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GENERAL RELATION BETWEEN DRIFT VELOCITYAND DISPERSION OF A MOLECULAR MOTOR�Zbigniew KozaInstitute of Theoreti
al Physi
s, University of Wro
ªawpl. Maxa Borna 9, 50-204 Wro
ªaw, Polande-mail: zkoza�ift.uni.wro
.pl(Re
eived November 13, 2001)We model a pro
essive linear mole
ular motor as a parti
le di�using ina one-dimensional periodi
 latti
e with arbitrary transition rates betweenits sites. We present a relatively simple proof of a theorem whi
h statesthat the ratio of the drift velo
ity V to the di�usion 
oe�
ient D has theupper bound 2N=d, where N is the number of nodes in an elementary 
elland d denotes its length. This relation 
an be used to estimate the minimalvalue of internal states of the motor and the maximal value of the so 
alledEinstein for
e, whi
h approximately equals the maximal for
e exerted by amole
ular motor.PACS numbers: 87.16.Nn. 05.10.Gg, 05.40.�a1. Introdu
tionMole
ular motors are enzymes mediating intra
ellular transport and 
el-lular motion in living 
ells. The most important examples are kinesins(responsible for transport of organelles), myosins (whi
h drive mus
le 
on-tra
tion) and dyneins (involved in 
ellular lo
omotion) [1℄.Based on their fun
tion and stru
ture, mole
ular motors 
an be dividedinto several families. Here we will fo
us on pro
essive linear motors. Amotor is linear if it moves along a 
omplementary protein �ber (other typesof motors in
lude protein pumps, involved in transport a
ross membranes,and rotary motors). A motor is pro
essive if it 
an travel a long distan
ebefore it deta
hes from the �lament.� Presented at the XIV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 9�14, 2001.(1025)



1026 Z. KozaA typi
al example of a pro
essive linear motor is kinesin. It is a me
ha-noenzyme whi
h transdu
es the 
hemi
al energy of hydrolysis of ATP mole-
ules into me
hani
al work, whi
h is then used to move vesi
les and or-ganelles along mi
rotubules. Ea
h step is powered by hydrolysis of one ATPmole
ule. The main theoreti
al 
hallenge is to explain how the 
hemi
al en-ergy of ATP is transformed into pra
ti
ally unidire
tional motion of proteinmotors.Theoreti
al modeling of the motion of motor proteins has been mainlybased on two approa
hes. The �rst one, 
alled a thermal rat
het model,regards a motor protein as a Brownian parti
le di�using in several periodi
,asymmetri
 potentials whi
h are alternatively swit
hed on and o� in sto
has-ti
 time intervals [2℄. In the following we employ the se
ond approa
h, whi
his based on an assumption that the motion of a motor 
an be modeled asa sequen
e of transitions between dis
rete me
hano-
hemi
al states of themotor, whi
h are represented as nodes of a linear latti
e [3�5℄. A segmentof a mi
rotubule 
orresponds to an elementary 
ell of the latti
e, and thenumber of sites in an elementary 
ell, N , is equal to the number of di�erentinternal states in a full me
hano-
hemi
al 
y
le of a motor. For kinesin thelatti
e 
onstant d = 8 nm [1, 6, 7℄ and N � 4 [5℄.Any theoreti
al model must a

ount for experimental results. Here wewill be interested in an approa
h whi
h attempts to determine internal prop-erties of mole
ular motors based on the statisti
al analysis of their mo-tion as observed in experiments. The fundamental quantities employedin this method are the mean velo
ity V = hx(t)i =t and the dispersionD = h(x(t) � hx(t)i)2i=2t. Having determined these two parameters (inthe limit of large t), one 
an �nd the so 
alled randomness r de�ned simplyas [5, 8℄ r � 2D=V d : (1)This quantity 
an be used to estimate the number of internal states of amole
ular motor. The idea is simple: if transitions 
onstitute a Poissonunidire
tional pro
ess with exa
tly the same transition rates k, then r =1=N [8℄. This idea was extended by Fisher and Kolomeisky [3, 5℄, whomade a 
onje
ture that in a general 
ase of a linear 
hain with bidire
tionalPoissonian transitions there is N � 1=r ; (2)whi
