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SIGNATURES OF RANDOMNESSIN QUANTUM SPECTRA�Piotr GarbazewskiInstitute of Physis, University of Zielona Górapl. Sªowia«ski 6, 65-069 Zielona Góra, Poland(Reeived Otober 8, 2001)We investigate toy dynamial models of energy-level repulsion in quan-tum (quasi) energy eigenvalue sequenes. We fous on parametri (withrespet to a running oupling or �omplexity� parameter) stohasti pro-esses that are apable of relaxing towards a stationary regime (e.g. equilib-rium, steady state asymptoti measure). In view of ergodi property, thatmakes them appropriate for the study of short-range �utuations in anydisordered, randomly-looking spetral sequene (as exempli�ed e.g. by em-pirial nearest-neighbor spaings histograms of various quantum systems).The pertinent Markov di�usion-type proesses (with values in the spae ofspaings) share a general form of forward drifts b(x) = (N � 1)=2x � x,where x > 0 stands for the spaing value. Here N = 2; 3, 5 orrespond tothe familiar (generi) random-matrix theory inspired ases, based on theexploitation of the Wigner surmise (usually regarded as an approximateformula). N = 4 orresponds to the (non-generi) non-Hermitian Ginibreensemble. The result appears to be exat in the ontext of 2 � 2 randommatries and indiates a potential validity of other non-generi N > 5 levelrepulsion laws.PACS numbers: 03.65.Ge, 02.50.Ga, 05.45.Mt1. Regular versus irregular in quantum theoryThe vague notion of so-alled quantum haos, normally arising in on-juntion with semilassial quantum mehanis of haoti dynamial sys-tems [1℄, urrently stands for a key-word apturing ontinued e�orts to givea proper aount to what extent quantization destroys, preserves, or qual-itatively reprodues major features of lassial haos. There is no generalagreement about what atually is to be interpreted as �quantum haos� or� Presented at the XIV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 9�14, 2001.(1001)



1002 P. Garbazewskiits de�nite manifestations. That, in part, derives from an inherent ambigu-ity of quantization shemes for nonlinear, possibly nononservative, drivenand damped lassial problems, and is intrinsially entangled with a deli-ate reverse problem of a reliable semilassial limit proedure for one givenquantum system. Other origins of this elusiveness seem to be rooted in thediversity of meanings attributed in the literature to the onepts of regularand/or irregular behavior of a physial system, irrespetive of whether it islassial or quantum.Mathematial de�nitions of lassial haos emphasize an apparent ap-pearane of randomness in deterministi situations [2, 3℄. That involvesa deep question of when spei� features of a physial system appear tobe (or an be interpreted as) random. Quite typially, while dealing withan irregular behavior, we need to quantify an interplay between hane andorder in terms of suitable measures of randomness (if random, then �howmuh?�) [4, 6, 7℄.Disorder, irregularity and randomness are asually pereived as syn-onyms and are interpreted to stay at variane with notions of order andregularity. Albeit order and randomness may as well oexist as �two faesof the same mysterious oin� [4℄.One of basi problems in the quantum haos theory is to establish whetherthe lassial order�disorder interplay indues any unambiguous imprints(�signatures of haos� [5℄) in quantum systems. In this ontext, familiaronepts of regular and irregular spetra [8�10℄ were oined to haraterizedistintive di�erenes between semilassial distributions of energy eigenval-ues for generi quantum systems. The term �generi� basially means �moreor less typial�, sine one exludes from onsiderations all systems whihdo not behave properly, although there are many of them. (More stringentde�nition invokes suitable symmetry properties of the quantum system.)Nowadays it is lear that an irregularity alone of any partiular spetralseries (possibly interpreted in terms of an irregular sequene of onseutiveenergy or quasi-energy levels) is not an adequate riterion for quantum man-ifestations of haos. In fat, semilassial spetra orresponding to many [9℄lassial systems, be them integrable or haoti, have an irregular appear-ane. That was the motivation for attempts to lassify suh spetra in termsof the �degree of randomness of the sequene of eigenvalues� [11℄, f. also [6℄and [7℄ for related argumentation.Let us, however, stress that a primordial question of whether a givenenergy level sequene an at all be regarded as random has been left un-touhed. Seldom one may have at disposal a omplete analyti informationabout quantum spetra. Usually some experimentation is needed to extratthe data and most of available spetral information relevant for quantum



Signatures of Randomness in Quantum Spetra 1003haos studies, omes either from a genuine experiments (mirowave analogsof quantum billiards, realisti nulear data) or omputer simulations, alwayswith a de�nite beginning and an end. In eah ase that produes a �nitestring of data and it is known that no �nite sequene an be interpretedas truly random. Fortunately, if a data sequene generated by a stohastiproess of any origin (deterministi algorithms inluded) is su�iently long,then it will always satisfy a test for randomness with �ne-tuned on�denelevel, f. [6, 12, 13℄.We emphasize an issue of randomness, beause various probability laws(and densities of invariant, steady state measures) are omnipresent in thequantum haos researh. In view of that, a stohasti modeling will be ourmajor tool in below.A rih lass of lassially integrable (hene regarded as regular) systemsdisplays random-looking, loally unorrelated sequenes of energy eigenval-ues [9,14,15℄. However, there are well known lassially haoti (hene regar-ded as irregular) systems whose quantum spetral statistis appears to bearno distintive imprints of lassial haos and look appropriate for the om-pletely integrable ase, [14℄. Therefore, a supplementary rule is neessaryto typify various lasses of spetral irregularities and of the involved typesof randomness being random, but possibly �random otherwise�), if those areto be interpreted as onsequenes of irregular harateristis of the relatedlassial system.A possible hint might have originated from disriminating between thespatial regularity and irregularity of the orresponding quantum eigenfun-tions. It is the spatial pattern of wave funtions that appears to have a de-isive e�et on the spetral pattern of eigenvalues [10,15℄. However, a minorobstale still persists: not all lassially ergodi systems (irregular ase ofRef. [8℄) would semi-lassially yield irregular eigenfuntions [10℄. Conse-quently, one usually tries to narrow the lass of quantum system that aresuspeted to show un-doubtful �signatures of haos� to those whih haveirregular eigenfuntions, with no spei� referene to their lassial (haotior non-haoti) behavior. In this lass one ultimately attempts to speifythose systems whih remain in a onsistent semilassial relationship withtheir haoti lassial partners. Those systems quite justi�ably would de-serve to be named generi and would more or less naturally fall into variousspetral universality lasses, in aordane with the random-matrix lassi�-ation sheme [17�19℄.Under rather plausible assumptions [10℄, quantum systems with spa-tially irregular wave funtions were found to exhibit level repulsion, heneto �avoid� degeneraies whih is basially an indiation of non-integrability,hene not neessarily that of any links with haos.



