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ultureRakowie
ka 28, 02-528 Warsaw, Poland(Re
eived November 15, 2001)We present the mesos
opi
 des
ription of sto
hasti
 e�e
ts in a ther-mo
hemi
al bistable diluted gas system subje
t to the Newtonian heatex
hange with a thermostat. We apply the master equation in
luding atransition rate for the Newtonian thermal transfer pro
ess, derived on thebasis of kineti
 theory. As temperature is a 
ontinuous variable, this masterequation has a 
ompli
ated integro-di�erential form. We perform MonteCarlo simulations based on this equation to study the sto
hasti
 e�e
ts in ahomogeneous Semenov model (whi
h negle
ts rea
tant 
onsumption) in thebistable regime. The mean �rst passage time is 
omputed as a fun
tion ofthe number of parti
les in the system and the distan
e from the bifur
ationasso
iated with the emergen
e of bistability. An approximate analyti
alpredi
tion is dedu
ed from the Fokker�Plan
k equation asso
iated with themaster equation. The results of the master equation approa
h are su

ess-fully 
ompared with those of dire
t simulations of the mi
ros
opi
 parti
ledynami
s.PACS numbers: 05.10.Gg, 82.33.Vx, 05.10.Ln, 82.20.Wt1. Introdu
tionFlu
tuations in far-from-equilibrium 
hemi
al systems are often respon-sible for qualitatively new e�e
ts whi
h are not predi
ted by the des
riptionof the dynami
s at the ma
ros
opi
 level. One of well-known phenomena ofthis kind are transitions between stable states in nonlinear systems whi
h� Presented at the XIV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 9�14, 2001.(1031)
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h [1�3℄ appears as a par-ti
ularly e�e
tive framework in studies of su
h sto
hasti
 properties. Thisapproa
h is well developed for rea
tion-di�usion pro
esses in isothermal sys-tems [4℄, for whi
h appli
ation of the master equation has been justi�ed by
areful 
omparisons with the results of mi
ros
opi
 simulations [5�7℄. How-ever, for thermal pro
esses the mesos
opi
 treatment is mu
h less advan
ed.The master equation has been previously formulated for energy �u
tuationsin a system with a uniform temperature gradient [8℄ and in a simple modelwith the Knudsen me
hanism of transport [9, 10℄. Re
ently, using the ki-neti
 theory of gases we have derived the master equation whi
h in
ludessto
hasti
 e�e
ts in the Newtonian energy ex
hange between a diluted gassystem and a thermostat [11℄. In this paper, we apply this des
ription tothe thermo
hemi
al system in the bistable regime.We 
onsider a 
losed rea
tor of volume V and surfa
e S 
ontaining area
tive gas whi
h is subje
t to an energy balan
e due to an exothermalrea
tion in the bulk and the Newtonian heat transfer through the walls ofthe rea
tor. The temperature of the walls is assumed to be �xed at Twby fast energy ex
hanges with an external thermostat. In order to fo
us onthermal properties and to redu
e the deterministi
 dynami
s to the evolutionof a single variable, Semenov [12℄ introdu
ed the simplest feasible 
hemi
alrea
tion A+A! produ
ts+heat (Q), in whi
h the 
onsumption of rea
tantA is negle
ted. It amounts to 
onsidering the s
hemeA+A! A+A+heat ; (1)for example, in the presen
e of an external light sour
e [11℄. A

ording tos
heme (1), the total number N of parti
les in the system and the 
on
en-tration n remain 
onstant. The deterministi
 equation of energy balan
ereads: dEdt = krV n2Q� kank(T � Tw) ; (2)where kr and ka are respe
tively the rate 
onstants for rea
tion (1) anda

ommodation of parti
les at the walls. The expression of kr and ka arededu
ed from the frequen
ies of parti
le 
ollisions in the bulk or with thewalls of the rea
tor. Standard kineti
 theory 
al
ulations yield [11, 13℄:kr = 2�srr kT�m exp��E�kT � ; ka = Ssar2kT�m ; (3)where � is the 
ross se
tion for 
ollisions in the bulk, m is the mass ofparti
le A, and E� is the a
tivation energy of rea
tion (1). The 
oe�
ientssr and sa are steri
 fa
tors for rea
tion and a