h enables one to determine the minimal number of internal states in afull me
hano-
hemi
al 
y
le of a motor.Another important quantity whi
h 
an be dire
tly related to V and Dis the so 
alled Einstein for
e FE � kBT VD ; (3)
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ity and Dispersion of . . . 1027where T is temperature and kB denotes the Boltzmann 
onstant. This quan-tity is a linear-response estimation of the for
e exerted by a mole
ular mo-tor [3, 5℄. Conje
ture (2) 
an be now written asFE � 2kBT Nd : (4)The maximal value of the Einstein for
e is thus a simple fun
tion of threeparameters: temperature T , a step length d and the number N of di�erentinternal states of a motor.In a re
ent paper [9℄ we have given a rigorous proof of relation (2) forlinear 
hains with arbitrary Poisson transitions between nearest-neighborsites. However, that proof is rather lengthy and 
ompli
ated. Here wepresent a di�erent argument justifying (2) and (4). Not only is it mu
hsimpler, but it is also more general, as it 
an be used for systems withtransitions between arbitrary latti
e sites (provided the latti
e is periodi
).The paper is organized as follows. In Se
tion 2 we present a mathemati
alde�nition of the model. Se
tion 3 
ontains the proof of equation (2), andSe
tion 4 is devoted to the dis
ussion of our results.2. ModelWe 
onsider a one-dimensional latti
e with its sites lo
ated at xn, n 2 Z.At time t = 0 we put a parti
le at site x0 = 0 and let it jump between thenearest-neighbor latti
e sites. Transitions are assumed to represent a Poissonpro
ess governed by the master equation�P (n; t)�t = k+n�1P (n� 1; t) + k�n+1P (n+ 1; t)� (k+n + k�n )P (n; t) ; (5)where P (n; t) denotes the probability of �nding the parti
le at site xn attime t and k�n � 0 are the (
onstant in time) transition rates from a sitexn to xn�1. We assume that the system is periodi
 in spa
e with a periodN � 1 and a latti
e 
onstant d > 0. We do not demand that the distan
esbetween 
onse
utive latti
e sites, xn+1 � xn, should be all equal to ea
hother. Our goal is to prove (2) for any 
hoi
e of N , k+n and k�n .3. Proof of relation (2)Relation (2) is equivalent to D � V d2N : (6)We will prove this inequality by �xing the values of V , d and N and �ndingthe minimal value of D as a fun
tion of transition rates k�n ,



1028 Z. Kozan = 1; : : : ; N . Sin
e V=d and D=d2 depend only on transition rates k�n [10℄,the problem of proving (6) redu
es to the one of minimizing a rather 
om-pli
ated fun
tion of 2N nonnegative variables k�n .Probably the simplest proof of inequality (6) is based on a very generaland nontrivial property of di�usive latti
e systems [10℄. Suppose we have adi�usion pro
ess on a periodi
 latti
e with Poissonian transitions betweenits sites and let kmn � 0 denote the transition rate from site n to m. Thereexists a time interval � su
h kmn� � 1 for all n and m. We 
an thus de�neanother sto
hasti
 pro
ess on this latti
e, in whi
h transitions 
an o

ur onlyat regular intervals � and are 
hara
terized by probabilities kmn� (kmn� is theprobability of jumping from n to m). It has been rigorously shown [10℄ thatthe drift velo
ity V and dispersion D 
al
ulated in the original, 
ontinuous-time system are related to the drift velo
ity V D and dispersion DD of itsdis
rete-time 
ounterpart through general formulaeV = V D; D = DD + �2V 2 : (7)The problem of �nding the 
ombination of transition rates k�n whi
h min-imize the value of dispersion D for some �xed values of V and d in the
ontinuous-time pro
ess is therefore equivalent to the same problem posedfor the 
orresponding dis
rete-time system. However, the latter problemis mu
h simpler. By de�nition dispersion DD 
annot be negative. More-over, DD = 0 for two parti
ular 
hoi
es of transition probabilities k�n � :either when k�n � = 0 and k+n � = 1 or when k�n � = 1 and k+n � = 0. Inthese two 
ases the motion of a di�using parti
le is a
tually unidire
tionaland deterministi
