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We present the mesoscopic description of stochastic effects in a ther-
mochemical bistable diluted gas system subject to the Newtonian heat
exchange with a thermostat. We apply the master equation including a
transition rate for the Newtonian thermal transfer process, derived on the
basis of kinetic theory. As temperature is a continuous variable, this master
equation has a complicated integro-differential form. We perform Monte
Carlo simulations based on this equation to study the stochastic effects in a
homogeneous Semenov model (which neglects reactant consumption) in the
bistable regime. The mean first passage time is computed as a function of
the number of particles in the system and the distance from the bifurcation
associated with the emergence of bistability. An approximate analytical
prediction is deduced from the Fokker—Planck equation associated with the
master equation. The results of the master equation approach are success-
fully compared with those of direct simulations of the microscopic particle
dynamics.

PACS numbers: 05.10.Gg, 82.33.Vx, 05.10.Ln, 82.20.Wt

1. Introduction

Fluctuations in far-from-equilibrium chemical systems are often respon-
sible for qualitatively new effects which are not predicted by the description
of the dynamics at the macroscopic level. One of well-known phenomena of
this kind are transitions between stable states in nonlinear systems which
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exhibit multistability. The master equation approach [1-3| appears as a par-
ticularly effective framework in studies of such stochastic properties. This
approach is well developed for reaction-diffusion processes in isothermal sys-
tems [4], for which application of the master equation has been justified by
careful comparisons with the results of microscopic simulations [5-7]. How-
ever, for thermal processes the mesoscopic treatment is much less advanced.
The master equation has been previously formulated for energy fluctuations
in a system with a uniform temperature gradient [8] and in a simple model
with the Knudsen mechanism of transport [9,10]. Recently, using the ki-
netic theory of gases we have derived the master equation which includes
stochastic effects in the Newtonian energy exchange between a diluted gas
system and a thermostat [11]. In this paper, we apply this description to
the thermochemical system in the bistable regime.

We consider a closed reactor of volume V' and surface S containing a
reactive gas which is subject to an energy balance due to an exothermal
reaction in the bulk and the Newtonian heat transfer through the walls of
the reactor. The temperature of the walls is assumed to be fixed at Ty,
by fast energy exchanges with an external thermostat. In order to focus on
thermal properties and to reduce the deterministic dynamics to the evolution
of a single variable, Semenov [12] introduced the simplest feasible chemical
reaction A + A — products+heat (@), in which the consumption of reactant
A is neglected. It amounts to considering the scheme

A+ A— A+ A+theat, (1)

for example, in the presence of an external light source [11]. According to
scheme (1), the total number N of particles in the system and the concen-
tration n remain constant. The deterministic equation of energy balance
reads:

d€

dt
where k, and k, are respectively the rate constants for reaction (1) and
accommodation of particles at the walls. The expression of k. and k, are
deduced from the frequencies of particle collisions in the bulk or with the
walls of the reactor. Standard kinetic theory calculations yield [11,13]:

| kT E* 2kT
ky =208\ —exp | —— | , ka = Ssap| —, (3)
T™m, kT T™m,

where o is the cross section for collisions in the bulk, m is the mass of
particle A, and E* is the activation energy of reaction (1). The coefficients
sy and s, are steric factors for reaction and accommodation, respectively,
and are related to steric conditions for these processes. For the ideal gas,

EVn?Q — kunk(T — Ty), (2)
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temperature is related to energy by the equation £ = %N kET. Equation (2)
leads then to the following equation for the reduced temperature § = T'/Ty:

=300 (-5) —r0-) @

In order to reduce the number of parameters, we have introduced above the
dimensionless time and activation energy

ETo\'? Q E*
dnosy | —— Py ; = ;
tdnos <7Tm) WL —t € WL (5)

and we have defined a reduced coefficient for the Newtonian heat exchange

SAETy s,
v= 7?5; (6)

Here, A = (v/2no)~! denotes the mean free path of a gas molecule. Pa-
rameter 7y gives some measure of the efficiency of the Newtonian cooling
with respect to heat production by the exothermal reaction. The weak de-
pendence on v in Eq. (4) is usually omitted in the standard macroscopic
description of the Semenov model but it has already been included in pre-
vious microscopic treatments of thermochemical systems [14,15].

