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STOCHASTIC EFFECTS IN THE BISTABLEHOMOGENEOUS SEMENOV MODEL�B. Nowakowskia;, A. Lemarhandb and E. NowakowskaaInstitute of Physial Chemistry, Polish Aademy of SienesKasprzaka 44/52, 01-224 Warsaw, PolandbUniversité Pierre et Marie CurieLaboratoire de Physique Théorique des Liquides, C.N.R.S. U.M.R. 76004, plae Jussieu, 75252 Paris Cedex 05, FraneWarsaw University of AgriultureRakowieka 28, 02-528 Warsaw, Poland(Reeived November 15, 2001)We present the mesosopi desription of stohasti e�ets in a ther-mohemial bistable diluted gas system subjet to the Newtonian heatexhange with a thermostat. We apply the master equation inluding atransition rate for the Newtonian thermal transfer proess, derived on thebasis of kineti theory. As temperature is a ontinuous variable, this masterequation has a ompliated integro-di�erential form. We perform MonteCarlo simulations based on this equation to study the stohasti e�ets in ahomogeneous Semenov model (whih neglets reatant onsumption) in thebistable regime. The mean �rst passage time is omputed as a funtion ofthe number of partiles in the system and the distane from the bifurationassoiated with the emergene of bistability. An approximate analytialpredition is dedued from the Fokker�Plank equation assoiated with themaster equation. The results of the master equation approah are suess-fully ompared with those of diret simulations of the mirosopi partiledynamis.PACS numbers: 05.10.Gg, 82.33.Vx, 05.10.Ln, 82.20.Wt1. IntrodutionFlutuations in far-from-equilibrium hemial systems are often respon-sible for qualitatively new e�ets whih are not predited by the desriptionof the dynamis at the marosopi level. One of well-known phenomena ofthis kind are transitions between stable states in nonlinear systems whih� Presented at the XIV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 9�14, 2001.(1031)



1032 B. Nowakowski, A. Lemarhand, E. Nowakowskaexhibit multistability. The master equation approah [1�3℄ appears as a par-tiularly e�etive framework in studies of suh stohasti properties. Thisapproah is well developed for reation-di�usion proesses in isothermal sys-tems [4℄, for whih appliation of the master equation has been justi�ed byareful omparisons with the results of mirosopi simulations [5�7℄. How-ever, for thermal proesses the mesosopi treatment is muh less advaned.The master equation has been previously formulated for energy �utuationsin a system with a uniform temperature gradient [8℄ and in a simple modelwith the Knudsen mehanism of transport [9, 10℄. Reently, using the ki-neti theory of gases we have derived the master equation whih inludesstohasti e�ets in the Newtonian energy exhange between a diluted gassystem and a thermostat [11℄. In this paper, we apply this desription tothe thermohemial system in the bistable regime.We onsider a losed reator of volume V and surfae S ontaining areative gas whih is subjet to an energy balane due to an exothermalreation in the bulk and the Newtonian heat transfer through the walls ofthe reator. The temperature of the walls is assumed to be �xed at Twby fast energy exhanges with an external thermostat. In order to fous onthermal properties and to redue the deterministi dynamis to the evolutionof a single variable, Semenov [12℄ introdued the simplest feasible hemialreation A+A! produts+heat (Q), in whih the onsumption of reatantA is negleted. It amounts to onsidering the shemeA+A! A+A+heat ; (1)for example, in the presene of an external light soure [11℄. Aording tosheme (1), the total number N of partiles in the system and the onen-tration n remain onstant. The deterministi equation of energy balanereads: dEdt = krV n2Q� kank(T � Tw) ; (2)where kr and ka are respetively the rate onstants for reation (1) andaommodation of partiles at the walls. The expression of kr and ka arededued from the frequenies of partile ollisions in the bulk or with thewalls of the reator. Standard kineti theory alulations yield [11, 13℄:kr = 2�srr kT�m exp��E�kT � ; ka = Ssar2kT�m ; (3)where � is the ross setion for ollisions in the bulk, m is the mass ofpartile A, and E� is the ativation energy of reation (1). The oe�ientssr and sa are steri fators for reation and aommodation, respetively,and are related to steri onditions for these proesses. For the ideal gas,



