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AMORPHOUS THIN FILM GROWTHSIMULATION METHODS FORSTOCHASTIC DEPOSITION EQUATIONS�Martin Raible, Stefan J. Linz and Peter HänggiTheoretis
he Physik I, Institut für Physik, Universität Augsburg86135 Augsburg, Germany(Re
eived November 27, 2001)Di�erent methods for the numeri
al solution of a sto
hasti
 growthequation 
apturing the essen
e of amorphous thin �lm growth are presentedand 
ompared. We show numeri
ally that the �nite di�eren
e approxima-tion and the spe
tral Galerkin method yield the same results within thesame a

ura
y and roughly 
omparable 
omputation time. We also explainhow sto
hasti
 �eld equations 
an be solved using �nite element approxi-mations.PACS numbers: 02.60.Cb, 02.60.Lj, 02.50.Ey, 68.55.�a1. Introdu
tionThe topi
 of formation and spatio-temporal evolution of surfa
es gen-erated by deposition pro
esses has re
ently developed into a highly a
tiveresear
h area of statisti
al physi
s (see Ref. [1℄). Spe
i�
ally, the growthpro
ess of the surfa
e of the deposited �lm, as it appears in mole
ular beamepitaxy or physi
al vapor deposition experiments, is determined by the 
om-petition between roughening due to the deposition of parti
les and smooth-ing due to surfa
e di�usion e�e
ts [2�6℄. Experimental studies on amorphous�lms deposited by ele
tron beam evaporation have revealed the formationof moundlike surfa
e stru
tures on a mesos
opi
 length s
ale [7�10℄. Thisindi
ates that 
ontinuum models based on sto
hasti
 �eld equations of theform �tH = G(H) + � + F ; (1)
an serve as a useful tool for the understanding of the growth dynami
s.Here, H(~x; t) represents the height of the surfa
e above a given substrateposition ~x at time t, as shown in Fig. 1. G(H) represents a fun
tionalof the spatial derivatives of the height fun
tion H and in
ludes all surfa
e� Presented at the XIV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 9�14, 2001.(1049)
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yFig. 1. Sket
h of the vapor deposition of an amorphous �lm on a substrate.relaxation pro
esses and possible growth instabilities. F denotes the meandeposition rate, and � quanti�es the deposition noise that represents the�u
tuations of the deposition �ux around its mean F . These �u
tuationsare assumed to be Gaussian white, i.e.h�(~x; t)i = 0 ; h�(~x; t)�(~y; t0)i = 2DÆ2(~x� ~y)Æ(t � t0) ; (2)where the bra
kets denote ensemble averaging andD the �u
tuation strength.A transformation into a frame 
omoving with the deposition rate F , h(~x; t) =H(~x; t)�Ft, yields a 
orresponding evolution equation for the height pro�leh(~x; t) �th = G(h) + � : (3)A 
omparison with experimental data for amorphous Zr65Al7:5Cu27:5�lms deposited by ele
tron beam evaporation has re
ently eviden
ed a goodquantitative agreement between numeri
al solutions of the model equation[11�13℄ �th = a1r2h+ a2r4h+ a3r2(rh)2 + a4(rh)2 + � (4)and experimental measurements up to the largest, experimentally observedlayer thi
kness of 480 nm [11℄. Moske [14℄ had already suggested the equa-tion �th = a2r4h+ a3r2(rh)2 + � as a model for amorphous �lm growth.This equation, however, is not able to 
apture the experimentally observedpattern-forming surfa
e stru
ture. Based on mi
ros
opi
 models [12�14℄ forthe governing surfa
e relaxation me
hanisms, it has been found that the
oe�
ients a1, a2, and a3 in Eq. (4) are negative, whereas a4 is positive.The term a1r2h with negative a1 represents in 
ombination with the terma2r4h the same growth instability as in the Kuramoto�Sivashinsky equa-tion, that is known to trigger the formation of moundlike surfa
e stru
tures.For a mathemati
al proof of existen
e of a solution of Eq. (4) in the one-dimensional 
ase we refer to Ref. [15℄.
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e growth equations of the form (3) and (4) are usually solved on aquadrati
 area [0; L℄2 subje
t to periodi
 boundary 
onditions. The initialstate is given by h(~x; 0) = 0, 
orresponding to an initially �at substrate.In order to 
ompare the solutions of su
h sto
hasti
 growth equations withexperimental results, experimentally a