Depending on the parameter values controlling the production of reaction
heat and the Newtonian cooling, different dynamical regimes are observed.
As shown in Fig. 1, the line y(# — 1) and the curve exp(—¢/f) can have
either one or three intersection points [12] which correspond to the stationary
solutions of Eq. (4). Thus, the system has either a unique stable steady state
or two stable states #1 < 05, separated by an unstable one 0,,. The bistability
arises and vanishes at bifurcation points, at which the line (6 — 1) becomes
tangential to exp(—e/#). For a given ¢, this condition yields the following
critical values of +:

2
1 4 1 4
+ _ - = - =
Yo =€ (1:& 1 6) exp[ 5¢ (1:|: 1 6)] . (7)

Bistability can appear only if ¢ > 4, in the range of v bounded by the
critical values, v < vy < 7, . Outside this domain, the system possesses
only a single stable stationary state which lies either on the extinction (lower)
branch for v > ., or on the combustion (higher) branch for v < . In
this paper, we focus on the description of stochastic effects in the bistable
regime.
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Fig.1. The two terms of the right-hand side of the deterministic equation (4):
exp(—e/f) for e = 4.5, and the line v(6 — 1) for (a) v = 0.095 and (b) v = 0.1066.
Case (a) corresponds to the explosive regime with a single intersection point of
the two curves, i.e. a unique stable state on the combustion branch. Case (b)
corresponds to the bistable regime with three intersection points, the two extreme
ones are stable stationary solutions while the intermediate one is an unstable state.

2. Master equation

In this section, we give the main steps of the derivation of the master
equation for the Semenov thermochemical system reported in our recent
paper [11]. The basic assumption is that elastic collisions are much more
frequent than reactive ones, so that the velocity distribution function retains
the Maxwellian form, corresponding to an instantaneous temperature 71" of
the system. In this section we employ simple, unscaled time ¢ and tempera-
ture T', because the derivation involves expressions from the kinetic theory
of gases which are more familiar in their original forms.

Energy exchange between the system and the thermostat is due to inelas-
tic collisions between particles and the walls of the container. The velocity
distribution function e, (v) of particles hitting the total surface of the con-
tainer wall in a unit time is given by

3/2 2
Vout(v)zsn( = ) / V] €xXp <_ i )a v >0, (8)

2rkT 2kT
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where n denotes the number density of particles, and v is a component of
velocity along outer normal to the surface (a particular orientation is not
relevant here since the Maxwellian distribution is isotropic). Integration of
distribution (8) over velocities yields the total collision frequency between
particles and the walls. From another point of view, this equation indicates
that particles striking the wall have a biased Maxwellian velocity distribu-
tion, that is the Maxwellian one scaled by velocity v, . The particles hitting
the wall are accommodated with a probability s, to the temperature T3,
of the wall. The accommodated particles are immediately emitted from the
wall and the normalized probability distribution of their velocities v’ is given
consistently by the biased Maxwellian related to the temperature Ty, of the
wall

1 m > mu'
n _ _— e ! - !
dw(v') = 9 <kT ) |v |exp< kT ) , v <0. 9)

The transition rate for the system energy from & to £’ includes the rates of
transitions (v — v') for all combinations of initial and final velocities allowed
by the energy constraint & — &' = imo? — lmov™. By means of Egs. (8)
and (9), the rate of energy transitions in the Newtonian heat exchange is

calculated as follows:

m \3/2 mu?
wel& = &) = Ssan / (3rp7) vrew <_ QkT)

v >0
" / 1 m 2|U, e mu'?
il xp [ —
ox \2kT, ) P T e,
v’ <0
xd(%(va —ma'?) — (€ — 8')>d'vd'v'. (10)