Stohasti E�ets in Semenov Model 1033temperature is related to energy by the equation E = 32NkT . Equation (2)leads then to the following equation for the redued temperature � = T=Tw:d�dt = 13p� exp�� "��� (� � 1)!: (4)In order to redue the number of parameters, we have introdued above thedimensionless time and ativation energyt 4n�sr�kTw�m �1=2 QkTw ! t ; " = E�kTw ; (5)and we have de�ned a redued oe�ient for the Newtonian heat exhange = S�V kTwQ sasr : (6)Here, � = (p2n�)�1 denotes the mean free path of a gas moleule. Pa-rameter  gives some measure of the e�ieny of the Newtonian oolingwith respet to heat prodution by the exothermal reation. The weak de-pendene on p� in Eq. (4) is usually omitted in the standard marosopidesription of the Semenov model but it has already been inluded in pre-vious mirosopi treatments of thermohemial systems [14, 15℄.Depending on the parameter values ontrolling the prodution of reationheat and the Newtonian ooling, di�erent dynamial regimes are observed.As shown in Fig. 1, the line (� � 1) and the urve exp(�"=�) an haveeither one or three intersetion points [12℄ whih orrespond to the stationarysolutions of Eq. (4). Thus, the system has either a unique stable steady stateor two stable states �1 < �2, separated by an unstable one �u. The bistabilityarises and vanishes at bifuration points, at whih the line (�� 1) beomestangential to exp(�"=�). For a given ", this ondition yields the followingritial values of :� = 14" 1�r1� 4"!2 exp"�12" 1�r1� 4"!# : (7)Bistability an appear only if " > 4, in the range of  bounded by theritial values, + <  < � . Outside this domain, the system possessesonly a single stable stationary state whih lies either on the extintion (lower)branh for  > � , or on the ombustion (higher) branh for  < + . Inthis paper, we fous on the desription of stohasti e�ets in the bistableregime.
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Fig. 1. The two terms of the right-hand side of the deterministi equation (4):exp(�"=�) for " = 4:5, and the line (� � 1) for (a)  = 0:095 and (b)  = 0:1066.Case (a) orresponds to the explosive regime with a single intersetion point ofthe two urves, i.e. a unique stable state on the ombustion branh. Case (b)orresponds to the bistable regime with three intersetion points, the two extremeones are stable stationary solutions while the intermediate one is an unstable state.2. Master equationIn this setion, we give the main steps of the derivation of the masterequation for the Semenov thermohemial system reported in our reentpaper [11℄. The basi assumption is that elasti ollisions are muh morefrequent than reative ones, so that the veloity distribution funtion retainsthe Maxwellian form, orresponding to an instantaneous temperature T ofthe system. In this setion we employ simple, unsaled time t and tempera-ture T , beause the derivation involves expressions from the kineti theoryof gases whih are more familiar in their original forms.Energy exhange between the system and the thermostat is due to inelas-ti ollisions between partiles and the walls of the ontainer. The veloitydistribution funtion �out(v) of partiles hitting the total surfae of the on-tainer wall in a unit time is given by�out(v) = Sn� m2�kT �3=2 v? exp��mv22kT � ; v? > 0 ; (8)



