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Different methods for the numerical solution of a stochastic growth
equation capturing the essence of amorphous thin film growth are presented
and compared. We show numerically that the finite difference approxima-
tion and the spectral Galerkin method yield the same results within the
same accuracy and roughly comparable computation time. We also explain
how stochastic field equations can be solved using finite element approxi-
mations.

PACS numbers: 02.60.Cb, 02.60.Lj, 02.50.Ey, 68.55.—a

1. Introduction

The topic of formation and spatio-temporal evolution of surfaces gen-
erated by deposition processes has recently developed into a highly active
research area of statistical physics (see Ref. [1]). Specifically, the growth
process of the surface of the deposited film, as it appears in molecular beam
epitaxy or physical vapor deposition experiments, is determined by the com-
petition between roughening due to the deposition of particles and smooth-
ing due to surface diffusion effects [2-6]. Experimental studies on amorphous
films deposited by electron beam evaporation have revealed the formation
of moundlike surface structures on a mesoscopic length scale [7-10]. This
indicates that continuum models based on stochastic field equations of the
form

OH =G(H)+n+F, (1)

can serve as a useful tool for the understanding of the growth dynamics.
Here, H(Z,t) represents the height of the surface above a given substrate
position # at time ¢, as shown in Fig. 1. G(H) represents a functional
of the spatial derivatives of the height function H and includes all surface
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Fig.1. Sketch of the vapor deposition of an amorphous film on a substrate.

relaxation processes and possible growth instabilities. F' denotes the mean
deposition rate, and n quantifies the deposition noise that represents the
fluctuations of the deposition flux around its mean F. These fluctuations
are assumed to be Gaussian white, i.e.

(n(@, 1) =0, (@ t)n(Fg.1)) =2D6*(& it —1'), (2)

where the brackets denote ensemble averaging and D the fluctuation strength.
A transformation into a frame comoving with the deposition rate F', h(Z,t) =
H(Z,t) — F't, yields a corresponding evolution equation for the height profile
h(Z,t)

oth=G(h) +1. (3)

A comparison with experimental data for amorphous ZrgsAl7 5Cusr s
films deposited by electron beam evaporation has recently evidenced a good
quantitative agreement between numerical solutions of the model equation
[11-13]

Ah = a1 V2h 4+ a3 V*ih + a3V (Vh)? + as(Vh)? + 1 (4)

and experimental measurements up to the largest, experimentally observed
layer thickness of 480 nm [11|. Moske [14] had already suggested the equa-
tion 9;h = aaV*h + a3V?(Vh)? + 1 as a model for amorphous film growth.
This equation, however, is not able to capture the experimentally observed
pattern-forming surface structure. Based on microscopic models [12-14] for
the governing surface relaxation mechanisms, it has been found that the
coefficients a1, ao, and ag in Eq. (4) are negative, whereas a4 is positive.
The term aV2h with negative a1 represents in combination with the term
asV4h the same growth instability as in the Kuramoto-Sivashinsky equa-
tion, that is known to trigger the formation of moundlike surface structures.
For a mathematical proof of existence of a solution of Eq. (4) in the one-
dimensional case we refer to Ref. [15].



Amorphous Thin Film Growth: Simulation Methods . .. 1051

Surface growth equations of the form (3) and (4) are usually solved on a
quadratic area [0, L]? subject to periodic boundary conditions. The initial
state is given by h(Z,0) = 0, corresponding to an initially flat substrate.
In order to compare the solutions of such stochastic growth equations with
experimental results, experimentally accessible statistical quantities have to
be introduced. The correlation length R.(t) and the surface roughness w(t)
are such characteristic quantities and are determined by the height-height
correlation function

C(r,t) = <<% /d% [h(Z,t) — h(t)][M(Z + 7, 1) — E(t)]>>F:T ., (5)

where h(t) = (1/L?) [ d?z h(Z,t) denotes the spatial average of the height,
and ((...))|7=r denotes the combined ensemble and radial average. Specifi-
cally, R.(t) is given by the radius r of the first maximum of C(r,t) occurring
at nonzero values of r and the square of the surface roughness results from
taking the limit » = 0 in C(r,t), i.e. w?(t) = C(0,t). The quantities w(t)
and R (t) characterize the typical height and periodicity length scales of the
moundlike surface structure.