ommodation, respe
tively,and are related to steri
 
onditions for these pro
esses. For the ideal gas,



Sto
hasti
 E�e
ts in Semenov Model 1033temperature is related to energy by the equation E = 32NkT . Equation (2)leads then to the following equation for the redu
ed temperature � = T=Tw:d�dt = 13p� exp�� "��� 
(� � 1)!: (4)In order to redu
e the number of parameters, we have introdu
ed above thedimensionless time and a
tivation energyt 4n�sr�kTw�m �1=2 QkTw ! t ; " = E�kTw ; (5)and we have de�ned a redu
ed 
oe�
ient for the Newtonian heat ex
hange
 = S�V kTwQ sasr : (6)Here, � = (p2n�)�1 denotes the mean free path of a gas mole
ule. Pa-rameter 
 gives some measure of the e�
ien
y of the Newtonian 
oolingwith respe
t to heat produ
tion by the exothermal rea
tion. The weak de-penden
e on p� in Eq. (4) is usually omitted in the standard ma
ros
opi
des
ription of the Semenov model but it has already been in
luded in pre-vious mi
ros
opi
 treatments of thermo
hemi
al systems [14, 15℄.Depending on the parameter values 
ontrolling the produ
tion of rea
tionheat and the Newtonian 
ooling, di�erent dynami
al regimes are observed.As shown in Fig. 1, the line 
(� � 1) and the 
urve exp(�"=�) 
an haveeither one or three interse
tion points [12℄ whi
h 
orrespond to the stationarysolutions of Eq. (4). Thus, the system has either a unique stable steady stateor two stable states �1 < �2, separated by an unstable one �u. The bistabilityarises and vanishes at bifur
ation points, at whi
h the line 
(�� 1) be
omestangential to exp(�"=�). For a given ", this 
ondition yields the following
riti
al values of 
:
�
 = 14" 1�r1� 4"!2 exp"�12" 1�r1� 4"!# : (7)Bistability 
an appear only if " > 4, in the range of 
 bounded by the
riti
al values, 
+
 < 
 < 
�
 . Outside this domain, the system possessesonly a single stable stationary state whi
h lies either on the extin
tion (lower)bran
h for 
 > 
�
 , or on the 
ombustion (higher) bran
h for 
 < 
+
 . Inthis paper, we fo
us on the des
ription of sto
hasti
 e�e
ts in the bistableregime.
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Fig. 1. The two terms of the right-hand side of the deterministi
 equation (4):exp(�"=�) for " = 4:5, and the line 
(� � 1) for (a) 
 = 0:095 and (b) 
 = 0:1066.Case (a) 
orresponds to the explosive regime with a single interse
tion point ofthe two 
urves, i.e. a unique stable state on the 
ombustion bran
h. Case (b)
orresponds to the bistable regime with three interse
tion points, the two extremeones are stable stationary solutions while the intermediate one is an unstable state.2. Master equationIn this se
tion, we give the main steps of the derivation of the masterequation for the Semenov thermo
hemi
al system reported in our re
entpaper [11℄. The basi
 assumption is that elasti
 
ollisions are mu
h morefrequent than rea
tive ones, so that the velo
ity distribution fun
tion retainsthe Maxwellian form, 
orresponding to an instantaneous temperature T ofthe system. In this se
tion we employ simple, uns
aled time t and tempera-ture T , be
ause the derivation involves expressions from the kineti
 theoryof gases whi
h are more familiar in their original forms.Energy ex
hange between the system and the thermostat is due to inelas-ti
 