Stohasti E�ets in Semenov Model 1035where n denotes the number density of partiles, and v? is a omponent ofveloity along outer normal to the surfae (a partiular orientation is notrelevant here sine the Maxwellian distribution is isotropi). Integration ofdistribution (8) over veloities yields the total ollision frequeny betweenpartiles and the walls. From another point of view, this equation indiatesthat partiles striking the wall have a biased Maxwellian veloity distribu-tion, that is the Maxwellian one saled by veloity v?. The partiles hittingthe wall are aommodated with a probability sa to the temperature Twof the wall. The aommodated partiles are immediately emitted from thewall and the normalized probability distribution of their veloities v0 is givenonsistently by the biased Maxwellian related to the temperature Tw of thewall �w(v0) = 12� � mkTw�2 jv0?j exp�� mv022kTw� ; v0? < 0 : (9)The transition rate for the system energy from E to E 0 inludes the rates oftransitions (v ! v0) for all ombinations of initial and �nal veloities allowedby the energy onstraint E � E 0 = 12mv2 � 12mv02. By means of Eqs. (8)and (9), the rate of energy transitions in the Newtonian heat exhange isalulated as follows:we(E ! E 0) = Ssan Zv?>0 � m2�kT �3=2 v? exp�� mv22kT �� Zv0?<0 12� � m2kTw�2 jv0?j exp�� mv022kTw��Æ� 12(mv2 �mv02)� (E � E 0)�dvdv0 : (10)As an be notied, our treatment of stohasti e�ets in the Newtonian heattransfer is di�erent from the approah applied usually to di�usive transferin the master equation [1,4℄. In that standard desription (extended also tothermal proesses [8�10℄) rates of transitions depend only on loal thermo-dynami variables, while we(E ! E 0) in Eq. (10) is a funtion of both thetemperature of the system and the thermostat. After a hange of variablesfrom energy to temperature, integration of Eq. (10) yields �nally the follow-ing rate of temperature transition �T = T 0 � T in the Newtonian thermalexhange
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we(T ! T +�T ) = S san � kT2�m�1=2 TTw(T + Tw)3��2 + (T + Tw)( 32N)j�T jTTw � 32 N 8>><>>: exp�� 32N j�T jT � for �T < 0 ,exp�� 32N�TTw � for �T > 0 .(11)This transition funtion is mostly on�ned to the narrow interval�T=N < �T < Tw=N , beause a relative hange of energy in a single inelas-ti partile�wall ollision is of the order of kT=E (kTw=E) whih for the idealgas results in the 1=N saling. The mean value of temperature transitionalulated by means of Eq. (11) yields the deterministi desription of theNewtonian heat transfer [11℄.The transition funtion we for the Newtonian heat exhange gives aontinuous spetrum of temperature hanges �T , unlike disrete hanges ofpartile numbers involved in standard master equations for reation-di�usionsystems [1, 4℄. Disretization of energy transfer an be applied as the very�rst approximation for the stohasti desription of the Newtonian ool-ing [16℄. This simplest approah onsists in assuming disrete temperaturejumps of some �xed length, but the frequeny of suh hopping an only bedetermined by mathing average rates to the deterministi desription [16℄.In ontrast to the Newtonian heat transfer, exothermal reation (1) givesdisrete transitions of T , sine a �xed portion of energy is always released in areative ollision. The reation heat Q results in the inrease of temperatureby �Tr = Q32Nk : (12)The transition rate for T is determined by the rate of the thermally ativatedreation (1) whih aording to Eqs. (2), (3) is given byWr(T ! T +�Tr) = 2V n2�� kT�m�1=2 sr exp��E�kT � : (13)The master equation an be ast to a simple form with the use of theomplete transition funtion w, whih inludes both we for ontinuous tran-sitions �T and Wr for �xed shifts �Tr:w(T ! T+�T ) = we(T ! T+�T )+Wr(T ! T+�Tr)Æ(�T��Tr) : (14)



Stohasti E�ets in Semenov Model 1037Using this omplete transition funtion de�ned for the ontinuous variable�T , the master equation for the distribution funtion of temperature in thethermohemial system has the following form��tP (T; t) = Z�T<T d(�T )P (T ��T; t)w(T ��T ! T )�P (T; t) Z�T>�T d(�T )w(T ! T +�T ) : (15)The above master equation is the basi theoretial result on whih our de-sription of �utuations in the Semenov system is founded. However, itsompliated integro-di�erential form prevents any more rigorous analytialtreatment. We study the stohasti e�ets in the thermohemial systemby means of Monte Carlo simulations appropriately based on Eq. (15). Thesimulation method of stohasti dynamis governed by a master equation fordisrete populations of hemial speies is well-founded [17℄; in the reentpaper [11℄ we presented a generalization of this method, neessary for anequation of the form (15) whih involves a ontinuous variable.The simulation algorithm onsists of the rule for generation of a singleelementary transition, in whih the system passes from an initial temper-ature T at time t to a �nal T + �T reahed at t + �t. The total rate ofesape from the initial state isWtot(T ) = Z d(�T )w(T ! T +�T )= S san� kT2�m�1=2 + V n2��4kT�m �1=2 sr exp��E�kT � ; (16)where the �rst term results from the Newtonian heat exhange and the se-ond one from the exothermal reation. Consequently, the waiting time toexit from the state with temperature T is �t = 1=Wtot(T ) (more exatly, itan be sampled from the exponential distributionWtot(T ) exp(�Wtot(T )�t)harateristi for the Markovian proesses [18℄). While time is inrementedby �t, a proess e�etive for the transition is hosen with the probabilityproportional to its ontribution to the total transition rate given in Eq. (16).Thus, the hane to selet the reation is Wr=Wtot, as given in the standardmethod [17℄, and the assoiated temperature inrement is �Tr. Aord-ingly, seletion of a Newtonian heat exhange proess means a hoie of atemperature hange �T sampled aording to the probability distributionwe(�T )=Wtot for the ontinuous variable �T . Details of the later samplingproedure an be found in the previous paper [11℄. After the transition is