essible statisti
al quantities have tobe introdu
ed. The 
orrelation length R
(t) and the surfa
e roughness w(t)are su
h 
hara
teristi
 quantities and are determined by the height�height
orrelation fun
tionC(r; t) = �� 1L2 Z d2x [h(~x; t)� h(t)℄[h(~x+ ~r; t)� h(t)℄��j~rj=r ; (5)where h(t) = (1=L2) R d2xh(~x; t) denotes the spatial average of the height,and hh: : :iij~rj=r denotes the 
ombined ensemble and radial average. Spe
i�-
ally, R
(t) is given by the radius r of the �rst maximum of C(r; t) o

urringat nonzero values of r and the square of the surfa
e roughness results fromtaking the limit r = 0 in C(r; t), i.e. w2(t) = C(0; t). The quantities w(t)and R
(t) 
hara
terize the typi
al height and periodi
ity length s
ales of themoundlike surfa
e stru
ture.The aim of this paper is twofold. First, using the spe
i�
 example ofEq. (4), we present three di�erent methods to numeri
ally solve sto
hasti
�eld equations: the �nite di�eren
e method, the spe
tral Galerkin method,and the �nite element method. Here, parti
ular fo
us is put on the in
orpo-ration of the sto
hasti
 
ontributions in these numeri
al s
hemes. Se
ond,by spe
i�
 
al
ulations of the 
orrelation length R
(t) and the surfa
e rough-ness w(t) arising from Eq. (4), we 
ompare the numeri
al e�
ien
y of the�nite di�eren
e and the spe
tral Galerkin method. The presented s
hemes
an also serve as a guide for the numeri
al solution of sto
hasti
 growthequations with di�erent fun
tional stru
ture.2. Finite di�eren
e methodThe most 
ommon method to numeri
ally integrate sto
hasti
 �eld equa-tions su
h as Eq. (3) is based on a dire
t spatio-temporal dis
retization ona 
ubi
 grid with a spatial latti
e 
onstant �x = �y = L=N and a timestep �tn. The �nite di�eren
e dis
retization of the general form (3) of asto
hasti
 deposition equation readsh(n+1)i;j = h(n)i;j +�tnGi;j [h(n)k;l ℄ + Pn�(n)i;j (6)with Pn =p24D�tn=(�x)2 : (7)



1052 M. Raible, S.J. Linz, P. HänggiHere, h(n)i;j denotes the spatial average of the height fun
tion h at the timetn on one of N2 squares of a quadrati
 latti
e on [0; L℄2, i.e.h(n)i;j = 1(�x)2 (i+1=2)�xZ(i�1=2)�x dx (j+1=2)�xZ(j�1=2)�x dy h(x; y; tn) (8)with i; j 2 Z. The quantity �tn = tn+1� tn denotes the size of the generallyvariable time step, and the quantities �(n)i;j are independent random numberstaken from a uniform distribution between �1=2 and 1=2. Gi;j [h(n)k;l ℄ is asuitable �nite di�eren
e approximation of the fun
tional G(h) at the timetn and at the position (i�x; j�y). Di�erent authors [16�18℄ have used �nitedi�eren
e s
hemes of the type (6) in order to numeri
ally solve the Kardar�Parisi�Zhang-equation �th = �r2h+�(rh)2+� [19℄. The sto
hasti
 