As can be noticed, our treatment of stochastic effects in the Newtonian heat
transfer is different from the approach applied usually to diffusive transfer
in the master equation [1,4]|. In that standard description (extended also to
thermal processes [8-10]) rates of transitions depend only on local thermo-
dynamic variables, while w.(£ — &') in Eq. (10) is a function of both the
temperature of the system and the thermostat. After a change of variables
from energy to temperature, integration of Eq. (10) yields finally the follow-
ing rate of temperature transition AT = T" — T in the Newtonian thermal
exchange
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we(T = T+ AT) = S san <
s

T
|AT|
_ani=- 1
% <2+ (T+Tw)(%N)|AT|) 3N exp< iN T for AT <0,
TT, 92 T
) < ) for AT > 0.

w

(11)

This transition function is mostly confined to the narrow interval
—T/N < AT < Ty /N, because a relative change of energy in a single inelas-
tic particle-wall collision is of the order of kT'/E (kT /E) which for the ideal
gas results in the 1/N scaling. The mean value of temperature transition
calculated by means of Eq. (11) yields the deterministic description of the
Newtonian heat transfer [11].

The transition function w, for the Newtonian heat exchange gives a
continuous spectrum of temperature changes AT, unlike discrete changes of
particle numbers involved in standard master equations for reaction-diffusion
systems [1,4]. Discretization of energy transfer can be applied as the very
first approximation for the stochastic description of the Newtonian cool-
ing [16]. This simplest approach consists in assuming discrete temperature
jumps of some fixed length, but the frequency of such hopping can only be
determined by matching average rates to the deterministic description [16].

In contrast to the Newtonian heat transfer, exothermal reaction (1) gives
discrete transitions of T, since a fixed portion of energy is always released in a
reactive collision. The reaction heat @) results in the increase of temperature

by
Q

SNE

AT, = (12)

The transition rate for T'is determined by the rate of the thermally activated

reaction (1) which according to Egs. (2), (3) is given by

kT /2 E*
(T — T+ AT,) = 2Vnc | — . . 1
Wi (T - T+ ) =2Vn o <7rm> s exp< kT) (13)

The master equation can be cast to a simple form with the use of the
complete transition function w, which includes both w, for continuous tran-

sitions AT and W, for fixed shifts AT,:

w(T = T+AT) = we(T — THAT)+Wi(T — T+AT,)§(AT—AT}). (14)
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Using this complete transition function defined for the continuous variable
AT, the master equation for the distribution function of temperature in the
thermochemical system has the following form

%P(T, £ = / A(AT)P(T — AT, t)w(T — AT — T)
AT<T
_P(T, 1) / dATYW(T — T +AT).  (15)

AT>-T

The above master equation is the basic theoretical result on which our de-
scription of fluctuations in the Semenov system is founded. However, its
complicated integro-differential form prevents any more rigorous analytical
treatment. We study the stochastic effects in the thermochemical system
by means of Monte Carlo simulations appropriately based on Eq. (15). The
simulation method of stochastic dynamics governed by a master equation for
discrete populations of chemical species is well-founded [17]; in the recent
paper [11] we presented a generalization of this method, necessary for an
equation of the form (15) which involves a continuous variable.

The simulation algorithm consists of the rule for generation of a single
elementary transition, in which the system passes from an initial temper-
ature T at time ¢ to a final T+ AT reached at ¢t + At. The total rate of
escape from the initial state is

Wit (T) = / AATYw(T = T + AT)

kT \ '/ o (4kT\'/? E*
= Ssan <%) +Vnio <%) Sp€exp <_ﬁ> , (16)