ollisions between parti
les and the walls of the 
ontainer. The velo
itydistribution fun
tion �out(v) of parti
les hitting the total surfa
e of the 
on-tainer wall in a unit time is given by�out(v) = Sn� m2�kT �3=2 v? exp��mv22kT � ; v? > 0 ; (8)
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ts in Semenov Model 1035where n denotes the number density of parti
les, and v? is a 
omponent ofvelo
ity along outer normal to the surfa
e (a parti
ular orientation is notrelevant here sin
e the Maxwellian distribution is isotropi
). Integration ofdistribution (8) over velo
ities yields the total 
ollision frequen
y betweenparti
les and the walls. From another point of view, this equation indi
atesthat parti
les striking the wall have a biased Maxwellian velo
ity distribu-tion, that is the Maxwellian one s
aled by velo
ity v?. The parti
les hittingthe wall are a

ommodated with a probability sa to the temperature Twof the wall. The a

ommodated parti
les are immediately emitted from thewall and the normalized probability distribution of their velo
ities v0 is given
onsistently by the biased Maxwellian related to the temperature Tw of thewall �w(v0) = 12� � mkTw�2 jv0?j exp�� mv022kTw� ; v0? < 0 : (9)The transition rate for the system energy from E to E 0 in
ludes the rates oftransitions (v ! v0) for all 
ombinations of initial and �nal velo
ities allowedby the energy 
onstraint E � E 0 = 12mv2 � 12mv02. By means of Eqs. (8)and (9), the rate of energy transitions in the Newtonian heat ex
hange is
al
ulated as follows:we(E ! E 0) = Ssan Zv?>0 � m2�kT �3=2 v? exp�� mv22kT �� Zv0?<0 12� � m2kTw�2 jv0?j exp�� mv022kTw��Æ� 12(mv2 �mv02)� (E � E 0)�dvdv0 : (10)As 
an be noti
ed, our treatment of sto
hasti
 e�e
ts in the Newtonian heattransfer is di�erent from the approa
h applied usually to di�usive transferin the master equation [1,4℄. In that standard des
ription (extended also tothermal pro
esses [8�10℄) rates of transitions depend only on lo
al thermo-dynami
 variables, while we(E ! E 0) in Eq. (10) is a fun
tion of both thetemperature of the system and the thermostat. After a 
hange of variablesfrom energy to temperature, integration of Eq. (10) yields �nally the follow-ing rate of temperature transition �T = T 0 � T in the Newtonian thermalex
hange
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we(T ! T +�T ) = S san � kT2�m�1=2 TTw(T + Tw)3��2 + (T + Tw)( 32N)j�T jTTw � 32 N 8>><>>: exp�� 32N j�T jT � for �T < 0 ,exp�� 32N�TTw � for �T > 0 .(11)This transition fun
tion is mostly 
on�ned to the narrow interval�T=N < �T < Tw=N , be
ause a relative 
hange of energy in a single inelas-ti
 parti
le�wall 
ollision is of the order of kT=E (kTw=E) whi
h for the idealgas results in the 1=N s
aling. The mean value of temperature transition
al
ulated by means of Eq. (11) yields the deterministi
 des
ription of theNewtonian heat transfer [11℄.The transition fun
tion we for the Newtonian heat ex
hange gives a
ontinuous spe
trum of temperature 
hanges �T , unlike dis
rete 
hanges ofparti
le numbers involved in standard master equations for rea
tion-di�usionsystems [1, 4℄. Dis
retization of energy transfer 
an be applied as the very�rst approximation for the sto
hasti
 des
ription of the Newtonian 
ool-ing [16℄. This simplest approa
h 
onsists in assuming dis
rete temperaturejumps of some �xed length, but the frequen
y of su
h hopping 
an only bedetermined by mat
hing average rates to the deterministi
 des
ription [16℄.In 
ontrast to the Newtonian heat transfer, exothermal rea
tion (1) givesdis
rete transitions of T , sin
e a �xed portion of energy is always released in area
tive 
ollision. The rea
tion heat Q results in the in
rease of temperatureby �Tr = Q32Nk : (12)The transition rate for T is determined by the rate of the thermally a
tivatedrea
tion (1) whi
h a