ontri-bution Pn�(n)i;j on the RHS of Eq. (6) represents the noise � integrated overthe time interval [tn; tn + �tn℄ and spatially averaged on the same squarearound the point (i�x; j�y) as in the de�nition of h(n)i;j , Eq. (8),q(n)i;j = 1(�x)2 tn+�tnZtn dt (i+1=2)�xZ(i�1=2)�x dx (j+1=2)�xZ(j�1=2)�x dy �(x; y; t) : (9)Here, q(n)i;j and the sto
hasti
 term Pn�(n)i;j in the numeri
al s
heme (6) havethe same statisti
al mean hq(n)i;j i = hPn�(n)i;j i = 0 and the same varian
eh(q(n)i;j )2i = h(Pn�(n)i;j )2i = 2D�tn=(�x)2. In pra
ti
e, it is not ne
essary torepla
e the terms Pn�(n)i;j by the normally distributed random numbers q(n)i;jbe
ause their �rst and se
ond moments are equal and their higher momentsare small, i.e. of the order O(�t2n). This argument originates from the nu-meri
al integration theory of sto
hasti
 ordinary di�erential equations [20℄.It 
an also be used here be
ause, after �xing the noise strength D togetherwith all other possible 
oe�
ients of Eq. (3) in
luding the latti
e spa
ing �xand then keeping only the size of the time step �tn variable, Eq. (6) 
onsti-tutes an expli
it Euler s
heme for a system of sto
hasti
 ordinary di�erentialequations.In order to derive a �nite di�eren
e approximation of Eq. (4) we de
om-pose this equation into the system of equations�th = r2w + a3r2v + a4v + � ; (10)w = a1h+ a2r2h ; (11)v = (rh)2 : (12)



Amorphous Thin Film Growth: Simulation Methods : : : 1053By using 
entral di�eren
e approximations in spa
e and an expli
it Eulers
heme in time we obtain the numeri
al pro
edureh(n+1)i;j = h(n)i;j + �tn(�x)2 hw(n)i+1;j + w(n)i�1;j +w(n)i;j+1 + w(n)i;j�1 � 4w(n)i;j i+ �tn(�x)2 a3 hv(n)i+1;j + v(n)i�1;j + v(n)i;j+1 + v(n)i;j�1 � 4v(n)i;j i+�tna4v(n)i;j + Pn�(n)i;j ; (13)w(n)i;j = a1h(n)i;j + a2(�x)2 hh(n)i+1;j + h(n)i�1;j + h(n)i;j+1 + h(n)i;j�1 � 4h(n)i;j i ;(14)v(n)i;j = 13(�x)2 ��h(n)i+1;j � h(n)i;j �2 + �h(n)i+1;j � h(n)i;j ��h(n)i;j � h(n)i�1;j�+ �h(n)i;j � h(n)i�1;j�2 + �h(n)i;j+1 � h(n)i;j �2+ �h(n)i;j+1 � h(n)i;j ��h(n)i;j � h(n)i;j�1�+ �h(n)i;j � h(n)i;j�1�2� : (15)This numeri
al s
heme is of the form (6). An alternative �nite di�eren
eapproximation of v = (rh)2 would readv(n)i;j = 14(�x)2 ��h(n)i+1;j � h(n)i�1;j�2 + �h(n)i;j+1 � h(n)i;j�1�2� : (16)However, our numeri
al simulations have revealed that in the time range thatis dominated by the nonlinear terms of Eq. (4) the 
omputational pro
edure(13)�(15) possesses a better numeri
al stability than the numeri
al s
heme
omposed of equations (13), (14), and (16).As a spe
i�
 appli
ation, we have solved Eq. (4) using the �nite dif-feren
e approximation (13)�(15). The 
hosen parameters were L = 200,a1 = �0:1045, a2 = �0:4044, a3 = �0:13, a4 = 0:07, and D = 0:022. Theseparameters are up to a res
aling of time in agreement with the parametersthat resulted from a 
omparison with the experiments [11℄. In Fig. 2, wepresent the resulting surfa