1038 B. Nowakowski, A. Lemarhand, E. Nowakowskaperformed, the next step is generated starting from the updated tempera-ture T 0 = T +�T at urrent time t0 = t+�t. The sequene of transitionsforms then a stohasti trajetory of T (t), and the averages are alulatedfor ensembles of suh trajetories.The results based on the mesosopi dynamis are veri�ed by omparisonwith the simulations of the system evolution at the mirosopi level. In ahomogeneous system, the positions of the partiles an be disregarded, andtheir veloities are the only relevant variables. We use the Diret SimulationMonte Carlo (DSMC) method developed by Bird [19℄ to simulate partileollisions in the diluted gas system. We employ the moleular model of rea-tive hard spheres, widely used in mirosopi simulations [20,21℄ and kinetitheory studies [22�24℄ of hemial systems. The total ross setion � is likefor hard spheres, but a part of it orresponds to reation. A ollision isreative (i) with the probability given by the steri fator sr, and (ii) if therelative veloity (vk�vl) along the diretion onneting enters of partilesk, l at impat exeeds a ertain threshold value g�. The frequeny of reativeollisions in this line-of-enters model is given by Eq. (13) with the ativationenergy E� = 12�g�2, where � = m=2 is the redued mass. After a reativeollision, the kineti energy of the partiles that reated is inreased by thevalue of the reation heat Q. Generating ollisions of partiles with thesystem boundaries, we assume that the ontainer is ubi, and so ollisionswith the walls in x, y, and z diretions are hosen with equal probability.Partiles hitting the walls are thermally aommodated with the probabilitysa, otherwise they are speularly re�eted. In fat, we neglet ollisions withelasti re�etion, beause they do not have any thermal e�et nor ontributeto maxwellization of the partile veloity distribution. Veloities of parti-les emitted after thermal aommodation are sampled from the normalizedbiased Maxwellian distribution (9), appropriate for the ollision diretion.3. Fokker�Plank approximationSine the range of �T dereases like 1=N , for large systems the masterequation (15) an be expanded to the Fokker�Plank di�erential equation,whih is muh easier for analytial treatment. The Fokker�Plank equationfor the dimensionless variables has the following form:��tP (�; t) = � �����(�)P (�; t)�+ �2��2��(�)P (�; t)�: (17)The oe�ients � and � in the di�erential terms of the Fokker�Plank equa-tion are given by the moments of the transition funtion:



Stohasti E�ets in Semenov Model 1039�(�) = Z w(� ! � +��)��d(��)= 13p� exp�� "��� (� � 1)! (18)�(�) = 12 Z w(� ! � +��)(��)2d(��)= 19Np� q exp�� "��+ (3 � 4� + 3�2)! ; (19)where we have introdued a dimensionless heat release as q = QkTw . Theoe�ient � of the seond, di�usive term in Eq. (17) is saled by the 1=Nfator, so that �utuations are relatively weaker for large systems. It shouldbe noted that the previous treatment of the stohasti thermohemial sys-tem [25℄ yielded the Fokker�Plank equation (17) with the following oe�-ient in the di�usive term:�1(�) = 19Np� q exp�� "��+ (1 + �2)! : (20)The di�erene between Eqs. (19) and (20) omes only from the di�erentstohasti desriptions of Newtonian heat exhange. It beomes larger when� inreases.The Fokker�Plank equation an be used to easily evaluate �utuationsaround the stable stationary state for large N . The equation for the sta-tionary distribution funtion Ps has the form�p� exp�� "��� (� � 1)!Ps(�)+ ��� " 13Np� q exp�� "��+ (3� 4� + 3�2)!Ps(�)# = 0 : (21)Sine Ps is on�ned for large N mostly in a narrow interval around �s, theoe�ients of the two terms an be expanded around the stationary state�s. For �, two terms of the expansion must be retained, beause the lowestterm vanishes at the stationary state, �(�s) = 0. Thus, the approximationfor �(�) an be written as�(�) � d�d� �����s (� � �s) + : : : = � "�2s (�s � 1)� � (� � �s) : (22)



1040 B. Nowakowski, A. Lemarhand, E. NowakowskaThe expression exp(� "=�s) has been eliminated from the above term bymeans of the equation �(�s) = 0. The variation of the seond oe�ientin the viinity of �s an be negleted with respet to variation of Ps(�)itself; this oe�ient is approximated simply by �(�) � �(�s). Under theseapproximations, Eq. (21) has the form� "�2s (�s�1)�1�(���s)Ps(�) = 13N �q(�s�1)+(3�4�s+3�2s )� ���Ps(�) : (23)The solution of this equation is the Gaussian around the mean �s and thedispersion is given by�� = 1N q(�s � 1) + (3� 4�s + 3�2s )3 �1� "�2s (�s � 1)� : (24)The previous desription of the thermohemial system [25℄ predits thefollowing dispersion of �utuations:�1� = 1N q(�s � 1) + (1 + �2s )3 �1� "�2s (�s � 1)� : (25)Both equations ertainly reover the well-known result for temperature �u-tuations in the equilibrium system (� = 1) under onstant volume. However,the di�erene between the two desriptions beomes pronouned in nonequi-librium onditions, as � inreases. Figure 2 shows the preditions of the twotheories for the steady states in the range 3 < �2 < 14, obtained by varying at the onstant ativation energy " = 4:5. Suh high temperatures maybe not ompletely realisti, beause the Semenov assumption of maintainingonstant reagent onentration is likely to fail for fast reations at high �.Nevertheless, these extreme onditions an be used to examine the validityof the two desriptions of �utuations by omparison with the appropriatesimulations at the mirosopi level. The divergene between the presentand the previous approahes in this range of high � is lear in Fig. 2. Simul-taneously, the results of the mirosopi simulations unambiguously pointout that the treatment developed in Ref. [11℄ and the present paper orretlydesribe the �utuations in a thermohemial system.
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Fig. 2. Standard deviation (saled by pN) of redued temperature around �2 ver-sus stationary state of high temperature �2. The rosses depit the results obtainedfrom mirosopi DSMC simulations for variable  and for redued ativation en-ergy " = 4:5, redued heat release q = 5, reation steri fator sr = 0:01, number ofpartiles N = 10000, ratio of mean free path and length of the system �=L = 0:5.The solid line (resp. dashed line) is the analytial predition dedued from theFokker-Plank equation with our expression of �(�) (resp. previous expression�1(�) of Baras et al. [25℄).4. Flutuation-indued transitions in the bistable regimeStohasti e�ets are manifested most prominently in regimes sensitive toeven small perturbations, like the viinity of bifurations [1,4℄. Flutuation-indued transitions between stable states in bistable systems [2, 26, 27℄ arewidely studied stohasti phenomena of this kind. In the bistable domainand for initial onditions in the basin of attration of the stationary state �1,the deterministi desription predits an unavoidable relaxation toward thestationary state at low temperature �1. However, if the level of �utuationsis su�ient, the esape over the potential barrier and the �nal relaxationtoward the stationary state of high temperature �2 may be observed asshown in Fig. 3 for stohasti trajetories dedued from MC simulations ofthe master equation. Using the Fokker�Plank equation given in Eq. (17),we wish to determine an analytial expression of the mean �rst passagetime � from �1 to �2. Standard alulations [26,28,29℄ lead to the followingexpression of �(�) for a motion starting from � between a re�eting barrierat �re and an absorbing barrier at �abs:�(�) = �absZ� exp(U(�0))d�0 �0Z�re exp(�U(�00))�(�00) d�00 ; (26)
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Fig. 3. Temperature � as a funtion of time in the bistable domain with " =4:5 and  = 0:1. The dashed lines are three stohasti realisations obtained byMC simulations of the master equation for N = 10000. The solid line is thedeterministi evolution.where funtion U(�) is de�ned as:dUd� = ��(�)�(�) : (27)We alulate the mean esape time in a bistable system from the bottomof the left hand well, i.e. for � = �1. Noting that a partile, in going overthe barrier to the right well, takes most of the time in atually surmountingthe barrier, funtion U(�) is evaluated in the �rst integral by its expansionaround �u: U(�) ' U(�u)� �0(�u)2�(�u)(� � �u)2 ; (28)where �0(�) = d�d� . In the seond integral, funtion U(�) is evaluated by itsexpansion around the loal minimum �1 as follows:U(�) ' U(�1)� �0(�1)2�(�1) (� � �1)2 : (29)Following the standard steepest desent approximation, we extend the limitsof the two integrations in Eq. (26) from �1 to +1. We �nally obtain thefollowing approximate value for the mean �rst passage time:� = 2�s �(�u)�(�1)j�0(�1)j�0(�u) exp�U(�u)� U(�1)� : (30)