where the first term results from the Newtonian heat exchange and the sec-
ond one from the exothermal reaction. Consequently, the waiting time to
exit from the state with temperature T'is At = 1/Wio(T') (more exactly, it
can be sampled from the exponential distribution Wit (T") exp(—Wiot (1) At)
characteristic for the Markovian processes [18]). While time is incremented
by At, a process effective for the transition is chosen with the probability
proportional to its contribution to the total transition rate given in Eq. (16).
Thus, the chance to select the reaction is Wy /Wi, as given in the standard
method [17], and the associated temperature increment is AT;. Accord-
ingly, selection of a Newtonian heat exchange process means a choice of a
temperature change AT sampled according to the probability distribution
we(AT)/Wie for the continuous variable AT. Details of the later sampling
procedure can be found in the previous paper [11]. After the transition is
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performed, the next step is generated starting from the updated tempera-
ture 7! = T + AT at current time t' = ¢t + At. The sequence of transitions
forms then a stochastic trajectory of T'(¢), and the averages are calculated
for ensembles of such trajectories.

The results based on the mesoscopic dynamics are verified by comparison
with the simulations of the system evolution at the microscopic level. In a
homogeneous system, the positions of the particles can be disregarded, and
their velocities are the only relevant variables. We use the Direct Simulation
Monte Carlo (DSMC) method developed by Bird [19] to simulate particle
collisions in the diluted gas system. We employ the molecular model of reac-
tive hard spheres, widely used in microscopic simulations [20,21] and kinetic
theory studies [22-24] of chemical systems. The total cross section o is like
for hard spheres, but a part of it corresponds to reaction. A collision is
reactive (4) with the probability given by the steric factor s,, and () if the
relative velocity (vg — v;) along the direction connecting centers of particles
k, [l at impact exceeds a certain threshold value ¢g*. The frequency of reactive
collisions in this line-of-centers model is given by Eq. (13) with the activation
energy E* = %,ug’&, where p = m/2 is the reduced mass. After a reactive
collision, the kinetic energy of the particles that reacted is increased by the
value of the reaction heat (). Generating collisions of particles with the
system boundaries, we assume that the container is cubic, and so collisions
with the walls in z, y, and z directions are chosen with equal probability.
Particles hitting the walls are thermally accommodated with the probability
Sa, otherwise they are specularly reflected. In fact, we neglect collisions with
elastic reflection, because they do not have any thermal effect nor contribute
to maxwellization of the particle velocity distribution. Velocities of parti-
cles emitted after thermal accommodation are sampled from the normalized
biased Maxwellian distribution (9), appropriate for the collision direction.

3. Fokker—Planck approximation

Since the range of AT decreases like 1/N, for large systems the master
equation (15) can be expanded to the Fokker-Planck differential equation,
which is much easier for analytical treatment. The Fokker—Planck equation
for the dimensionless variables has the following form:

2
%P(O,t) - —% (a(@)P(G,t)) + % (ﬁ(@)P(H,t)). (17)

The coefficients « and 3 in the differential terms of the Fokker—Planck equa-
tion are given by the moments of the transition function:
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o) = / w(® = 0+ AG)AGA(A)
= %\/g(exp (— %) — (6 — 1)) (18)
8(0) = % / w(0 = 0+ AG)(AG)2d(AD)

— QLN\@(qexp (— %) + (3 — 46 + 302)> : (19)

where we have introduced a dimensionless heat release as ¢ = % The
coefficient (3 of the second, diffusive term in Eq. (17) is scaled by the 1/N
factor, so that fluctuations are relatively weaker for large systems. It should
be noted that the previous treatment of the stochastic thermochemical sys-
tem [25] yielded the Fokker-Planck equation (17) with the following coeffi-

cient in the diffusive term:

B1(6) = giNx/é(qexp (-3)+a +92)>. (20)

The difference between Egs. (19) and (20) comes only from the different
stochastic descriptions of Newtonian heat exchange. It becomes larger when
f increases.

