laws have emerged in the 
ourseof a parametri
 sto
hasti
 pro
ess that relaxes towards equilibrium (invariantmeasure). Su
h series have thus a de�nite random origin. It is 
lear that anapproximate value of Wigner densities indi
ates nonrandom input in realisti
(random-matrix related) 
ases.Let us point out that in the standard matrix-theory framework Dyson's�threefold way� is based on the demonstration that on general (invarian
eunder symmetry) grounds only three basi
 ensembles (orthogonal, unitaryand symple
ti
) matter. Hen
e, the non-generi
 repulsion behavior we havedis
ussed before, goes beyond the standard framework (under assumptions ofthe Dyson theorem the non-generi
 laws are not admissible). Many di�erentensembles have been used in the literature, but their properties were morespe
i�
 (less general) than the standard GOE, GUE and GSE 
ases show up.The spa
ing distributions we have addressed (Wigner surmise), fail tobe 
orre
t in general. The true random-matrix universal distributions di�erfrom them, albeit the dis
repan
y is known to be small when matrix size isgoing to in�nity [5℄.In the dis
ussed parametri
 relaxation pro
ess s
enario, one may easilyimplement a transition of any initial density towards a 
on
rete asymptoti
stationary (steady state) one with the wealth of intermediate examples (e.g.from Poisson to GOE interpolation). In that 
ase, both the initial and ter-minal distributions refer to random sequen
es of numbers (possible energy
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zewskieigenvalues). Ergodi
ity of the ultimate stationary pro
ess implies that itssample paths arise as random sequen
es drawn from the Wigner-type distri-bution. Clearly, we 
annot expe
t that su
h purely random sample sequen
eswould reveal long range 
orrelations typi
al of random-matrix models.I would like to thank Karol �y
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