ording to Eqs. (2), (3) is given byWr(T ! T +�Tr) = 2V n2�� kT�m�1=2 sr exp��E�kT � : (13)The master equation 
an be 
ast to a simple form with the use of the
omplete transition fun
tion w, whi
h in
ludes both we for 
ontinuous tran-sitions �T and Wr for �xed shifts �Tr:w(T ! T+�T ) = we(T ! T+�T )+Wr(T ! T+�Tr)Æ(�T��Tr) : (14)
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 E�e
ts in Semenov Model 1037Using this 
omplete transition fun
tion de�ned for the 
ontinuous variable�T , the master equation for the distribution fun
tion of temperature in thethermo
hemi
al system has the following form��tP (T; t) = Z�T<T d(�T )P (T ��T; t)w(T ��T ! T )�P (T; t) Z�T>�T d(�T )w(T ! T +�T ) : (15)The above master equation is the basi
 theoreti
al result on whi
h our de-s
ription of �u
tuations in the Semenov system is founded. However, its
ompli
ated integro-di�erential form prevents any more rigorous analyti
altreatment. We study the sto
hasti
 e�e
ts in the thermo
hemi
al systemby means of Monte Carlo simulations appropriately based on Eq. (15). Thesimulation method of sto
hasti
 dynami
s governed by a master equation fordis
rete populations of 
hemi
al spe
ies is well-founded [17℄; in the re
entpaper [11℄ we presented a generalization of this method, ne
essary for anequation of the form (15) whi
h involves a 
ontinuous variable.The simulation algorithm 
onsists of the rule for generation of a singleelementary transition, in whi
h the system passes from an initial temper-ature T at time t to a �nal T + �T rea
hed at t + �t. The total rate ofes
ape from the initial state isWtot(T ) = Z d(�T )w(T ! T +�T )= S san� kT2�m�1=2 + V n2��4kT�m �1=2 sr exp��E�kT � ; (16)where the �rst term results from the Newtonian heat ex
hange and the se
-ond one from the exothermal rea
tion. Consequently, the waiting time toexit from the state with temperature T is �t = 1=Wtot(T ) (more exa
tly, it
an be sampled from the exponential distributionWtot(T ) exp(�Wtot(T )�t)
hara
teristi
 for the Markovian pro
esses [18℄). While time is in
rementedby �t, a pro
ess e�e
tive for the transition is 
hosen with the probabilityproportional to its 
ontribution to the total transition rate given in Eq. (16).Thus, the 
han
e to sele
t the rea
tion is Wr=Wtot, as given in the standardmethod [17℄, and the asso
iated temperature in
rement is �Tr. A

ord-ingly, sele
tion of a Newtonian heat ex
hange pro
ess means a 
hoi
e of atemperature 
hange �T sampled a

ording to the probability distributionwe(�T )=Wtot for the 
ontinuous variable �T . Details of the later samplingpro
edure 
an be found in the previous paper [11℄. After the transition is
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urrent time t0 = t+�t. The sequen
e of transitionsforms then a sto
hasti
 traje
tory of T (t), and the averages are 
al
ulatedfor ensembles of su
h traje
tories.The results based on the mesos
opi
 dynami
s are veri�ed by 
omparisonwith the simulations of the system evolution at the mi
ros
opi
 level. In ahomogeneous system, the positions of the parti
les 
an be disregarded, andtheir velo
ities are the only relevant variables. We use the Dire
t SimulationMonte Carlo (DSMC) method developed by Bird [19℄ to simulate parti
le
ollisions in the diluted gas system. We employ the mole
ular model of rea
-tive hard spheres, widely used in mi
ros
opi
 simulations [20,21℄ and kineti
theory studies [22�24℄ of 
hemi
al systems. The total 
ross se
tion � is likefor hard spheres, but a part of it 
orresponds to rea
tion. A 
ollision isrea
tive (i) with the probability given by the steri
 fa
tor sr, and (ii) if therelative velo
ity (vk�vl) along the dire
tion 
onne
ting 
enters of parti
lesk, l at impa
t ex
eeds a 
ertain threshold value g�. The frequen
y of rea
tive
ollisions in this line-of-
enters model is given by Eq. (13) with the a
tivationenergy E� = 12�g�2, where � = m=2 is the redu
ed mass. After a rea
tive
ollision, the kineti
 energy of the parti
les that rea
ted is in
reased by thevalue of the rea
tion heat Q. Generating 
ollisions of parti
les with thesystem boundaries, we assume that the 
ontainer is 
ubi
, and so 
ollisionswith the walls in x, y, and z dire
tions are 
hosen with equal probability.Parti
les hitting the walls are thermally a