The Fokker—Planck equation can be used to easily evaluate fluctuations
around the stable stationary state for large N. The equation for the sta-
tionary distribution function P; has the form

—\/§<exp (— g) — (6 — 1)) P4(0)

0. (21)

+% [3%“5 (qexp (-5) +r -0+ 39%) Py(6)

Since P is confined for large N mostly in a narrow interval around g, the
coefficients of the two terms can be expanded around the stationary state
0s. For a, two terms of the expansion must be retained, because the lowest
term vanishes at the stationary state, a(fs) = 0. Thus, the approximation
for a(6) can be written as

_ da

a(f) =~ w7

-] 6-0). @)

S

95(0—95)+...:[
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The expression exp(—¢/6s) has been eliminated from the above term by
means of the equation «(f5) = 0. The variation of the second coefficient
in the vicinity of 65 can be neglected with respect to variation of Py(0)
itself; this coefficient is approximated simply by £(0) = (6s). Under these
approximations, Eq. (21) has the form

1

T 3N

[q(93—1)+(3—495+39§)] %PS(O) . (23)

[033(98_1)—1] (0—65)Ps(0)

The solution of this equation is the Gaussian around the mean 6y and the
dispersion is given by

1 q(fs — 1) + (3 — 465 + 367)
- .
3 [1 - @(03 — 1)]

The previous description of the thermochemical system [25] predicts the
following dispersion of fluctuations:

(24)

og =

1 (6 — 1)+ (1+62)
- .

“alim s =

019 =

Both equations certainly recover the well-known result for temperature fluc-
tuations in the equilibrium system (@ = 1) under constant volume. However,
the difference between the two descriptions becomes pronounced in nonequi-
librium conditions, as 6 increases. Figure 2 shows the predictions of the two
theories for the steady states in the range 3 < 03 < 14, obtained by varying
v at the constant activation energy € = 4.5. Such high temperatures may
be not completely realistic, because the Semenov assumption of maintaining
constant reagent concentration is likely to fail for fast reactions at high 6.
Nevertheless, these extreme conditions can be used to examine the validity
of the two descriptions of fluctuations by comparison with the appropriate
simulations at the microscopic level. The divergence between the present
and the previous approaches in this range of high 6 is clear in Fig. 2. Simul-
taneously, the results of the microscopic simulations unambiguously point
out that the treatment developed in Ref. [11] and the present paper correctly
describe the fluctuations in a thermochemical system.
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Fig.2. Standard deviation (scaled by v/N) of reduced temperature around 6y ver-
sus stationary state of high temperature 6. The crosses depict the results obtained
from microscopic DSMC simulations for variable v and for reduced activation en-
ergy € = 4.5, reduced heat release ¢ = 5, reaction steric factor s, = 0.01, number of
particles N = 10000, ratio of mean free path and length of the system \/L = 0.5.
The solid line (resp. dashed line) is the analytical prediction deduced from the
Fokker-Planck equation with our expression of §(#) (resp. previous expression
B1(0) of Baras et al. [25]).

4. Fluctuation-induced transitions in the bistable regime

Stochastic effects are manifested most prominently in regimes sensitive to
even small perturbations, like the vicinity of bifurcations [1,4|. Fluctuation-
induced transitions between stable states in bistable systems [2,26,27] are
widely studied stochastic phenomena of this kind. In the bistable domain
and for initial conditions in the basin of attraction of the stationary state 61,
the deterministic description predicts an unavoidable relaxation toward the
stationary state at low temperature 61. However, if the level of fluctuations
is sufficient, the escape over the potential barrier and the final relaxation
toward the stationary state of high temperature 6 may be observed as
shown in Fig. 3 for stochastic trajectories deduced from MC simulations of
the master equation. Using the Fokker-Planck equation given in Eq. (17),
we wish to determine an analytical expression of the mean first passage
time 7 from 6 to #2. Standard calculations [26,28,29| lead to the following
expression of 7(6) for a motion starting from 6 between a reflecting barrier
at f.eg and an absorbing barrier at Gaps:

Oabs o

(0) = / exp(U(0'))d0/ /

0 ereﬂ

exp(—U(8"))

( 1
s (26)
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Fig.3. Temperature 6 as a function of time in the bistable domain with ¢ =
4.5 and 7 = 0.1. The dashed lines are three stochastic realisations obtained by
MC simulations of the master equation for N = 10000. The solid line is the
deterministic evolution.

where function U(#) is defined as:

W _ o) (27)
do B(0)
We calculate the mean escape time in a bistable system from the bottom
of the left hand well, i.e. for # = 6. Noting that a particle, in going over
the barrier to the right well, takes most of the time in actually surmounting
the barrier, function U(f) is evaluated in the first integral by its expansion

around 6,:

U(9) ~ U(6,) — 2’;((9 ))(9 0.)2, (28)

where o/ (6) = ‘é—‘g. In the second integral, function U(6) is evaluated by its
expansion around the local minimum 6 as follows:

U(0) = U(01) - ;‘ﬂ((‘;)) (0—0,)?. (20)

Following the standard steepest descent approximation, we extend the limits
of the two integrations in Eq. (26) from —oo to +o0o0. We finally obtain the
following approximate value for the mean first passage time:

B(6u)
T = 277\/ﬁ( - exp (U(Ou) - U(91)> . (30)
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The explicit expressions of the drift a(f) and diffusion term 3(#), given in
Egs. (18), (19), and the definition of function U, given in Eq. (27), have
been used to compute 7 in Fig. 4 for different values of particle number N.
Four different approaches are compared in this figure showing the results of
microscopic simulations using DSMC method, MC simulations of the mas-
ter equation (15), the analytical prediction given in Eq. (30) and deduced
from Fokker—Planck equation, and finally, the analogous analytical predic-
tion deduced from the previous works of Baras et al. [25]. Figure 4 exhibits
the expected exponential dependence of 7 with the number of particles N.

In(<t>)

Lo o b v b v by v v by

0 104 2x10* 3x10%* 4x10* 5x10*

N

Fig.4. Logarithm of mean first passage time (7) versus number of particles N.
The squares show the results of MC simulations based on the master equation,
the crosses depict the results obtained from microscopic DSMC simulations for the
following parameter values: reduced activation energy € = 4.5, Newtonian exchange
coefficient v = 0.1, reduced heat release ¢ = 5, reaction steric factor s, = 0.01, ratio
of mean free path and length of the system A/L = 0.5. The solid line (resp. dashed
line) is the analytical prediction deduced from the Fokker—Planck equation with
our expression of 3(0) (resp. previous expression (1 (6) of Baras et al. [25]).

The good agreement between the results of the master equation and micro-
scopic simulations confirms the validity of the transition probabilities given
in Eq. (11). However, the also satisfying agreement between these two ap-
proaches on one hand, and the approximate analytical results deduced from
Fokker—Planck equations on the other, prove that the mean first passage
time is not a very discriminating quantity. Note that the explicit expression
of the transition rate for the Newtonian heat exchange is used to compute
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the diffusion term (3(f) in the Fokker—Planck equation. However, the devi-
ation between the value of 5(0) deduced from our master equation and the
previous results [25] £1(0) is not sufficient to lead to noticeable variations
of the mean first passage time 7 considered as a function of the number of
particles N.

In the bistable domain, the height of the potential barrier between 6;
and 6y increases with the coefficient for the Newtonian heat exchange 7.
Accordingly, Eq. (30) predicts a rapid increase of 7 with 7 as shown in
Fig. 5. As for the dependence on the number of particles, the analytical
predictions for 7 deduced from the Fokker—Planck equation, using either our
expression of 5(6) or the previous value 31(0) of Baras et al. [25] are in good
agreement with the mean first passage time deduced from MC simulations
of the master equation (15). It is to be noted that the deviation between the
analytical predictions of 5(6) and (1 () increases with 6. In Section 3, these
different approaches have already been used to characterize the fluctuations
in the vicinity of the stationary state of high temperature, 6. They lead to
well-defined differences and their comparison can be considered as a more
reliable test of our expression of the master equation.