e roughness w(t) and 
orrelation length R
(t)for N2 = 2002 and N2 = 4002 grid points. Their di�eren
e is not largerthan 3.6%.
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Fig. 2. Correlation length R
(t) and surfa
e roughness w(t) 
al
ulated from Eq. (4)using two di�erent numeri
al methods on an interval [0; L℄2 of the size L = 200subje
t to periodi
 boundary 
onditions. The parameters were a1 = �0:1045,a2 = �0:4044, a3 = �0:13, a4 = 0:07, and D = 0:022. The results ensuing fromthe �nite di�eren
e method (13)�(15) with N2 = 2002 and N2 = 4002 grid pointsare depi
ted by the dashed and the dash-dotted lines, respe
tively. The resultsthat were determined by the spe
tral Galerkin method (22)�(27), (29), (30) withN = 42 and N = 85 are represented by the dotted and the solid lines, respe
tively.Therefore, ea
h part of this �gure 
ontains four di�erent lines. As a result of thegood agreement between the di�erent simulation methods, the di�eren
e betweenmost of these lines is not visible.
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tral Galerkin methodThe spe
tral Galerkin method is a numeri
al method to solve the spa-tial evolution of partial di�erential equations in Fourier spa
e. It is espe-
ially e�
ient in the time interval where the linear parts of the equationdominate. For analyti
al and numeri
al results on the 
onvergen
e of thespe
tral Galerkin method for the one-dimensional version of Eq. (4) we referto Ref. [15℄. In this paper, we fo
us on sto
hasti
 growth equations in twospatial dimensions. Then, Eq. (4) reads in Fourier spa
e�t~h(~k; t) = �(k)~h(~k; t) + (�a3k2 + a4)~v(~k; t) + ~�(~k; t) (17)with �(k) = �a1k2 + a2k4 ; (18)~h(~k; t) = Z d2xh(~x; t) exp(�i~k � ~x) ; (19)~v(~k; t) = Z d2x [rh(~x; t)℄2 exp(�i~k � ~x) ; (20)~�(~k; t) = Z d2x �(~x; t) exp(�i~k � ~x) : (21)For the time dis
retization usually a semi-impli
it Euler s
heme is applied~h(n+1)(~k) = ~h(n)(~k) + �tn�(k)~h(n+1)(~k)+�tn(�a3k2 + a4)~v(n)(~k) + ~q(n)(~k) ; (22)where ~h(n)(~k), ~v(n)(~k), and ~q(n)(~k) are a short hand notation for ~h(~k; tn),~v(~k; tn), and the noise 
ontribution: ~q(n)(~k) = R tn+�tntn dt ~�(~k; t). The waveve
tor ~k is of the form ~k = 2�L (nx; ny) with nx; ny 2 Z. The semi-impli
ittime dis
retization has the advantage that larger time steps �tn are allowedin 
omparison to an expli
it s
heme if the linear terms of Eq. (4) dominate.The 
ontributions ~q(n)(~k) from the deposition noise are 
omplex randomnumbers whose real and imaginary parts are up to the identities Re ~q(n)(~k) =Re ~q(n)(�~k) and Im ~q(n)(~k) = �Im ~q(n)(�~k) independent, normally dis-tributed random numbers. Their �rst and se
ond moments readhRe ~q(n)(~k)i = 0 ; (23)hIm ~q(n)(~k)i = 0 ; (24)h[Re ~q(n)(~k)℄[Re ~q(n)(~k0)℄i = 8<: 2D�tnL2 if ~k = ~k0 = 0 ;D�tnL2 if � ~k = ~k0 6= 0 ;0 otherwise , (25)