1004 P. GarbazewskiWe reall that an opposite spetral e�et of level lustering, ombinedwith the onjetured absene of orrelations between levels, is harateristifor a large lass (�almost all� aording to [15,16℄, see, however, [20℄) of las-sially integrable systems. Typially they display so-alled Poisson statistis(stritly speaking, there is an exponential law of probability involved [21℄) ofadjaent level spaings: small spaings are predominant and there is enoughroom for multiply degenerate levels. One says then [22℄ that energy levelsour in a ompletely random way via a Poisson proess on the energy axis.Therefore, level repulsion, when regarded as an emergent spetral symp-tom of level orrelations (usually interpreted as a ertain departure frompurely random behavior), may be viewed as a neessary ondition to dealeither with quantum imprints of lassial haos or, in the least, with a las-sially non integrable phase-spae irregularity.Interestingly enough, this viewpoint �nds some support in the disoveryof pseudo integrable systems (variously shaped billiards, sometimes with sin-gular sattering obstales) whih appear to be neither integrable nor haoti,but give rise to various forms of �wave haos� while quantized [23, 24℄. Theorresponding distribution of adjaent level spaings is named semi-Poissonand ombines various forms (inluding frational powers) of level repulsionwith Poisson (exponential) statistis, hene purely random behavior in thespetral series. The repulsion phenomenon is here a manifestation of thetopologially ompliated phase spae (an invariant manifold is not topo-logially equivalent to a torus but to a higher genus manifold), whih wasonjetured to prelude integrability and thus the standard torus (EBK)semilassial quantization, see e.g. [23�26℄.In view of the wide usage of suh terms like �universality� in the quantumhaos literature, one should always keep in mind that harmoni osillatorsdisplay level repulsion [9℄, although they seem to be exemplary ases of las-sial and quantum regularity at their extreme. Another spetaular exep-tion is the hydrogen atom spetrum. Like all higher dimensional harmoniosillators, or a square billiard [16, 27℄, the Coulomb spetrum belongs toa distintive group of �pathologially non-generi� spetral problems [5℄.Nonetheless, we shall on�ne our attention to the suggestive, randommatrix theory universality lassi�ation that is onsidered to be faithfulfor loal �utuations in quantum spetra of (generi) systems that displayglobal haos in their lassial phase spaes. Our hunh is to mimi (orrather extrat) those features of the level-spaing lassi�ation whih maybear imprints of pure randomness or in reverse � depart from randomness.Studying lassial manifestations of haos in terms of probability mea-sures (inluding their densities or distributions and their dynamis) is a re-spetable strategy [32℄. In quantum theory, in view of Born's statistialinterpretation postulate alone, probability measures are ubiquitous. On theother hand, various probability laws and distributions naturally pervade the



Signatures of Randomness in Quantum Spetra 1005familiar random-matrix theory [17, 18℄. This statistial theory of spetra,models a symmetry-limited spetral disorder in terms of statistial ensemblesof omplex quantum systems (e.g. heavy nulei). Apart from an ensembleinput, random-matrix theory forms a onvenient vehile to interpret spe-trosopi properties of a onrete (single!) quantized version of a omplexlassial model. (The lassial omplexity notion refers e.g. to the phase-spae organization spei� to a system and various ompliation degrees ofits dynamis related to ergodiity, mixing and exatness.)However, one should keep in mind that the universality hypothesis in theontext of quantum haos proper, derives from exploiting a spetral a�nityof an ensemble of large (with size ultimately growing to in�nity) random ma-tries, with a one given individual quantum system (take into onsiderationthe Sinai billiard or periodially kiked pendulum/rotator). Therefore, wemay justi�ably ask how an individual (Hamiltonian or Floquet-type) quan-tum eigenvalue problem may apture all oneivable statistial propertiesof suitable random-matrix ensemble spetra? Told otherwise, how may wejustify a omparison of a statistial ensemble of disordered spetral serieswith one only spei� energy (or quasi-energy) level sequene of an a priorihosen quantum system?To our knowledge this oneptual obstale, exept for preliminary inves-tigations of Ref. [28℄, has not reeived muh attention in the quantum haosliterature. A partial answer to that question [5℄, points towards ertain er-godiity properties appropriate for models of the parametri level dynamis(Coulomb gas, plasma or else, evolving in ��titious time�), that providea reinterpretation of random-matrix theory in terms of an equilibrium sta-tistial mehanis for a �titious N -partile system (with N allowed to growinde�nitely), f. also [29, 30℄.In the framework of random-matrix theory, an ergodi problem for Gaus-sian ensembles was analyzed long ago in Ref. [31℄, with a fous on the er-godi behavior for the eigenvalue density and k-point orrelation funtionsof individual random matries and their statistial ensembles. That involvesa loal version of the ergodi theorem, where e.g. the spetral averagingover a �nite energy span of the level density is ompared with the matrixensemble mean of the level density. That suggests analogies with disorderedmany-body quantum systems where ensemble averaging is a standard ana-lyti tool, while for an individual system, only an energy averaging shouldbe employed [30℄.We know that the distribution of spaings of highly exited quantumsystems may involve de�nite laws like e.g. the exponential or Wigner-typedistributions. Suh laws may be related to de�nite stohasti proesses asinvariant (steady state) measures, in partiular as asymptoti measures towhih the proess does relax.