ommodated with the probabilitysa, otherwise they are spe
ularly re�e
ted. In fa
t, we negle
t 
ollisions withelasti
 re�e
tion, be
ause they do not have any thermal e�e
t nor 
ontributeto maxwellization of the parti
le velo
ity distribution. Velo
ities of parti-
les emitted after thermal a

ommodation are sampled from the normalizedbiased Maxwellian distribution (9), appropriate for the 
ollision dire
tion.3. Fokker�Plan
k approximationSin
e the range of �T de
reases like 1=N , for large systems the masterequation (15) 
an be expanded to the Fokker�Plan
k di�erential equation,whi
h is mu
h easier for analyti
al treatment. The Fokker�Plan
k equationfor the dimensionless variables has the following form:��tP (�; t) = � �����(�)P (�; t)�+ �2��2��(�)P (�; t)�: (17)The 
oe�
ients � and � in the di�erential terms of the Fokker�Plan
k equa-tion are given by the moments of the transition fun
tion:
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ts in Semenov Model 1039�(�) = Z w(� ! � +��)��d(��)= 13p� exp�� "��� 
(� � 1)! (18)�(�) = 12 Z w(� ! � +��)(��)2d(��)= 19Np� q exp�� "��+ 
(3 � 4� + 3�2)! ; (19)where we have introdu
ed a dimensionless heat release as q = QkTw . The
oe�
ient � of the se
ond, di�usive term in Eq. (17) is s
aled by the 1=Nfa
tor, so that �u
tuations are relatively weaker for large systems. It shouldbe noted that the previous treatment of the sto
hasti
 thermo
hemi
al sys-tem [25℄ yielded the Fokker�Plan
k equation (17) with the following 
oe�-
ient in the di�usive term:�1(�) = 19Np� q exp�� "��+ 
(1 + �2)! : (20)The di�eren
e between Eqs. (19) and (20) 
omes only from the di�erentsto
hasti
 des
riptions of Newtonian heat ex
hange. It be
omes larger when� in
reases.The Fokker�Plan
k equation 
an be used to easily evaluate �u
tuationsaround the stable stationary state for large N . The equation for the sta-tionary distribution fun
tion Ps has the form�p� exp�� "��� 
(� � 1)!Ps(�)+ ��� " 13Np� q exp�� "��+ 
(3� 4� + 3�2)!Ps(�)# = 0 : (21)Sin
e Ps is 
on�ned for large N mostly in a narrow interval around �s, the
oe�
ients of the two terms 
an be expanded around the stationary state�s. For �, two terms of the expansion must be retained, be
ause the lowestterm vanishes at the stationary state, �(�s) = 0. Thus, the approximationfor �(�) 
an be written as�(�) � d�d� �����s (� � �s) + : : : = � "�2s 
(�s � 1)� 
� (� � �s) : (22)
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ond 
oe�
ientin the vi
inity of �s 
an be negle
ted with respe
t to variation of Ps(�)itself; this 
oe�
ient is approximated simply by �(�) � �(�s). Under theseapproximations, Eq. (21) has the form� "�2s (�s�1)�1�(���s)Ps(�) = 13N �q(�s�1)+(3�4�s+3�2s )� ���Ps(�) : (23)The solution of this equation is the Gaussian around the mean �s and thedispersion is given by�� = 1N q(�s � 1) + (3� 4�s + 3�2s )3 �1� "�2s (�s � 1)� : (24)The previous des
ription of the thermo
hemi
al system [25℄ predi
ts thefollowing dispersion of �u
tuations:�1� = 1N q(�s � 1) + (1 + �2s )3 �1� "�2s (�s � 1)� : (25)Both equations 
ertainly re
over the well-known result for temperature �u
-tuations in the equilibrium system (� = 1) under 
onstant volume. However,the di�eren
e between the two des
riptions be
omes pronoun
ed in nonequi-librium 
onditions, as � in
reases. Figure 2 shows the predi
tions of the twotheories for the steady states in the range 3 < �2 < 14, obtained by varying
 at the 
onstant a
tivation energy " = 4:5. Su
h high temperatures maybe not 
ompletely realisti
, be
ause the Semenov assumption of maintaining
onstant reagent 
on
entration is likely to fail for fast rea
tions at high �.Nevertheless, these extreme 
onditions 
an be used to examine the validityof the two des
riptions of �u
tuations by 
omparison with the appropriatesimulations at the mi
ros
opi
 level. The divergen
e between the presentand the previous approa
hes in this range of high � is 
lear in Fig. 2. Simul-taneously, the results of the mi