The aim of this paper is twofold. First, using the specific example of
Eq. (4), we present three different methods to numerically solve stochastic
field equations: the finite difference method, the spectral Galerkin method,
and the finite element method. Here, particular focus is put on the incorpo-
ration of the stochastic contributions in these numerical schemes. Second,
by specific calculations of the correlation length R.(t) and the surface rough-
ness w(t) arising from Eq. (4), we compare the numerical efficiency of the
finite difference and the spectral Galerkin method. The presented schemes
can also serve as a guide for the numerical solution of stochastic growth
equations with different functional structure.

2. Finite difference method

The most common method to numerically integrate stochastic field equa-
tions such as Eq. (3) is based on a direct spatio-temporal discretization on
a cubic grid with a spatial lattice constant Az = Ay = L/N and a time
step At,. The finite difference discretization of the general form (3) of a
stochastic deposition equation reads

pn+1) _ h(?}) + At,Gij [h,(:l)] + Pnfff}) (©)

1,J i,

with

P, = \/24DAt,/(Ax)? . (7)
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Here, hz(-z.) denotes the spatial average of the height function A at the time
t, on one of N? squares of a quadratic lattice on [0, L]?, i.e.

(i+1/2)Az  (j+1/2)Az

hgj}):(:w / dz / dy h(z,y, tn) (8)

(i-1/2)Az  (j—1/2)Az

with 4, j € Z. The quantity At,, = th —t,, denotes the size of the generally
variable time step, and the quantities § ") are independent random numbers
taken from a uniform distribution between —1/2 and 1/2. Gi,j[hénl)] is a
suitable finite difference approximation of the functional G(h) at the time
t, and at the position (iAz, jAy). Different authors [16-18] have used finite

difference schemes of the type (6) in order to numerically solve the Kardar—
Parisi-Zhang-equation d;h = vV2h+X(Vh)%2+n [19]. The stochastic contri-

bution Pnfg;) on the RHS of Eq. (6) represents the noise 7 integrated over
the time interval [t,,t, + At,] and spatially averaged on the same square
around the point (iAz, jAy) as in the definition of hg ]), . (8),

thtAt,  (i+1/2)Az  (j+1/2)Az

qg;;):(Alm)Q / dt / dz / dyn(z,y,t). (9)

tn (i-1/2)Az  (j—1/2)Az

Here, qinj) and the stochastic term Pnfg;) in the numerical scheme (6) have

the same statistical mean (qz(r;)) = (Pnfl(;l.)) = 0 and the same variance

((qz(r;))2) = ((P, f(n))Q) = 2DAt,/(Az)%. In practice, it is not necessary to
(n)

replace the terms P, f by the normally distributed random numbers g; ;
because their first and second moments are equal and their higher moments
are small, i.e. of the order O(A#2). This argument originates from the nu-
merical integration theory of stochastic ordinary differential equations [20].
It can also be used here because, after fixing the noise strength D together
with all other possible coefficients of Eq. (3) including the lattice spacing Az
and then keeping only the size of the time step At, variable, Eq. (6) consti-
tutes an explicit Euler scheme for a system of stochastic ordinary differential
equations.

In order to derive a finite difference approximation of Eq. (4) we decom-
pose this equation into the system of equations

oth = V2w+a3V20+a4v+n, (10)
w = arh + ayV?h, (11)
v = (Vh)?. (12)
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By using central difference approximations in space and an explicit Euler
scheme in time we obtain the numerical procedure

(1) _ ,(n) , Atn T () (n) (n) (n) (n)
hig — = hij + (Az)? [wz+1,J Fwi gt wg i T wg g — Awg }

Aty
Bl [+ ol — 0]

+Atna4v( n 4 Pnf (13)

2]7

(n) _ (n) a2 (n)
Wi = athig T RLe [hz’+1,j

o = s[04, ) (2, ) (o )
+ (n - hE’i’Lj)? + (h, = Al ))
+ (hy = ) (B = B ) + () —hgj;)_l)Q] . (15)

3,j+1 (2% 1,j—1
This numerical scheme is of the form (6). An alternative finite difference
approximation of v = (Vh)? would read

)y _ 1 (n) (n) \? (n) (n) \?
Ui,j - 4(A$)2 |:(hz+1] hz 1]) + <h1]+1 h,] 1) :| (16)

However, our numerical simulations have revealed that in the time range that
is dominated by the nonlinear terms of Eq. (4) the computational procedure
(13)-(15) possesses a better numerical stability than the numerical scheme
composed of equations (13), (14), and (16).