1006 P. GarbazewskiWe shall fous upon the parametri dynamis (parametri interpolation)senario for the nearest-neighbor spaing distributions of irregular quantumsystems where asymptoti invariant (with respet to the parametri proess)probability measures are ultimately involved. Let us mention that a oneptof parametri dynamis involves the possibly troublesome ��titious time�parameter. Its possible interpretation is that of a running oupling onstantmeasuring the strength of the haotizing perturbation, or more generallythat of a �omplexity parameter� whose growth to in�nity gives aount ofthe omplexity inrease in the spetral properties of a quantum system.Disregarding the origins of randomness in diverse settings, we shall takethe view that stohasti proesses are mathematially appropriate modelswhen the time evolution (parametri �dynamis� being inluded) of randomphenomena is involved. Whenever probability laws are in use, random phe-nomena and stohasti proesses are always at hand [32, 33℄.The major di�erene of our strategy, if ompared to other approahes,amounts to onsidering exlusively the parametri evolution (relaxation) to-wards equilibria of nearest neighbor spaing distributions as the major soureof probabilisti information. We arrive here at prototype invariant (equilib-rium) measures and stationary (steady state) probability densities of limit-ing stationary stohasti proesses. We do not invoke any expliit eigenvalue(e.g. a solution of the spetral problem for the quantum system or the relatedrandom-matrix model) nor level dynamis input, sine those data prove tobe irrelevant for the primary ergodi behavior that is displayed by the adja-ent spaing probability densities. At least in the onsidered approximationregime, where probability densities surmised by Wigner are assumed to beadequate (in reality, they have the status of reliable approximate formulas).An exploitation of ergodiity (in fat strong mixing and/or exatness[32, 34, 35℄) of ertain (parametrially evolving) Markovian stohasti pro-esses is here found to provide a supplementary (probabilisti) harateriza-tion of quantum signatures of haos.2. Poissonian level sequenes2.1. Exponential random variable and semi-Poisson laws�Poissonian� matrix ensembles with independent random diagonal ele-ments are often used to model spetral properties of integrable Hamiltoniansystems (we disregard an issue of various, even quite remarkable, deviationsfrom an exat Poisson-type statistis [16,20,36℄). Indeed, many regular (in-tegrable) systems, semi lassially exhibit spaings between adjaent energylevels whih are distributed aording to the exponential probability densityp(s) = exp(�s) on R+, where we taitly assume a normalization of the �rst



Signatures of Randomness in Quantum Spetra 1007moment (mean spaing) of the probability measure (hene the unfolding ofthe energy spetrum [5, 16℄).A anonial statement in this respet [9℄, onveys a message that �forgeneri regular systems� p(s) is �harateristi of a Poisson proess with lev-els distributed at random� and �the levels are not orrelated�. (A disussionof serious violations of the Berry�Tabor onjeture an be found in Ref. [20℄.)Sine the regular spetrum is perfetly deterministi and for eah setof quantum numbers the orresponding energy level is obtained from anexpliit formula (via Einstein�Brillouin�Keller semilassial argument, ordiretly by solving the spetral problem for e.g. retangular billiard) it isfar from obvious that levels may ome as a realization of a random variable.Even though probability distributions are thought to arise in near lassialquantum systems, when the number of levels in any range of energy is verylarge (and inde�nitely inreases when the lassial limit is approahed).Following Refs. [16, 19℄, let us onsider a sequene of numbers (we keepan expliit energy notation, although an unfolded sequene is resaled to benon-dimensional): Ei+1 = Ei + xi = E0 + iXj=1 xj ; (1)where E0 = 0 and xj with j = 1; 2; ::: are outomes of independent trials ofthe exponentially distributed random variable X taking values in R+.The resulting sequene (E1; E2; :::) of nonnegative numbers is a partiu-lar model realization (sample) for what is ommonly named a Poisson spe-trum. Here, randomly sampled (independent, in aordane with the ex-ponential distribution) inrements xi = Ei+1 � Ei play the role of adjaentlevel spaings. Let us emphasize that the Poissonian random-matrix ensem-ble would omprise all possible sequenes of the above form, eah obtainedas a result of independent sampling proedures.At this point let us turn to an expliit probabilisti lore (f. [21, 33℄)whose absene is painfully onspiuous in major quantum haos publiations.Let X1;X2; ::: be independent random variables with ommon for allexponential probability law �(x) = � exp(��x), � > 0 with mean 1=� andvariane 1=�2.Furthermore let us denote Sn = X1 +X2 + ::: +Xn, n = 1; 2; ::: . Thenthe random variable Sn has a probability density:pn(x) = �n xn�1(n� 1)! exp(��x) ; (2)oming from an (n� 1)-fold onvolution of exponential probability densities



1008 P. Garbazewskion R+. The law (2) is in�nitely divisible [21, 33℄:pn+m(x) = (pn � pm)(x) = xZ0 pn(x� y)pm(y)dy ; (3)where p1(x) = �(x) and n;m = 1; 2; ::: .In partiular, note that Xi+Xj for any i; j;2 N has a probability densityp2(x) = �2 x exp(��x) : (4)whih upon setting � = 2 and x = s stands for an example of a semi-Poisson law P (s) = 4s exp(�2s) [5,26℄, whih has been identi�ed to governthe adjaent level statistis for a sublass of pseudo integrable systems.It is also obvious that other (plasma-model related [26℄) semi-Poissonlaws ome diretly from distributions appropriate for Sn. For example, S3has a density p3(x) whih upon substituting � = 3 and x = s gives rise toP (s) = (27=2)s2 exp(�3s). Analogously, S5 yields p5(x) and upon setting� = 5 implies P (s) = (3125=24)s4 exp(�5s), f. Eq. (36) in Ref. [26℄.2.2. Gaussian regimeBoth in the quantum haos and random-matrix theory ontexts, theregime of n� 1 is of utmost importane. Sine the primary random variableX has an exponential density with mean � = 1=� and variane �2 = 1=�2,we stay within the onditions of the entral limit theorem [21℄. First of allwe know that for every " > 0:P "�����Snn � ������ > "# �! 0 (5)when n!1. Hene (1=n)Sn ! � with probability 1.Furthermore, we have:P �a < Sn � n��pn < b� �! 1�p2� bZa exp��(x� �)22�2 � dx : (6)To give a pedestrian intuition about the above formal observations, letus ask for a probability that there holds�����Snn � ������ < a �pn (7)