ros
opi
 simulations unambiguously pointout that the treatment developed in Ref. [11℄ and the present paper 
orre
tlydes
ribe the �u
tuations in a thermo
hemi
al system.
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Fig. 2. Standard deviation (s
aled by pN) of redu
ed temperature around �2 ver-sus stationary state of high temperature �2. The 
rosses depi
t the results obtainedfrom mi
ros
opi
 DSMC simulations for variable 
 and for redu
ed a
tivation en-ergy " = 4:5, redu
ed heat release q = 5, rea
tion steri
 fa
tor sr = 0:01, number ofparti
les N = 10000, ratio of mean free path and length of the system �=L = 0:5.The solid line (resp. dashed line) is the analyti
al predi
tion dedu
ed from theFokker-Plan
k equation with our expression of �(�) (resp. previous expression�1(�) of Baras et al. [25℄).4. Flu
tuation-indu
ed transitions in the bistable regimeSto
hasti
 e�e
ts are manifested most prominently in regimes sensitive toeven small perturbations, like the vi
inity of bifur
ations [1,4℄. Flu
tuation-indu
ed transitions between stable states in bistable systems [2, 26, 27℄ arewidely studied sto
hasti
 phenomena of this kind. In the bistable domainand for initial 
onditions in the basin of attra
tion of the stationary state �1,the deterministi
 des
ription predi
ts an unavoidable relaxation toward thestationary state at low temperature �1. However, if the level of �u
tuationsis su�
ient, the es
ape over the potential barrier and the �nal relaxationtoward the stationary state of high temperature �2 may be observed asshown in Fig. 3 for sto
hasti
 traje
tories dedu
ed from MC simulations ofthe master equation. Using the Fokker�Plan
k equation given in Eq. (17),we wish to determine an analyti
al expression of the mean �rst passagetime � from �1 to �2. Standard 
al
ulations [26,28,29℄ lead to the followingexpression of �(�) for a motion starting from � between a re�e
ting barrierat �re
 and an absorbing barrier at �abs:�(�) = �absZ� exp(U(�0))d�0 �0Z�re
 exp(�U(�00))�(�00) d�00 ; (26)
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Fig. 3. Temperature � as a fun
tion of time in the bistable domain with " =4:5 and 
 = 0:1. The dashed lines are three sto
hasti
 realisations obtained byMC simulations of the master equation for N = 10000. The solid line is thedeterministi
 evolution.where fun
tion U(�) is de�ned as:dUd� = ��(�)�(�) : (27)We 
al
ulate the mean es
ape time in a bistable system from the bottomof the left hand well, i.e. for � = �1. Noting that a parti
le, in going overthe barrier to the right well, takes most of the time in a
tually surmountingthe barrier, fun
tion U(�) is evaluated in the �rst integral by its expansionaround �u: U(�) ' U(�u)� �0(�u)2�(�u)(� � �u)2 ; (28)where �0(�) = d�d� . In the se
ond integral, fun
tion U(�) is evaluated by itsexpansion around the lo
al minimum �1 as follows:U(�) ' U(�1)� �0(�1)2�(�1) (� � �1)2 : (29)Following the standard steepest des
ent approximation, we extend the limitsof the two integrations in Eq. (26) from �1 to +1. We �nally obtain thefollowing approximate value for the mean �rst passage time:� = 2�s �(�u)�(�1)j�0(�1)j�0(�u) exp�U(�u)� U(�1)� : (30)
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 E�e
ts in Semenov Model 1043The expli
it expressions of the drift �(�) and di�usion term �(�), given inEqs. (18), (19), and the de�nition of fun
tion U , given in Eq. (27), havebeen used to 
ompute � in Fig. 4 for di�erent values of parti
le number N .Four di�erent approa
hes are 
ompared in this �gure showing the results ofmi
ros
opi
 simulations using DSMC method, MC simulations of the mas-ter equation (15), the analyti
al predi
tion given in Eq. (30) and dedu
edfrom Fokker�Plan
k equation, and �nally, the analogous analyti
al predi
-tion dedu
ed from the previous works of Baras et al. [25℄. Figure 4 exhibitsthe expe
ted exponential dependen
e of � with the number of parti
les N .