108

8x104

6x10%

<T>

4x10%

2x10%

0.0998 0.1 0.1002 0.1004
7

Fig.5. Mean first passage time (1) versus distance from the bifurcation controlled
by Newtonian exchange coefficient 4. The squares show the results of MC simu-
lations based on the master equation for the following parameter values: reduced
activation energy ¢ = 4.5, particle number N = 10000. The solid line (resp. dashed
line) is the analytical prediction deduced from the Fokker—Planck equation with
our expression of 3(#) (resp. previous expression (1(6) of Baras et al. [25]).
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In order to directly check the major hypothesis on which our expression
of the master equation relies, i.e., the Maxwellian form of the distribution
of particle velocities, we estimate in Fig. 6 the amplitude of the non equi-
librium effects appearing when the chemical reaction and the cooling at the
walls become faster. The control parameter chosen is the steric factor s,
for chemical reaction. Then the steric factor s, for thermal accommodation
follows from Eq. (6). All the other parameters are constant. In particular,

T T T T T T T T T T T T T ‘ T T T ‘ T
0.4 B A A
i A ]
02 - A .
L A i
- ]
O #x 7
i x ]
-0.2 x -
i x ]
_04 |- a kurtosis « x _
% (<6>-6,)/86, ]
086 - x —
71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17

0 0.2 0.4 0.6 0.8 1

SI‘

Fig.6. Evaluation of the departure from partial equilibrium in microscopic DSMC
simulations for the following parameter values: reduced activation energy € = 4.5,
Newtonian heat exchange coefficient v = 0.1, reduced heat release ¢ = 5, particle
number N = 1000, ratio of mean free path and length of the system A\/L = 0.5.
Variations with chemical steric factor s, of the kurtosis & of the particle velocity
distribution (open triangles) and of the relative deviation ({§) — 65)/62 of the high
temperature stationary state from its deterministic prediction 6, (crosses).

the number of particles, i.e., the fluctuation level is fixed. Using microscopic
simulations based on DSMC method, we compute the kinetic energy of the
particles when the system is stabilized around the stationary state of high
temperature: we find that the absolute value of the relative deviation of tem-
perature from its deterministic prediction, 65, increases with s,. Moreover,
the fourth order cumulant of the particle velocity distribution or kurtosis

(v') = 3(v*)?
)2

e (31)

K =
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increases with the speed of the processes. These nonvanishing values of
the kurtosis reveal the lost of the Maxwellian shape of the particle velocity
distribution in relation with the departure from partial equilibrium. Cor-
rections to the deterministic temperature and kurtosis smaller than 1% are
observed when the steric factor obeys s, < 0.01. The results of the micro-
scopic simulations using DSMC method that are given in this paper have
been obtained for the value s, = 0.01, which imposes already very slow
processes and increases accordingly the duration of the simulations.

5. Conclusions

We have performed a mesoscopic description [11] of a thermochemical
gaseous Semenov system in the bistable regime. Our approach is based on
a master equation including a term for stochastic energy transfer, derived
from the statistics of inelastic collisions between the gas particles and the
thermostated walls. This transition rate takes into account the continu-
ous spectrum of energy transferred in the Newtonian heat exchange, unlike
transition functions for discrete populations of species in standard reaction-
diffusion master equations. Consequently, the stochastic equation for the
thermochemical system has a complicated integro-differential form, making
hopeless any more rigorous analytical treatments. In order to solve this
master equation for a continuous stochastic variable, we have extended the
method of Monte Carlo simulations developed by Gillespie [17] for discrete
variables in reaction-diffusion processes.

We have investigated the stochastic effects observed in the bistable
regime and analyzed fluctuation-induced transitions between the two sta-
ble stationary states of the system. Different methods were used to compute
the mean first passage time from one stationary state to another one: we
have compared the results obtained from the master equation approach with
those of microscopic simulations of the particle dynamics. The good agree-
ment between the two series of results confirms the validity of the presented
mesoscopic description. An analytical expression for the mean first passage
time is determined using the Fokker—Planck equation deduced from the mas-
ter equation. This approximate analytical treatment gives satisfying results,
comparing well with the Monte Carlo simulations of the master equation.

We thank for the support by the project no. 1639 from CNRS (France)
and Polish Academy of Sciences, and by the Polonium project for French—
Polish scientific cooperation.
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