1056 M. Raible, S.J. Linz, P. Hänggih[Re ~q(n)(~k)℄[Im ~q(n)(~k0)℄i = 0 ; (26)h[Im ~q(n)(~k)℄[Im ~q(n)(~k0)℄i = 8<: D�tnL2 if ~k = ~k0 6= 0 ;�D�tnL2 if � ~k = ~k0 6= 0 ;0 otherwise . (27)Here, it is interesting to note that the dis
rete Fourier transform of thesto
hasti
 
ontribution to the �nite di�eren
e s
heme (6)~q(n)�x(~k) = (�x)2Xj;l Pn�(n)j;l exp[�i(kxj�x+ kyl�x)℄ (28)has the same �rst and se
ond moments (23)�(27) if the wave ve
tors ~k =(kx; ky) are in the range ��=�x < kx < �=�x and ��=�x < ky < �=�x.This also 
on�rms that the deposition noise � has been given the 
orre
tweight in the �nite di�eren
e method (6).Equation (22) 
an only be solved in a �nite area A of the Fourier spa
ethat 
onsists of wave ve
tors ~k = 2�L (nx; ny) with �N � nx; ny � N whereN is a su�
iently large integer number. If ~k lies outside of the area A weset ~h(n)(~k) = 0. Therefore, we a
tually 
ompute (2N + 1)2 modes. It isne
essary to determine the ~v(n)(~k) from the ~h(n)(~k). For this, we determinerh(~x; tn) in real spa
e byrh(~x; tn) = 1L2 X~k i~k~h(n)(~k) exp(i~k � ~x) (29)on M2 equidistant grid points in [0; L℄2 that have the distan
e �x = L=M .Then, we 
al
ulate [rh(~x; tn)℄2 on the M2 grid points and �nally transformit ba
k into the Fourier spa
e:~v(n)(~k) = (�x)2X~x [rh(~x; tn)℄2 exp(�i~k � ~x) : (30)Note that M must be a power of 2 be
ause we use the fast Fourier transfor-mation [21℄. In addition, M must also ful�ll the 
ondition M � 3N + 1, inorder to take 
are of the known �aliasing� problem. The sumP~k in Eq. (29)is restri
ted to wave ve
tors that lie inside the area A. Therefore, the sumin the relation [rh(~x; tn)℄2 = 1L2 X~k ~v(n)(~k) exp(i~k � ~x) (31)refers to a larger area B of wave ve
tors ~k = 2�L (nx; ny) with integer numbersnx and ny between �2N and 2N . However, two di�erent Fourier modes with
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tors ~k = 2�L (nx; ny) and ~k0 = 2�L (n0x; n0y) 
annot be distinguished onthe M2 grid points if n0x � nx and n0y � ny are divisible by M . In that 
asethe RHS of Eq. (30) would only yield the sum of their Fourier 
oe�
ients.Sin
e we only need the 
oe�
ients ~v(n)(~k) with ~k 2 A, it is su�
ient andne
essary that all Fourier modes with wave ve
tors in A 
an be distinguishedfrom di�erent non-vanishing Fourier modes whose wave ve
tors lie inside thearea B. Therefore, �N +M � 2N + 1 must hold, yielding the 
onditionM � 3N + 1. Note that in the presen
e of a third order nonlinearity likee.g. r� (rh)3 the 
ondition M � 3N +1 had to be repla
ed by M � 4N +1and that in the presen
e of a tenth order term like e.g. (rh)10 M had toful�ll the 
ondition M � 11N + 1, and so on. On the other hand, if wehad to 
al
ulate a non-polynomial nonlinearity like e.g. 1=p1 + (rh)2, the�aliasing� of di�erent Fourier modes 
ould not be 
ompletely avoided. In that
ase, we had to rely on the damping of Fourier modes with large wave ve
tors~k resulting from stabilizing terms like e.g. a2r4h in Eq. (4) that smooth theheight pro�le h(~x; t), so that also nonlinearities like 1=p1 + (rh)2 basi
ally
onsist of Fourier modes from a �nite area of the Fourier spa
e.As a spe
i�
 appli
ation, we have solved Eq. (4) using the spe
tralGalerkin method (22)�(27), (29), (30) and using the same parameters asin the previous se
tion. Fig. 2 shows the resulting surfa
e roughness w(t)and 
orrelation length R
(t) for N = 42 and N = 85. Their di�eren
e isnot larger than 5.6% for t =5, 15, 30, and 60 and not larger than 0.69% fort 2 [100; 480℄. Therefore it seems that our numeri
al results arising from the�nite di�eren
e method as well as from the spe
tral Galerkin method are ofsu�
ient pre
ision. The CPU-times required for one simulation run on thesame 
omputer were 1h 6min for the �nite di�eren
e method with N2 = 2002grid points, 1h 27min for the spe
tral Galerkin method with N = 42, 11h29min for the �nite di�eren
e method with N2 = 4002 grid points, and 37h36min for the spe
tral Galerkin method with N = 85. As a 
onsequen
e,the spe
tral Galerkin method appears to be 
omputationally less e�
ient ifhigh pre
ision of the numeri
al solution of Eq. (4) is demanded.4. Finite element methodIn this se
tion, we explain how the deposition noise � 
an be taken into
onsideration in a third numeri
al simulation method, the �nite elementsolution of Eq. (4). To that end, Eq. (4) is de
omposed into the system ofequations �th = r2w + a4(rh)2 + � ; (32)w = a1h+ a2r2h+ a3(rh)2 : (33)