Signatures of Randomness in Quantum Spetra 1009for any a > 0. In the regime of large n, an integral1p2� aZ�a exp(�y2) dygives a reliable answer. The same integral determines the probability thatjSn � n�j < a�pn, hene tells us how Sn �utuates about n� (andSn=n about �) with the growth of n.2.3. Whene Poisson proess on the energy axis?The probability density of the random variable Sn allows us to evaluatea probability that the n-th level energy value En is atually loated in aninterval [E;E + �E℄ about a �xed nonnegative number E. It is easilyobtained by rede�ning the previous pn(x), f. Eq. (2)P [E � Sn � E +�E℄ = �nEn�1(n� 1)! exp(��E)�E= Sn�1(n� 1)! exp(�S)�S= Pn(S)�S ; (8)where x = E, S = (E=hEi) and 1=� = hEi is the mean adjaent level spa-ing. The probability density Pn(S), in Ref. [5℄ is interpreted as �probabilitydensity for �nding the n-th neighbor of a level in the distane inrement[S; S + dS℄, for a stationary Poisson proess�, while in Ref. [16℄, while de-noted E(k; L) ! E(n � 1; S) where L is replaed by our S, stands for the�probability that inside an interval of length S we �nd exatly n� 1 levels�.Sine E(k; L) has the form of a standard Poisson probability law with mean-value and variane L, one may also follow [16℄ to tell that �if they are on theaverage L events, then the probability to atually observe k events is givenby EPoisson(k; L) = (Lk=k!) exp(�L)�.Indeed, if E > 0 is a �xed energy value and we ask for a probability thatthere are exatly n energy levels below E, then probability distributionsfor Sn and Sn+1 ombine together to yield the Poisson distribution withmean �E:P [Sn � E < Sn+1℄ = P [N(E) = n℄ = (�E)nn! exp(��E) : (9)



1010 P. GarbazewskiIn this onnetion, let us reall that a random variable N taking dis-rete integer values 0; 1; 2; ::: is said to have Poisson distribution with themean (and variane) � if the probability of N = k reads P [N = k℄= �k=k! exp(��). Clearly, 1Pk=0P [N=k℄=1 and E[N ℄ = 1P0 kP [N=k℄=�.Let us, however, stress that no expliit Poisson proess was involvedanywhere in the above, sine its preise mathematial de�nition [21,37℄ refersto a ounting proess with a one parameter family of random variables [Nt =N(t) = n℄ = [Sn � t < Sn+1℄ obeying the Poisson probability law for allt 2 R+: P [Sn � t < Sn+1℄ = P [Nt = n℄ = (�t)nn! exp(��t) : (10)The Poisson proess has stationary independent inrements: Nt1 ; Nt2�Nt1 ; :::for 0 < t1 < t2 < ::: with the Poisson probability distribution for eahinrement P [Nt �Ns = n℄ = [�(t� s)℄nn! exp [��(t� s)℄ ; (11)where N0 =0 with probability 1. Here, by denoting Pn(t) =P [Nt =n℄ andPn(t�s) = P [Nt�Ns = n℄ we easily hek that tR0 Pn(t�s)Pm(s)(�ds) =Pn+m(t) :The related intensity (parameter, mean) of the Poisson �proess� equalsE[Nt℄ = �t and displays the linear growth when t inreases. Notie alsothat Nt=t! � with probability 1 as t!1.(The Poisson proess is a partiular example of a Markovian proess in law[33℄. We deal here with a temporally homogeneous proess Nt; t > 0 assoi-ated with an in�nitely divisible probability distribution �(k) = kk! exp(�),The proess in law is here reovered by simply setting �t(k) = (t)kk! exp(�t)where �1(k) = �(k).)The Poisson proess involves time dependent probabilities: P0(t) =exp(��t), P1(t) = �t exp(��t), ... , whih should be ompared with previ-ous outomes for the exponential random variable. By realling Eq. (2) weimmediately arrive at a formal identi�ation of probability distributions:pk+1(t) = �Pk(t) : (12)In the above, the exponential probability density is labeled by time t. Letus stress that pk+1(t)�t stands for a probability that the random variableSk+1 takes its value in the interval [t; t + �t℄, while Pk(t) is a probabilitythat Nt = n.