Fig. 4. Logarithm of mean �rst passage time h�i versus number of parti
les N .The squares show the results of MC simulations based on the master equation,the 
rosses depi
t the results obtained from mi
ros
opi
 DSMC simulations for thefollowing parameter values: redu
ed a
tivation energy " = 4:5, Newtonian ex
hange
oe�
ient 
 = 0:1, redu
ed heat release q = 5, rea
tion steri
 fa
tor sr = 0:01, ratioof mean free path and length of the system �=L = 0:5. The solid line (resp. dashedline) is the analyti
al predi
tion dedu
ed from the Fokker�Plan
k equation withour expression of �(�) (resp. previous expression �1(�) of Baras et al. [25℄).The good agreement between the results of the master equation and mi
ro-s
opi
 simulations 
on�rms the validity of the transition probabilities givenin Eq. (11). However, the also satisfying agreement between these two ap-proa
hes on one hand, and the approximate analyti
al results dedu
ed fromFokker�Plan
k equations on the other, prove that the mean �rst passagetime is not a very dis
riminating quantity. Note that the expli
it expressionof the transition rate for the Newtonian heat ex
hange is used to 
ompute
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hand, E. Nowakowskathe di�usion term �(�) in the Fokker�Plan
k equation. However, the devi-ation between the value of �(�) dedu
ed from our master equation and theprevious results [25℄ �1(�) is not su�
ient to lead to noti
eable variationsof the mean �rst passage time � 
onsidered as a fun
tion of the number ofparti
les N .In the bistable domain, the height of the potential barrier between �1and �2 in
reases with the 
oe�
ient for the Newtonian heat ex
hange 
.A

ordingly, Eq. (30) predi
ts a rapid in
rease of � with 
 as shown inFig. 5. As for the dependen
e on the number of parti
les, the analyti
alpredi
tions for � dedu
ed from the Fokker�Plan
k equation, using either ourexpression of �(�) or the previous value �1(�) of Baras et al. [25℄ are in goodagreement with the mean �rst passage time dedu
ed from MC simulationsof the master equation (15). It is to be noted that the deviation between theanalyti
al predi
tions of �(�) and �1(�) in
reases with �. In Se
tion 3, thesedi�erent approa
hes have already been used to 
hara
terize the �u
tuationsin the vi
inity of the stationary state of high temperature, �2. They lead towell-de�ned di�eren
es and their 
omparison 
an be 
onsidered as a morereliable test of our expression of the master equation.

Fig. 5. Mean �rst passage time h�i versus distan
e from the bifur
ation 
ontrolledby Newtonian ex
hange 
oe�
ient 
. The squares show the results of MC simu-lations based on the master equation for the following parameter values: redu
eda
tivation energy " = 4:5, parti
le number N = 10000. The solid line (resp. dashedline) is the analyti
al predi
tion dedu
ed from the Fokker�Plan
k equation withour expression of �(�) (resp. previous expression �1(�) of Baras et al. [25℄).