Stohasti E�ets in Semenov Model 1043The expliit expressions of the drift �(�) and di�usion term �(�), given inEqs. (18), (19), and the de�nition of funtion U , given in Eq. (27), havebeen used to ompute � in Fig. 4 for di�erent values of partile number N .Four di�erent approahes are ompared in this �gure showing the results ofmirosopi simulations using DSMC method, MC simulations of the mas-ter equation (15), the analytial predition given in Eq. (30) and deduedfrom Fokker�Plank equation, and �nally, the analogous analytial predi-tion dedued from the previous works of Baras et al. [25℄. Figure 4 exhibitsthe expeted exponential dependene of � with the number of partiles N .

Fig. 4. Logarithm of mean �rst passage time h�i versus number of partiles N .The squares show the results of MC simulations based on the master equation,the rosses depit the results obtained from mirosopi DSMC simulations for thefollowing parameter values: redued ativation energy " = 4:5, Newtonian exhangeoe�ient  = 0:1, redued heat release q = 5, reation steri fator sr = 0:01, ratioof mean free path and length of the system �=L = 0:5. The solid line (resp. dashedline) is the analytial predition dedued from the Fokker�Plank equation withour expression of �(�) (resp. previous expression �1(�) of Baras et al. [25℄).The good agreement between the results of the master equation and miro-sopi simulations on�rms the validity of the transition probabilities givenin Eq. (11). However, the also satisfying agreement between these two ap-proahes on one hand, and the approximate analytial results dedued fromFokker�Plank equations on the other, prove that the mean �rst passagetime is not a very disriminating quantity. Note that the expliit expressionof the transition rate for the Newtonian heat exhange is used to ompute



1044 B. Nowakowski, A. Lemarhand, E. Nowakowskathe di�usion term �(�) in the Fokker�Plank equation. However, the devi-ation between the value of �(�) dedued from our master equation and theprevious results [25℄ �1(�) is not su�ient to lead to notieable variationsof the mean �rst passage time � onsidered as a funtion of the number ofpartiles N .In the bistable domain, the height of the potential barrier between �1and �2 inreases with the oe�ient for the Newtonian heat exhange .Aordingly, Eq. (30) predits a rapid inrease of � with  as shown inFig. 5. As for the dependene on the number of partiles, the analytialpreditions for � dedued from the Fokker�Plank equation, using either ourexpression of �(�) or the previous value �1(�) of Baras et al. [25℄ are in goodagreement with the mean �rst passage time dedued from MC simulationsof the master equation (15). It is to be noted that the deviation between theanalytial preditions of �(�) and �1(�) inreases with �. In Setion 3, thesedi�erent approahes have already been used to haraterize the �utuationsin the viinity of the stationary state of high temperature, �2. They lead towell-de�ned di�erenes and their omparison an be onsidered as a morereliable test of our expression of the master equation.