1058 M. Raible, S.J. Linz, P. HänggiThese equations are multiplied with test fun
tions �i from the Sobolev spa
eH1per([0; L℄2) and then integrated on [0; L℄2 [22℄. In order to simulate thetime evolution an impli
it Euler s
heme 
an be applied. The resulting 
om-putational s
heme then readsZ �ih(n+1) = Z �ih(n) ��tn Z (r�i) � (rw(n+1))+�tna4 Z �i(rh(n+1))2 + Z(n)i ; (34)Z �iw(n+1) = a1 Z �ih(n+1) � a2 Z (r�i) � (rh(n+1))+a3 Z �i(rh(n+1))2; (35)Z(n)i = tn+�tnZtn dtZ d2x�i(~x)�(~x; t) ; (36)where h(n) and w(n) denote the fun
tions h and w at the time tn. Theequations (34)�(36) 
an a
tually only be solved for a �nite number of linearlyindependent test fun
tions �1; : : : ;�N 2 H1per([0; L℄2). Therefore, we try to�nd the solutions h(n+1) and w(n+1) in the subspa
e VN being spun by thefun
tions �1; : : : ;�N .In order to �nd the test fun
tions �1; : : : ;�N we subdivide the area[0; L℄2 into triangles. The triangulation 
omplies with the periodi
 bound-ary 
onditions and the following rules. Two di�erent triangles should shareeither one edge or one 
orner or not a single point. Two mesh points ofthe triangulation should not be 
onne
ted by more than one edge. The testfun
tions �i are de�ned by the properties, that (i) they are 
ontinuous fun
-tions on [0; L℄2 and ful�ll periodi
 boundary 
onditions, (ii) they are linearfun
tions on ea
h triangle, and (iii) that �i assumes the value 1 at the meshpoint Pi and the value 0 at all other mesh points Pk. As a result of thisde�nition, �i di�ers from zero only on the triangles that surround the meshpoint Pi.Before one 
an solve the system of the equations (34)�(35), the randomnumbers Z(n)i have to be generated. These random numbers are normallydistributed and have the momentsDZ(n)i E = 0; (37)DZ(n)i Z(n)k E = 2D�tn Z �i�k (38)



Amorphous Thin Film Growth: Simulation Methods : : : 1059for all i; k = 1; : : : ; N . This yields in 
ase i = k��Z(n)i �2� = 2D�tn16Xii A� ; (39)where PiiA� denotes the sum of the areas of the triangles that surroundthe mesh point Pi. If i 6= k, but Pi and Pk are neighbouring points, i.e. theyare 
onne
ted by a triangle edge, Eq. (38) yieldsDZ(n)i Z(n)k E = 2D�tn 112Xik A� ; (40)where Pik A� denotes the sum of the areas of the two triangles that haveone 
orner in Pi and one 
orner in Pk. If i 6= k, and Pi and Pk are notneighbouring points, Eq. (38) yieldsDZ(n)i Z(n)k E = 0 : (41)In order to get su
h random numbers, one 
an generate for ea
h triangleedge PiPk an independent, normally distributed random number Y (n)ik , thatpossesses the moments DY (n)ik E = 0 ; (42)��Y (n)ik �2� = 2D�tn 112Xik A� : (43)Then the random numbers Z(n)i 
an be determined by [23℄Z(n)i = XPk 6= Pi is a neighbouring point of Pi Y (n)ik : (44)An alternative possibility to get the random numbers Z(n)i is to generatefor ea
h mesh point Pi an independent, normally distributed random num-ber ~Z(n)i and for ea
h triangle PiPkPl an independent, normally distributedrandom number X(n)ikl , that have the momentsD ~Z(n)i E = 0 ; (45)�� ~Z(n)i �2� = 2D�tn 112Xii A� ; (46)DX(n)ikl E = 0 ; (47)��X(n)ikl �2� = 2D�tn 112Aikl ; (48)



1060 M. Raible, S.J. Linz, P. Hänggiwhere Aikl is the area of the triangle PiPkPl. Then the random numbersZ(n)i 
an be 
al
ulated byZ(n)i = ~Z(n)i + XPiPkPl has one 
orner in PiX(n)ikl : (49)Sin
e the number of triangle edges is equal to the number of mesh points plusthe number of triangles in [0; L℄2 (be
ause the periodi
 boundary 
onditionsare 
onsidered), the two alternatives (42)�(44) and (45)�(49) require thesame number of independent random numbers and therefore have the samee�
ien
y. 5. Con
lusionsIn this paper we have presented a detailed a

ount of three di�erentnumeri
al simulation methods for the solution of a sto
hasti
 �eld equationfor amorphous thin �lm growth. We have shown, that the �nite di�eren
emethod and the spe
tral Galerkin method yield the same surfa
e roughnessw(t) and the same 
orrelation length R
(t) and that these two methodspra
ti
ally have the same a

