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GENERAL RELATION BETWEEN DRIFT VELOCITYAND DISPERSION OF A MOLECULAR MOTOR�Zbigniew KozaInstitute of Theoretial Physis, University of Wroªawpl. Maxa Borna 9, 50-204 Wroªaw, Polande-mail: zkoza�ift.uni.wro.pl(Reeived November 13, 2001)We model a proessive linear moleular motor as a partile di�using ina one-dimensional periodi lattie with arbitrary transition rates betweenits sites. We present a relatively simple proof of a theorem whih statesthat the ratio of the drift veloity V to the di�usion oe�ient D has theupper bound 2N=d, where N is the number of nodes in an elementary elland d denotes its length. This relation an be used to estimate the minimalvalue of internal states of the motor and the maximal value of the so alledEinstein fore, whih approximately equals the maximal fore exerted by amoleular motor.PACS numbers: 87.16.Nn. 05.10.Gg, 05.40.�a1. IntrodutionMoleular motors are enzymes mediating intraellular transport and el-lular motion in living ells. The most important examples are kinesins(responsible for transport of organelles), myosins (whih drive musle on-tration) and dyneins (involved in ellular loomotion) [1℄.Based on their funtion and struture, moleular motors an be dividedinto several families. Here we will fous on proessive linear motors. Amotor is linear if it moves along a omplementary protein �ber (other typesof motors inlude protein pumps, involved in transport aross membranes,and rotary motors). A motor is proessive if it an travel a long distanebefore it detahes from the �lament.� Presented at the XIV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 9�14, 2001.(1025)



1026 Z. KozaA typial example of a proessive linear motor is kinesin. It is a meha-noenzyme whih transdues the hemial energy of hydrolysis of ATP mole-ules into mehanial work, whih is then used to move vesiles and or-ganelles along mirotubules. Eah step is powered by hydrolysis of one ATPmoleule. The main theoretial hallenge is to explain how the hemial en-ergy of ATP is transformed into pratially unidiretional motion of proteinmotors.Theoretial modeling of the motion of motor proteins has been mainlybased on two approahes. The �rst one, alled a thermal rathet model,regards a motor protein as a Brownian partile di�using in several periodi,asymmetri potentials whih are alternatively swithed on and o� in stohas-ti time intervals [2℄. In the following we employ the seond approah, whihis based on an assumption that the motion of a motor an be modeled asa sequene of transitions between disrete mehano-hemial states of themotor, whih are represented as nodes of a linear lattie [3�5℄. A segmentof a mirotubule orresponds to an elementary ell of the lattie, and thenumber of sites in an elementary ell, N , is equal to the number of di�erentinternal states in a full mehano-hemial yle of a motor. For kinesin thelattie onstant d = 8 nm [1, 6, 7℄ and N � 4 [5℄.Any theoretial model must aount for experimental results. Here wewill be interested in an approah whih attempts to determine internal prop-erties of moleular motors based on the statistial analysis of their mo-tion as observed in experiments. The fundamental quantities employedin this method are the mean veloity V = hx(t)i =t and the dispersionD = h(x(t) � hx(t)i)2i=2t. Having determined these two parameters (inthe limit of large t), one an �nd the so alled randomness r de�ned simplyas [5, 8℄ r � 2D=V d : (1)This quantity an be used to estimate the number of internal states of amoleular motor. The idea is simple: if transitions onstitute a Poissonunidiretional proess with exatly the same transition rates k, then r =1=N [8℄. This idea was extended by Fisher and Kolomeisky [3, 5℄, whomade a onjeture that in a general ase of a linear hain with bidiretionalPoissonian transitions there is N � 1=r ; (2)whih enables one to determine the minimal number of internal states in afull mehano-hemial yle of a motor.Another important quantity whih an be diretly related to V and Dis the so alled Einstein fore FE � kBT VD ; (3)



General Relation Between Drift Veloity and Dispersion of . . . 1027where T is temperature and kB denotes the Boltzmann onstant. This quan-tity is a linear-response estimation of the fore exerted by a moleular mo-tor [3, 5℄. Conjeture (2) an be now written asFE � 2kBT Nd : (4)The maximal value of the Einstein fore is thus a simple funtion of threeparameters: temperature T , a step length d and the number N of di�erentinternal states of a motor.In a reent paper [9℄ we have given a rigorous proof of relation (2) forlinear hains with arbitrary Poisson transitions between nearest-neighborsites. However, that proof is rather lengthy and ompliated. Here wepresent a di�erent argument justifying (2) and (4). Not only is it muhsimpler, but it is also more general, as it an be used for systems withtransitions between arbitrary lattie sites (provided the lattie is periodi).The paper is organized as follows. In Setion 2 we present a mathematialde�nition of the model. Setion 3 ontains the proof of equation (2), andSetion 4 is devoted to the disussion of our results.2. ModelWe onsider a one-dimensional lattie with its sites loated at xn, n 2 Z.At time t = 0 we put a partile at site x0 = 0 and let it jump between thenearest-neighbor lattie sites. Transitions are assumed to represent a Poissonproess governed by the master equation�P (n; t)�t = k+n�1P (n� 1; t) + k�n+1P (n+ 1; t)� (k+n + k�n )P (n; t) ; (5)where P (n; t) denotes the probability of �nding the partile at site xn attime t and k�n � 0 are the (onstant in time) transition rates from a sitexn to xn�1. We assume that the system is periodi in spae with a periodN � 1 and a lattie onstant d > 0. We do not demand that the distanesbetween onseutive lattie sites, xn+1 � xn, should be all equal to eahother. Our goal is to prove (2) for any hoie of N , k+n and k�n .3. Proof of relation (2)Relation (2) is equivalent to D � V d2N : (6)We will prove this inequality by �xing the values of V , d and N and �ndingthe minimal value of D as a funtion of transition rates k�n ,