Signatures of Randomness in Quantum Spetra 1011Notwithstanding, Eq. (9) is formally idential with Eq. (10) and, there-fore, we an in priniple vary the parameter E, so setting (9) in a diretequivalene with a parametri (evolving in �titious time) Poisson proess.This formal equivalene underlies a Poisson proess lore of the quantumhaos literature.Instead of paying attention to the exponential probability rule whih isresponsible for the randomness of the olletion of �time� instants on R+;one is tempted to tell that it is the Poisson proess whih ditates thoserules of the game. The standard way of thinking refers to the observationof the number of signals reorded up to an instant t (atually, number ofjumps of Nt or the number of levels that are below E) [21℄.2.4. ErgodiitySample paths of the Poisson proess Nt are nondereasing funtions oft with integer values. If we attempt to draw a sample path, we begin fromthe value Nt = 0 whih is maintained up to the time instant S1 = t1 whenthe jump ours to Nt = 1. This value stays onstant up to the timeS2 = x1 + x2. Then, a new jump to Nt = 3 ours, and that value survivesuntil S3 = x1 + x2 + x3 is sampled. The sample path onstrution forthe Poisson proess stritly parallels a time series onstrution in terms ofpoints on R+ at whih jumps of Nt our. Intervals between onseutivetime instant form the sequene (x1; x2; x3:::) of adjaent level spaings.On the other hand, it is Eq. (1) whih provides us with a onrete sam-ple sequene of levels (E1; E2; :::), drawn in aordane with the exponentialprobability law for adjaent level spaings xi; i � 1. Thus, the set of allrealizations of the random variable E = (S1; S2; :::) omprises a statisti-al ensemble of sample sequenes ! : E(!) = (E1; E2; :::). In fat, thosesequenes exemplify the Poissonian ensemble of spetra.(If we set � = 1, then a onnetion with the standard Poissonian rea-soning in the random-matrix approah to quantum haos is immediate.A ataloge of various statistial measures for the Poissonian spetra anbe found in [19℄.)If we would onstrut a histogram of adjaent level spaings for a singlesequene (E1; E2; ; ; ) whih was ompiled in aordane with the exponentialdistribution, the familiar Poissonian shape would be revealed.As well, the very same piture would emerge if we would randomly olletand make a statistial analysis of various �nite strings of neighboring energylevels, like in ase of the so alled nulear data ensemble omposition (theree.g. one makes a ompilation of 1407 data points from 30 sequenes of levelsexperimentally found for 27 di�erent nulei) [17, 19℄.



1012 P. GarbazewskiAll that is onneted with a primitive at this stage notion of ergodiityof the exponential proess .Namely, let us onsider a one-parameter family (Xn; n = 1; 2; :::) of expo-nential random variables as a stohasti proess with �disrete time�. SineXn are independent random variables with the same for all n probabilitydistribution, then for any real funtion (f : x 2 R+ ! f(x) 2 R) suh thathfi = E[f(X1)℄ exists, we havelimn!1 1n nXk=1 f(Xk) = hfi = ZR+ f(x)�(dx) (13)for all sample sequenes X(!) = (x1; x2; :::). In that ase the random se-quene Xn; n � 1 is known to be ergodi with respet to f . That is a standardlink between the �time average� and �ensemble average�, whih is here a-omplished by means of the exponential probability measure �. Indeed, asoften happens in the ontext of stationary stohasti proesses, ergodiityproperty allows us to replae an average over the set of all realizations ofthe proess at a hosen time instant, by the time average evaluated alongone sample trajetory.If we onsider f(Xn) = Xn for all n � 1, then the ergodiity notionrefers to limiting properties of Sn=n. Aordingly, in view of the law of largenumbers Eq. (5) and (13) hold true.Presently, there is no wonder in the fat that single eigenvalue series of asuitable integrable quantum system (like e.g. the retangle billiard of Refs.[9, 16, 27, 36℄) may be utilized to generate a statistial information in (ap-proximate [20℄) a�nity with the ensemble statistis. Numerial researh in-volving e.g. about 106�1019 levels for the eigenvalue series Em;n=m2+n2, = �=3, f. [16℄, allows to generate various statistial data. The nearestneighbor spaing histograms show a very lose resemblane to the exponen-tial distribution urve, in agreement with the onjeture of Ref. [9℄. E�e-tively, the eigenvalue sequene of the retangle billiard an be interpreted as(in fat mimis) a sample path E(!) = (E1; E2; :::) with adjaent spaingsxi distributed aording to the exponential law.A standard (Poissonian) way of thinking in this ontext, refers to an�observation of the number of signals reorded up to an instant t� (atually,jumps of Nt or number of levels that are below E) [21℄. However, the samplepath E(!) enodes also a omplete information about a sample path of theinvolved exponential proess X = (X1;X2; :::).Our ergodi argument is valid with respet to any hosen sample pathX(!) = (X1(!) = x1; X2(!) = x2; :::) of X. An ensemble average isprovided by RR+ x�(dx) = 1=� and that value is to oinide with



Signatures of Randomness in Quantum Spetra 1013limn!1 1n nXk=1 xnirrespetive of the partiular hoie of a sample path ! of the exponentialproess Xn; n � 1.Ergodiity property normally embodies the weakest form of omplia-tions present in the evolution of physial systems, inluding those modeledby stohasti proesses. There is a well established atalog of irregular be-haviors that the dynamis of any type may exhibit and there are strongertypes of irregularity than those onneted with ergodiity. A orrespond-ing hierarhy of irregularities refers to the properties of mixing and exat-ness [34, 35℄ whih will be exploited in below.3. Gaussian universality lasses: generalitiesIn the random matrix approah we have a priori involved random-lookingsequenes of energy levels [38℄, whih well agrees with the phenomenologyof nulei where inadequaies of fundamental theoretial models are ompen-sated by resorting to statistial matrix ensembles with appropriate symme-tries. The roots of randomness presumably an be attributed to randomdeformations of the �shape of the nulei� (bag) in the independent-partilemodel of nulear dynamis, [39℄. An analog of this reasoning an be foundin a reent analysis [40℄ of a haoti system in a avity (billiard) with a para-metri ontrol of shape deformations. Then a quantum partile is on�nedwithin a ontinuously deformed boundary, whose parametri dynamis anbe as well represented by a stohasti proess of any kind.A onrete quantum system (like e.g. a spetral problem for onretelyshaped billiard) usually indues its own unique spetrum and there is noneed, nor room for any statistial ensemble of systems unless we shall in-deed onsider a family of quantum systems with a suitable seletion of ran-dom potentials. We must thus ope with obvious disrepanies underlyingotherwise attrative a�nities (e.g. the universality lasses idea for spetralstatistis). Useful a�nities appear to mask quite deep di�erenes betweenthe underlying physial mehanisms.It is the level repulsion whih is routinely interpreted as a quantum man-ifestation of lassial non integrability and ultimately also of haos, f. [10℄.Normally that is quanti�ed by means of polynomial modi�ations of theGaussian probability law (in assoiation with the Wigner�Dyson statistisof adjaent level spaings for e.g. unitary, orthogonal and sympleti ran-dom matrix ensembles). For ompleteness of the argument, let us list thestandard formulas:



1014 P. GarbazewskiP1(s) = s�2 exp��s2�4 � ; P2(s) = s2 32�2 exp��s2�4 �and P4(s) = s4 21836�3 exp��s2649� � ;orresponding, respetively, to the GOE, GUE and GSE random-matrixtheory preditions.Let us point out [5℄ that for the most pratial ases the Wigner distri-butions (albeit exat in the 2 � 2 random-matrix ase only) are adequate.Typial spaing histograms drawn from experimental or numerially gener-ated (quasi)energy spetra are too rugged to allow subtle distintions againstthe n!1 random-matrix size related preditions.We shall onsider mostly the Wigner-type ases, even though neither ofthose probability laws deserves the status of being an exat representation ofthe real state of a�airs. Remember that also in the ontext of random ma-trix theories the Wigner spaing formulas are approximations whih usuallyimprove in the large matrix size regime.The nearest neighbor spaing distributions, in the random-matrix ap-proah are the seondary notions and an be derived from an expliit formulafor the joint probability density to �nd the (dimensionless) energy eigenval-ues in respetive in�nitesimal intervals [xi; xi +�xi℄ with i = 1; 2; ::: ; NP (x1; x2; ::: ; xN ) = CN� 24 NYi>j=1 ���xi � xj���� exp �12 NXi=1 x2i!35 ; (14)where � = 1; 2; 4 and CN� is a normalization onstant [5, 17℄. The levelrepulsion has been built into the framework from the very beginning andappropriate level spaing distributions (inluding the adjaent level ase)an be diretly evaluated on that basis [17, 41, 42℄.There were many attempts to provide onvining (and independent fromthe de�nite symmetry and Gaussian randomness inputs, proper to random-matrix theory) arguments that would generate level repulsion through wellde�ned dynamial mehanisms (like e.g. the parametri level dynamis) andwould lead to statistial preditions as well. A suitable level dynamis se-nario may as well give rise to the so-alled intermediate statistis and pos-sibly a ontinuous (parametri) interpolation among them.In the random matrix theory ontext a radial probabilisti attempt dueto Dyson expliitly involves the (parametri) Brownian motion assumptionfor eah energy level separately [17, 42, 43℄.



Signatures of Randomness in Quantum Spetra 1015More satisfatory results were obtained by resorting to a �titious gas ofinterating partile representatives of individual energy levels. A orrespond-ing many-partile system is then investigated at suitable �thermal equilib-rium� onditions. Then, without introduing a priori statistial ensemblesof random matries, level distribution funtions are derived by means of or-dinary statistial mehanis methods. That approah expliitly involves themany-body Hamiltonian (Calogero model)H = � nXi=1 �2�xi2 + �(� � 2)4 Xi<j 1(xi � xj)2 + nXi=1 x2i ; (15)whose squared ground state funtion (equilibrium measure density) has theform (14) [30, 41, 42℄.Apart from that, expliit quantum mehanial investigations for billiard-type systems provide hints about the potential importane of interpolationstudies, espeially sine various intermediate types of statistis were reportedto our, see e.g. [1, 40, 50℄.There are two basi approahes to an interpolation issue. One refers ex-pliitly to random matrix theories and their �a�nity� with quantum haotisystems [41, 44, 45℄. Another refers to the �titious gas, interating many-body analogy, [5, 10, 46�49℄. Reently, a related short-range plasma modelwas proposed to analyze an emergene of the �pseudo-Poisson statistis� [26℄.4. Parametri dynamis of adjaent level spaings4.1. Markov proesses de�ned through their steady state measuresOne we have enountered probability densities on the positive half-linein R1, it is rather natural to investigate a general issue of parametri stohas-ti proesses whih would provide a dynamial model of level repulsion in anirregular quantum system and generate at the same time spaing densitiesas those of asymptoti invariant (equilibrium) probability measures. Suhrandom proesses learly must run with respet to the previously mentioned��titious� time-parameter and take values in the set of all level spaingswhih are appropriate for a omplex quantum system or the orrespondingrandom-matrix ensemble.E�etively, we wish to introdue a Markovian di�usion-type proesswhih might stand for a reliable approximation of a random walk over levelspaing sizes.For future referene let us mention that in the regime of equilibrium(when a stationary measure appears in the large �time� asymptoti), a sam-ple path of suh random walk would take the form of an ordered sequeneof spaings whih are sampled (drawn) aording to the presribed invariant