Fig. 5. Mean �rst passage time h�i versus distane from the bifuration ontrolledby Newtonian exhange oe�ient . The squares show the results of MC simu-lations based on the master equation for the following parameter values: reduedativation energy " = 4:5, partile number N = 10000. The solid line (resp. dashedline) is the analytial predition dedued from the Fokker�Plank equation withour expression of �(�) (resp. previous expression �1(�) of Baras et al. [25℄).



Stohasti E�ets in Semenov Model 1045In order to diretly hek the major hypothesis on whih our expressionof the master equation relies, i.e., the Maxwellian form of the distributionof partile veloities, we estimate in Fig. 6 the amplitude of the non equi-librium e�ets appearing when the hemial reation and the ooling at thewalls beome faster. The ontrol parameter hosen is the steri fator srfor hemial reation. Then the steri fator sa for thermal aommodationfollows from Eq. (6). All the other parameters are onstant. In partiular,

Fig. 6. Evaluation of the departure from partial equilibrium in mirosopi DSMCsimulations for the following parameter values: redued ativation energy " = 4:5,Newtonian heat exhange oe�ient  = 0:1, redued heat release q = 5, partilenumber N = 1000, ratio of mean free path and length of the system �=L = 0:5.Variations with hemial steri fator sr of the kurtosis � of the partile veloitydistribution (open triangles) and of the relative deviation (h�i � �2)=�2 of the hightemperature stationary state from its deterministi predition �2 (rosses).the number of partiles, i.e., the �utuation level is �xed. Using mirosopisimulations based on DSMC method, we ompute the kineti energy of thepartiles when the system is stabilized around the stationary state of hightemperature: we �nd that the absolute value of the relative deviation of tem-perature from its deterministi predition, �2, inreases with sr. Moreover,the fourth order umulant of the partile veloity distribution or kurtosis� = hv4i � 53 hv2i2hv2i2 (31)



1046 B. Nowakowski, A. Lemarhand, E. Nowakowskainreases with the speed of the proesses. These nonvanishing values ofthe kurtosis reveal the lost of the Maxwellian shape of the partile veloitydistribution in relation with the departure from partial equilibrium. Cor-retions to the deterministi temperature and kurtosis smaller than 1% areobserved when the steri fator obeys sr � 0:01. The results of the miro-sopi simulations using DSMC method that are given in this paper havebeen obtained for the value sr = 0:01, whih imposes already very slowproesses and inreases aordingly the duration of the simulations.5. ConlusionsWe have performed a mesosopi desription [11℄ of a thermohemialgaseous Semenov system in the bistable regime. Our approah is based ona master equation inluding a term for stohasti energy transfer, derivedfrom the statistis of inelasti ollisions between the gas partiles and thethermostated walls. This transition rate takes into aount the ontinu-ous spetrum of energy transferred in the Newtonian heat exhange, unliketransition funtions for disrete populations of speies in standard reation-di�usion master equations. Consequently, the stohasti equation for thethermohemial system has a ompliated integro-di�erential form, makinghopeless any more rigorous analytial treatments. In order to solve thismaster equation for a ontinuous stohasti variable, we have extended themethod of Monte Carlo simulations developed by Gillespie [17℄ for disretevariables in reation-di�usion proesses.We have investigated the stohasti e�ets observed in the bistableregime and analyzed �utuation-indued transitions between the two sta-ble stationary states of the system. Di�erent methods were used to omputethe mean �rst passage time from one stationary state to another one: wehave ompared the results obtained from the master equation approah withthose of mirosopi simulations of the partile dynamis. The good agree-ment between the two series of results on�rms the validity of the presentedmesosopi desription. An analytial expression for the mean �rst passagetime is determined using the Fokker�Plank equation dedued from the mas-ter equation. This approximate analytial treatment gives satisfying results,omparing well with the Monte Carlo simulations of the master equation.We thank for the support by the projet no. 1639 from CNRS (Frane)and Polish Aademy of Sienes, and by the Polonium projet for Frenh�Polish sienti� ooperation.
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