1028 Z. Kozan = 1; : : : ; N . Sine V=d and D=d2 depend only on transition rates k�n [10℄,the problem of proving (6) redues to the one of minimizing a rather om-pliated funtion of 2N nonnegative variables k�n .Probably the simplest proof of inequality (6) is based on a very generaland nontrivial property of di�usive lattie systems [10℄. Suppose we have adi�usion proess on a periodi lattie with Poissonian transitions betweenits sites and let kmn � 0 denote the transition rate from site n to m. Thereexists a time interval � suh kmn� � 1 for all n and m. We an thus de�neanother stohasti proess on this lattie, in whih transitions an our onlyat regular intervals � and are haraterized by probabilities kmn� (kmn� is theprobability of jumping from n to m). It has been rigorously shown [10℄ thatthe drift veloity V and dispersion D alulated in the original, ontinuous-time system are related to the drift veloity V D and dispersion DD of itsdisrete-time ounterpart through general formulaeV = V D; D = DD + �2V 2 : (7)The problem of �nding the ombination of transition rates k�n whih min-imize the value of dispersion D for some �xed values of V and d in theontinuous-time proess is therefore equivalent to the same problem posedfor the orresponding disrete-time system. However, the latter problemis muh simpler. By de�nition dispersion DD annot be negative. More-over, DD = 0 for two partiular hoies of transition probabilities k�n � :either when k�n � = 0 and k+n � = 1 or when k�n � = 1 and k+n � = 0. Inthese two ases the motion of a di�using partile is atually unidiretionaland deterministi � hene the value of dispersion DD = 0. Clearly, DDassumes the minimal possible value only in these two partiular �degener-ated� ases where the stohasti, bidiretional proess turns into a unidire-tional, deterministi one. Non-vanishing transition rates in the orrespond-ing ontinuous-time proess are equal 1=� , and in this ase V = d=N� andD = (d=N)2=2� = V d=2N [10℄. The minimal value of dispersion D is thusequal to V d=2N , whih ompletes the proof of (6).It is worth noting that not only have we just proved inequality (6), butwe also showed that V=D assumes its maximal value, 2N=d, if and only ifall transitions are unidiretional and of the same magnitude, i.e. when forany 1 � n;m � N there isk+n = k+m > 0; k�n = 0 or k�n = k�m > 0; k+n = 0 :It is also interesting to note that in our present approah we almost didnot employ the assumption that only transitions between nearest-neighborlattie sites are allowed. The same line of reasoning ould be applied formore general systems. The only di�erene would be that in a general ase



General Relation Between Drift Veloity and Dispersion of . . . 1029there would be several hoies of transition rates for whih the auxiliarydisrete-time proess is deterministi. Some of them ould be haraterizedby di�erent values of N and we would have to plug the smallest of them inEq. (6). However, in the ase of moleular motors suh ompliated modelsdo not seem to be appropriate, as we expet that their behavior is governedby the most probable reation path [1℄.4. ConlusionsWe have rigorously proved that in di�usive proesses on periodi lat-ties with Poissonian transitions between its nodes the value of di�usionoe�ient D is bounded from above by V d=2N , where V is the mean driftveloity, d is the length of the elementary ell, and N denotes the numberof sites in the elementary ells. The present approah is muh simpler thanour previous method employed in Ref. [9℄. It is also more general, as itan be applied to arbitrary lattie systems, while our previous approah wasappliable only to linear latties with transitions restrited to the nearest-neighbor sites.Our result has interesting appliations in the theory of moleular motors.First of all it implies that by measuring experimentally the randomnessr � 2D=V d one an determine the minimal number N of internal states of amotor in its full mehano-hemial yle. As a matter of fat, this approahwas already employed in Ref. [5℄, where it was found that for kinesin N � 4.Our result gives �rmer basis for this kind of argumentation.Our result implies also that the maximal value of the Einstein fore, FE,is 2kBTN=d, where T is the temperature and kB � the Boltzmann onstant.We showed that this maximal value is attained if and only if all transitionsare unidiretional and of the same magnitude.Although our approah is valid for any value of N and an arbitraryhoie of transition rates, in the ontext of moleular motors it still refers toa simpli�ed situation. First, we assumed that the motion of a motor proteinan be redued to di�usion of a Brownian partile on a linear hain of lattienodes, and other topologies deserve at least equal attention [2, 4, 11, 12℄.Seond, we assumed that transitions onstitute a Poisson proess. Althoughthis hypothesis is on�rmed by reent experiments on myosin [13℄, it is wellknown that transition rates with other probability density funtions maylead to ompletely di�erent upper bounds for dispersion D (and hene theupper bound for FE and the lower bound for r may also hange) [3�5℄.Nevertheless, the fore alulated using all these approximations (4:3 pN)agrees quite well with the experimental value of the stalling fore Fs forkinesin (di�erent experimental tehniques yielded Fs � 4�8 pN [1℄). Furtherwork is, of ourse, required to larify the relevane of the above-mentionedproblems.
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