 � hen
e the value of dispersion DD = 0. Clearly, DDassumes the minimal possible value only in these two parti
ular �degener-ated� 
ases where the sto
hasti
, bidire
tional pro
ess turns into a unidire
-tional, deterministi
 one. Non-vanishing transition rates in the 
orrespond-ing 
ontinuous-time pro
ess are equal 1=� , and in this 
ase V = d=N� andD = (d=N)2=2� = V d=2N [10℄. The minimal value of dispersion D is thusequal to V d=2N , whi
h 
ompletes the proof of (6).It is worth noting that not only have we just proved inequality (6), butwe also showed that V=D assumes its maximal value, 2N=d, if and only ifall transitions are unidire
tional and of the same magnitude, i.e. when forany 1 � n;m � N there isk+n = k+m > 0; k�n = 0 or k�n = k�m > 0; k+n = 0 :It is also interesting to note that in our present approa
h we almost didnot employ the assumption that only transitions between nearest-neighborlatti
e sites are allowed. The same line of reasoning 
ould be applied formore general systems. The only di�eren
e would be that in a general 
ase
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ity and Dispersion of . . . 1029there would be several 
hoi
es of transition rates for whi
h the auxiliarydis
rete-time pro
ess is deterministi
. Some of them 
ould be 
hara
terizedby di�erent values of N and we would have to plug the smallest of them inEq. (6). However, in the 
ase of mole
ular motors su
h 
ompli
ated modelsdo not seem to be appropriate, as we expe
t that their behavior is governedby the most probable rea
tion path [1℄.4. Con
lusionsWe have rigorously proved that in di�usive pro
esses on periodi
 lat-ti
es with Poissonian transitions between its nodes the value of di�usion
oe�
ient D is bounded from above by V d=2N , where V is the mean driftvelo
ity, d is the length of the elementary 
ell, and N denotes the numberof sites in the elementary 
ells. The present approa
h is mu
h simpler thanour previous method employed in Ref. [9℄. It is also more general, as it
an be applied to arbitrary latti
e systems, while our previous approa
h wasappli
able only to linear latti
es with transitions restri
ted to the nearest-neighbor sites.Our result has interesting appli
ations in the theory of mole
ular motors.First of all it implies that by measuring experimentally the randomnessr � 2D=V d one 
an determine the minimal number N of internal states of amotor in its full me
hano-
hemi
al 
y
le. As a matter of fa
t, this approa
hwas already employed in Ref. [5℄, where it was found that for kinesin N � 4.Our result gives �rmer basis for this kind of argumentation.Our result implies also that the maximal value of the Einstein for
e, FE,is 2kBTN=d, where T is the temperature and kB � the Boltzmann 
onstant.We showed that this maximal value is attained if and only if all transitionsare unidire
tional and of the same magnitude.Although our approa
h is valid for any value of N and an arbitrary
hoi
e of transition rates, in the 
ontext of mole
ular motors it still refers toa simpli�ed situation. First, we assumed that the motion of a motor protein
an be redu
ed to di�usion of a Brownian parti
le on a linear 
hain of latti
enodes, and other topologies deserve at least equal attention [2, 4, 11, 12℄.Se
ond, we assumed that transitions 
onstitute a Poisson pro
ess. Althoughthis hypothesis is 
on�rmed by re
ent experiments on myosin [13℄, it is wellknown that transition rates with other probability density fun
tions maylead to 
ompletely di�erent upper bounds for dispersion D (and hen
e theupper bound for FE and the lower bound for r may also 
hange) [3�5℄.Nevertheless, the for
e 
al
ulated using all these approximations (4:3 pN)agrees quite well with the experimental value of the stalling for
e Fs forkinesin (di�erent experimental te
hniques yielded Fs � 4�8 pN [1℄). Furtherwork is, of 
ourse, required to 
larify the relevan
e of the above-mentionedproblems.
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