1016 P. Garbazewskiprobability distribution. That is preisely one expliit example of the lad-der of energy levels, understood as a random sample drawn from a suitableensemble.An analysis of statistial features of this spetral sequene involves an er-godiity notion to stay in onformity with the ensemble evaluation of variousaverages (arried out with respet to the invariant density), [32, 51℄.We shall onsider the previously listed GOE, GUE and GSE probabilitydensities on R+ (up to suitable resalings!) as, distorted in view of the spa-ing size normalization, asymptoti invariant densities of ertain parametriMarkovian stohasti proesses whose uniqueness status an be unambigu-ously settled.Let as begin from the observation that probability densities on R+, ofthe harateristi form f(x) � x exp(�x2=4), g(x) � x2 exp(�x2=2) andh(x) � (x4=4) exp(�x2) appear notoriously in various quantum mehanialontexts (harmoni osillator or entrifugal-harmoni eigenvalue problems),f. [52, 54�57℄. Notwithstanding, as notoriously they an be identi�ed inonnetion with speial lasses of stationary Markovian di�usion proesseson R+ [58℄.Antiipating further disussion, let us onsider a Fokker�Plank equationon the positive half-line in the form:�t� = 12���r �� �2x � x� �� ; (16)whih may be set in orrespondene with the stohasti di�erential equationdXt=(�=(2Xt)�Xt)dt+dWt formally valid for a random variable Xt withvalues ontained in (0;1). Here ��0 andWt represents the Wiener proess.Aordingly, if �0(x) with x 2 R+ is regarded as the density of distribu-tion of X0 then for eah t > 0 the funtion �(x; t), solving Eq. (16), is thedensity of Xt. In view of a singularity of the forward drift at the origin, werefrain from looking for strong solutions of the above stohasti di�erentialequation and on�ne attention to weak solutions only and the assoiatedtratable paraboli problem (16) with suitable boundary data, f. [58℄.In all those ases a mehanism of repulsion is modeled by the 1=x termin the forward drift expression. The ompensating harmoni attrationwhih is modeled by the �x term, saturates the long distane e�ets ofrepulsion-indued sattering and ultimately yields asymptoti steady (sta-tionary) probability densities.To interpret a density �(x) as an asymptoti steady state (stationary,invariant) density of a well de�ned Markovian di�usion proess we shallutilize the rudiments of the so-alled Shrödinger boundary and stohastiinterpolation problem, [52,55,59℄, see also [53℄ when speialized to invariantmeasures.



Signatures of Randomness in Quantum Spetra 1017Let us notie that both in ase of the standard Ornstein�Uhlenbek pro-ess and its Bessel (radial) variant, we have emphasized the role of a stohas-ti proess with an asymptoti invariant density. To dedue suh proesses,in priniple we an start from an invariant density and address an easierissue of the assoiated measure preserving stohasti dynamis. Next wean onsider whether the obtained proess would drive a given initial den-sity towards a presribed invariant measure (in that ase we an tell aboutan asymptoti state of equilibrium to whih the proess relaxes). That fea-ture involves the notion of exatness of the related stohasti proess, whosestraightforward onsequenes are the properties of mixing and ergodiity ofthe orresponding random dynamis [32℄.There is a general formula [52, 53, 59℄ relating the forward drift of thesought for stationary proess with an expliit funtional form of an invariantprobability density. We on�ne our attention to Markov di�usion proesseswith a onstant di�usion oe�ient, denoted D > 0. Then, the pertinentformula reads: b(x) = 2Dr�1=2�1=2 : (17)In partiular, for the familiar Ornstein�Uhlenbek proess we have�1=2(x) = (1=�)1=4 exp (�x2=2) and D = 1=2, so we learly arrive atb(x) = �x as should be. Quite analogously, in ase of the GUE-type spa-ing density, we have D = 1=2 and �1=2(x) = 2=(�1=4)x exp (�x2=2). Thus,aordingly b(x) = (1=x� x).The very same strategy allows us to identify a forward drift of the Marko-vian di�usion proess supported by the GOE-type spaing density. By em-ploying �1=2(x) = p2x exp��x22 �and setting D = 1=2 we arrive at the formula: b(x; t) = (1=(2x) � x).We immediately identify the above forward drifts with the ones appro-priate for the time homogeneous radial Ornstein�Uhlenbek proesses, witha orresponding family of (N > 1 and otherwise arbitrary integer) transitionprobability densities, [58℄:pt(y; x) = p(y; 0; x; t)= 2xN�1 exp ��x2� 11� exp(�2t) exp ��x2 + y2� exp(�2t)1� exp(�2t) !� [xy exp(�t)℄��I�� 2xy exp(�t)1� exp(�2t)� ; (18)



1018 P. Garbazewskiwhere � = (N � 2)=2 and I�(z) is a modi�ed Bessel funtion of order �I�(z) = 1Xk=0 (z=2)2k+�(k!)� ; (k + �+ 1) ; (19)while the Euler gamma funtion has a standard form� (x) = 1Z0 exp(�t)tx�1dt :We remember that � (n+ 1) = n! and � (1=2) = p�.The resultant forward drift has the general formb(x) = N � 12x � x ; (20)and orresponds to � = N � 1.By setting N = 2, and then employing the series representation of I0(z),we easily reover the asymptoti invariant density for the proess:limt!1 p(y; 0; x; t) = 2x exp(�x2) :We an also analyze the large time asymptoti of p(y; 0; x; t), in ase ofN=3 whih gives rise to an invariant density in the form 4=(p�)x2 exp(�x2).That obviously orresponds to the GUE-type ase with b(x) = (1=x� x).When passing to the GSE ase, we are interested in the Markovian dif-fusion proess whih is supported by an invariant probability density�(x) = 2� (3=2)x4 exp(�x2) :Let us evaluate the forward drift of the sought for proess (we set D=1=2):b(x; t) = 2=x � x. Clearly, we deal here with a radial Ornstein�Uhlenbekproess orresponding to N = 5. The transition probability density of theproess displays an expeted asymptoti:limt!1 p(y; 0; x; t) = 4p� x4 exp(�x2) :Here we have exploited � (1=2) = p� to evaluate � (3=2) = 12p�.