Sto
hasti
 E�e
ts in Semenov Model 1045In order to dire
tly 
he
k the major hypothesis on whi
h our expressionof the master equation relies, i.e., the Maxwellian form of the distributionof parti
le velo
ities, we estimate in Fig. 6 the amplitude of the non equi-librium e�e
ts appearing when the 
hemi
al rea
tion and the 
ooling at thewalls be
ome faster. The 
ontrol parameter 
hosen is the steri
 fa
tor srfor 
hemi
al rea
tion. Then the steri
 fa
tor sa for thermal a

ommodationfollows from Eq. (6). All the other parameters are 
onstant. In parti
ular,

Fig. 6. Evaluation of the departure from partial equilibrium in mi
ros
opi
 DSMCsimulations for the following parameter values: redu
ed a
tivation energy " = 4:5,Newtonian heat ex
hange 
oe�
ient 
 = 0:1, redu
ed heat release q = 5, parti
lenumber N = 1000, ratio of mean free path and length of the system �=L = 0:5.Variations with 
hemi
al steri
 fa
tor sr of the kurtosis � of the parti
le velo
itydistribution (open triangles) and of the relative deviation (h�i � �2)=�2 of the hightemperature stationary state from its deterministi
 predi
tion �2 (
rosses).the number of parti
les, i.e., the �u
tuation level is �xed. Using mi
ros
opi
simulations based on DSMC method, we 
ompute the kineti
 energy of theparti
les when the system is stabilized around the stationary state of hightemperature: we �nd that the absolute value of the relative deviation of tem-perature from its deterministi
 predi
tion, �2, in
reases with sr. Moreover,the fourth order 
umulant of the parti
le velo
ity distribution or kurtosis� = hv4i � 53 hv2i2hv2i2 (31)
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reases with the speed of the pro
esses. These nonvanishing values ofthe kurtosis reveal the lost of the Maxwellian shape of the parti
le velo
itydistribution in relation with the departure from partial equilibrium. Cor-re
tions to the deterministi
 temperature and kurtosis smaller than 1% areobserved when the steri
 fa
tor obeys sr � 0:01. The results of the mi
ro-s
opi
 simulations using DSMC method that are given in this paper havebeen obtained for the value sr = 0:01, whi
h imposes already very slowpro
esses and in
reases a

ordingly the duration of the simulations.5. Con
lusionsWe have performed a mesos
opi
 des
ription [11℄ of a thermo
hemi
algaseous Semenov system in the bistable regime. Our approa
h is based ona master equation in
luding a term for sto
hasti
 energy transfer, derivedfrom the statisti
s of inelasti
 
ollisions between the gas parti
les and thethermostated walls. This transition rate takes into a

ount the 
ontinu-ous spe
trum of energy transferred in the Newtonian heat ex
hange, unliketransition fun
tions for dis
rete populations of spe
ies in standard rea
tion-di�usion master equations. Consequently, the sto
hasti
 equation for thethermo
hemi
al system has a 
ompli
ated integro-di�erential form, makinghopeless any more rigorous analyti
al treatments. In order to solve thismaster equation for a 
ontinuous sto
hasti
 variable, we have extended themethod of Monte Carlo simulations developed by Gillespie [17℄ for dis
retevariables in rea
tion-di�usion pro
esses.We have investigated the sto
hasti
 e�e
ts observed in the bistableregime and analyzed �u
tuation-indu
ed transitions between the two sta-ble stationary states of the system. Di�erent methods were used to 
omputethe mean �rst passage time from one stationary state to another one: wehave 
ompared the results obtained from the master equation approa
h withthose of mi
ros
opi
 simulations of the parti
le dynami
s. The good agree-ment between the two series of results 
on�rms the validity of the presentedmesos
opi
 des
ription. An analyti
al expression for the mean �rst passagetime is determined using the Fokker�Plan
k equation dedu
ed from the mas-ter equation. This approximate analyti
al treatment gives satisfying results,
omparing well with the Monte Carlo simulations of the master equation.We thank for the support by the proje
t no. 1639 from CNRS (Fran
e)and Polish A
ademy of S
ien
es, and by the Polonium proje
t for Fren
h�Polish s
ienti�
 
ooperation.
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