ura
y and e�
ien
y. It remains to show, thatalso the method using �nite element approximations yields the same results.A further mathemati
al 
hallenge presents the la
k of rigorous proofs ofthe 
onvergen
e of the di�erent numeri
al approximations of Eq. (4) andeven a mathemati
al proof of existen
e of a solution of Eq. (4) in the two-dimensional 
ase.This work has been supported by the DFG-Sonderfors
hungsberei
h 438Mün
hen/Augsburg, TP A1. We thank E. Nash for helpful dis
ussions andan introdu
tion to the non-sto
hasti
 Galerkin and �nite element methods.REFERENCES[1℄ A.L. Barabasi, H.E. Stanley, Fra
tal Con
epts in Surfa
e Growth, CambridgeUniversity Press, Cambridge, UK 1995; W.M. Tong, R.S. Williams, Annu.Rev. Phys. Chem. 45, 401 (1994); J. Krug, Adv. Phys. 46, 139 (1997); M. Mar-sili, A. Maritan, F. Toigo, J.R. Banavar, Rev. Mod. Phys. 68, 963 (1996).[2℄ D.E. Wolf, J. Villain, Europhys. Lett. 13, 389 (1990).[3℄ J. Villain, J. Phys. I 1, 19 (1991).[4℄ S. Das Sarma, P. Tamborenea, Phys. Rev. Lett. 66, 325 (1991).[5℄ Z.-W. Lai, S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).[6℄ M. Siegert, M. Plis
hke, Phys. Rev. E50, 917 (1994).



Amorphous Thin Film Growth: Simulation Methods : : : 1061[7℄ B. Reinker, M. Moske, K. Samwer, Phys. Rev. B56, 9887 (1997).[8℄ S.G. Mayr, M. Moske, K. Samwer, Mater. S
i. Forum 343-346, 221 (2000).[9℄ S.G. Mayr, M. Moske, K. Samwer, The Growth of Vapor Deposited Amor-phous ZrAlCu-Alloy Films: Experiment and Simulation, in H.-J. Bungartz,R.H.W. Hoppe, C. Zenger: Le
tures on Applied Mathemati
s, 2000, p. 233.[10℄ T. Salditt, T.H. Metzger, J. Peisl, B. Reinker, M. Moske, K. Samwer, Euro-phys. Lett. 32, 331 (1995).[11℄ M. Raible, S.G. Mayr, S.J. Linz, M. Moske, P. Hänggi, K. Samwer, Europhys.Lett. 50, 61 (2000).[12℄ M. Raible, S.J. Linz, P. Hänggi, Phys. Rev. E62, 1691 (2000).[13℄ M. Raible, S.J. Linz, P. Hänggi, Phys. Rev. E64, 31506 (2001).[14℄ M. Moske, Me
hanis
he Spannungen als Sonde für S
hi
htwa
hstum undS
hi
htreaktionen, Habilitationss
hrift, Universität Augsburg, 1997.[15℄ D. Blömker, C. Gugg, M. Raible, Thin-Film-Growth-Models: Roughness andCorrelation Fun
tions, Europ. J. Appl. Math., in press 2002.[16℄ K. Moser, J. Kertész, D.E. Wolf, Physi
a A 178, 215 (1991).[17℄ J.G. Amar, F. Family, Phys. Rev. A41, 3399 (1990).[18℄ C.-H. Lam, F.G. Shin, Phys. Rev. E58, 5592 (1998).[19℄ M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).[20℄ P.E. Kloeden, E. Platen, H. S
hurz, Numeri
al Solution of SDE Through Com-puter Experiments, Springer-Verlag, Berlin, Heidelberg 1994.[21℄ W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numeri
alRe
ipes in C, Cambridge University Press, Cambridge, UK 1992.[22℄ C. Groÿmann, H.-G. Roos, Numerik partieller Di�erentialglei
hungen, B.G.Teubner, Stuttgart 1992.[23℄ M. Raible, Sto
hastis
he Feldglei
hungen für amorphes S
hi
htwa
hstum, Dis-sertation, Universität Augsburg, Shaker Verlag, Aa
hen 2000.