Signatures of Randomness in Quantum Spetra 1019The above formulas allow us to formulate a hypothesis that further non-generi repulsion laws may be appropriate for quantifying quantum haos.Straightforwardly, one an verify that our transition probability densitiesrefer to asymptoti invariant densities of the form:�(x) = 2� (N=2)xN�1 exp(�x2) : (21)In partiular we get a diret evidene in favor of N = 4, i.e. b(x) =(3=(2x) � x), universality lass whih in fat orresponds to the Ginibreensemble of non-Hermitian random matries [5℄, where a ubi level repul-sion appears: �(x) = 2x3 exp(�x2) (this formula is exat for 2 � 2 randommatries).In priniple, proesses orresponding to any N > 5 may be realizable aswell, and thus the related higher-power level repulsion might have relevanein the realm of quantum haos.In all onsidered ases, an asymptoti invariane of probability measures(densities) is su�ient to yield ergodi behavior. For eah value of N > 1we deal with an independent repulsion mehanism, albeit all of them belongto the radial Ornstein�Uhlenbek family.We have thus identi�ed a universal stohasti law (in fat, a family of thelike) behind the funtional form of basi, Wigner surmise inspired, spaingprobability densities appropriate for quantum haos.Let us emphasize at this point that one should keep in mind a numberof possible reservations oming from the fat that neither of �universal� or�generi� laws an be regarded as a faithful representation of a real state ofa�airs. Usually exat laws are derived for two by two (hene of the smallsize!) random matries, and are known to reappear again (at least in thegeneri ases) as approximate spaing formulas in the large random-matrixsize regime. That in turn allows to ahieve a orrespondene with semilas-sial quantum spetra of omplex systems.There is no obvious explanation of a physial meaning of the integerparameter N in the radial stohasti proess senario. One hypothesis omesfrom the random-matrix theory, where � = N�1 = 1; 2, 4 would orrespondto a number of independent omponents of a typial matrix entry whih isdeided by the underlying symmetry of the problem (GOE, GUE, GSE).That an be presumably be extended to the ase of N = 4.4.2. Link with Calogero HamiltonianPreviously we have indiated that a ommon mathematial basis for var-ious level repulsion mehanisms appropriate to quantum haos is set by theCalogero�Moser Hamiltonian. At the �rst glane, our stohasti arguments



1020 P. Garbazewskimay leave an impression that something ompletely divored from that set-ting has been obtained in the present paper. However, things look otherwiseand our theoretial framework proves to be ompatible with standard teh-niques for spetral analysis of omplex quantum systems.It is peuliar to the general arguments of Refs. [52, 59℄ that invariantprobability densities give rise to measure preserving stohasti proesses ina fully ontrolled way. One of basi ingredients of the formalism is a properhoie of Feynman�Ka kernel funtions, whih are the building blok forthe onstrution of transition probability densities of the pertinent Markovproesses. Feynman�Ka semigroup operators (and their kernels) expliitlyinvolve one partile Hamiltonian operators as generators (in less tehnialterms one may think at this point about rather standard transformationfrom the Fokker�Plank operator to the assoiated self-adjoint one [60℄).For stationary proesses, a general formula relating forward drifts b(x)of the stohasti proess with potentials of the onservative Hamiltoniansystem reads (we hoose a di�usion oe�ient to be equal 1=2) [55, 59℄:V (x) = 12 �b2 +r b� : (22)Upon substituting the general expression for b(x) we arrive at:V (x) = 12 ��(� � 2)4x2 � (� + 1) + x2� ; (23)where � = N � 1. This potential funtion enters a standard de�nition ofthe one partile Hamiltonian operator (physial parameters have been saledaway): H = �12�+ V (x) ; (24)where � = d2=dx2. The operator (24) with V (x) de�ned by (23) is anequivalent form of a two-partile (atually two-level) version of the Calogero�Moser Hamiltonian, f. [54℄.Indeed, the lassi Calogero-type problem is de�ned byH = �12 d2dx2 + 12x2 + �(� � 2)8x2 (25)with the well known spetral solution. The eigenvalues read En(�) = 2n+1 + 1=2[1 + �(� � 2)℄1=2, where n � 0 and � > �1.By inspetion we an hek that all previously onsidered N = 2; 3; 4; 5radial proesses orrespond to the Calogero operator of the form H � E0where E0 is the ground state (n = 0) eigenvalue. Its expliit form relies on



Signatures of Randomness in Quantum Spetra 1021the hoie of � and by substituting � = 1; 2; 3; 4 we easily hek that anamusing identity generally holds true for natural numbers �E0(�) = 1 + 12h1 + �(� � 2)i1=2 = 12(� + 1) : (26)Aordingly, all onsidered radial proesses arise as the so-alled groundstate proesses assoiated with the Calogero Hamiltonians (squared modu-lus of the ground state wave funtion stands for the pertinent probabilitydensity). Let us reall that the lassi Ornstein�Uhlenbek proess an beregarded as the ground state proess of the harmoni osillator Hamiltonianoperator. That by the way orresponds to hoosing N = 1 i.e. � = 0 in theabove, plus allowing the whole of R1 to the proess, instead of R+ only. Likein the standard OU proess ase, radial OU proesses share the property ofexatness (while driving any initial density towards suitable equilibrium)and hene ergodiity. 5. DisussionOur motivations were essentially probabilisti and spetral series withspaing densities governed by Wigner-type laws have emerged in the ourseof a parametri stohasti proess that relaxes towards equilibrium (invariantmeasure). Suh series have thus a de�nite random origin. It is lear that anapproximate value of Wigner densities indiates nonrandom input in realisti(random-matrix related) ases.Let us point out that in the standard matrix-theory framework Dyson's�threefold way� is based on the demonstration that on general (invarianeunder symmetry) grounds only three basi ensembles (orthogonal, unitaryand sympleti) matter. Hene, the non-generi repulsion behavior we havedisussed before, goes beyond the standard framework (under assumptions ofthe Dyson theorem the non-generi laws are not admissible). Many di�erentensembles have been used in the literature, but their properties were morespei� (less general) than the standard GOE, GUE and GSE ases show up.The spaing distributions we have addressed (Wigner surmise), fail tobe orret in general. The true random-matrix universal distributions di�erfrom them, albeit the disrepany is known to be small when matrix size isgoing to in�nity [5℄.In the disussed parametri relaxation proess senario, one may easilyimplement a transition of any initial density towards a onrete asymptotistationary (steady state) one with the wealth of intermediate examples (e.g.from Poisson to GOE interpolation). In that ase, both the initial and ter-minal distributions refer to random sequenes of numbers (possible energy
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