As a specific application, we have solved Eq. (4) using the finite dif-
ference approximation (13)-(15). The chosen parameters were L = 200,
a1 = —0.1045, ag = —0.4044, a3 = —0.13, a4 = 0.07, and D = 0.022. These
parameters are up to a rescaling of time in agreement with the parameters
that resulted from a comparison with the experiments [11]. In Fig. 2, we
present the resulting surface roughness w(t) and correlation length R (t)
for N? = 2002 and N? = 400? grid points. Their difference is not larger
than 3.6%.

+ BT+ 0 — 4] (19)
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Fig.2. Correlation length R.(t) and surface roughness w(t) calculated from Eq. (4)
using two different numerical methods on an interval [0, L]* of the size L = 200
subject to periodic boundary conditions. The parameters were a; = —0.1045,
az = —0.4044, a3 = —0.13, a4 = 0.07, and D = 0.022. The results ensuing from
the finite difference method (13)—(15) with N? = 200% and N? = 4002 grid points
are depicted by the dashed and the dash-dotted lines, respectively. The results
that were determined by the spectral Galerkin method (22)-(27), (29), (30) with
N =42 and N = 85 are represented by the dotted and the solid lines, respectively.
Therefore, each part of this figure contains four different lines. As a result of the
good agreement between the different simulation methods, the difference between
most of these lines is not visible.
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3. Spectral Galerkin method

The spectral Galerkin method is a numerical method to solve the spa-
tial evolution of partial differential equations in Fourier space. It is espe-
cially efficient in the time interval where the linear parts of the equation
dominate. For analytical and numerical results on the convergence of the
spectral Galerkin method for the one-dimensional version of Eq. (4) we refer
to Ref. [15]. In this paper, we focus on stochastic growth equations in two
spatial dimensions. Then, Eq. (4) reads in Fourier space

Oyh(k,t) = o(k)h(k,t) + (—ask® + as)v(k, t) + 7(k, t) (17)
with
o(k) = —a1k? + ask®, (18)
B t) = /d%h(f,t)exp(—z’/;’-f), (19)
o(k,t) = / Az [Vh(Z, 1)) exp(—ik - T) , (20)
ik, t) = /d%n(f,t) exp(—ik - 7). (21)

For the time discretization usually a semi-implicit Euler scheme is applied

(k) = AW (k) + Aty (k)R (k)
+ A (—azk? + a1)5™ (k) + §™ (k) (22)

where h(™(E), 3™ (k), and ¢ (k) are a short hand notation for h(k,ty),
(K, t,), and the noise contribution: ¢ (k) = fttn"JrAt" dt7j(k,t). The wave
vector k is of the form k = %(nm,ny) with ng,ny € Z. The semi-implicit
time discretization has the advantage that larger time steps At,, are allowed
in comparison to an explicit scheme if the linear terms of Eq. (4) dominate.

The contributions (™ (E) from the deposition noise are complex random
numbers whose real and imaginary parts are up to the identities Re g™ (k) =

Re ¢ (—k) and Im ¢ (k) = —Im " (—k) independent, normally dis-
tributed random numbers. Their first and second moments read
(Re §™(k)) = 0, (23)
(m ™ (k)) = 0, (24)
2DAt,L? ifk=k =0,
(Re g™ (E)[Re ¢ (&")]) = { DAt, L2 if th=k #0, (25)

0 otherwise,
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([Re ¢ (k)][Im g™ (K")]) = 0, (26)
. ) DAt,L? ifk=FK #0,
(Tm @™ (E)][Im ¢"(E")]) = { —DAt,L? if —k=Kk #£0, (27)
0 otherwise .

Here, it is interesting to note that the discrete Fourier transform of the
stochastic contribution to the finite difference scheme (6)

-,

GU(R) = (A2)2 S Potl expl—i(kaj Az + kylAx)] (28)
Jsl

has the same first and second moments (23)—(27) if the wave vectors k =
(kz,ky) are in the range —m/Az < k; < 7/Az and —7/Azx < ky, < n/Ax.
This also confirms that the deposition noise n has been given the correct
weight in the finite difference method (6).

Equation (22) can only be solved in a finite area A of the Fourier space
that consists of wave vectors k = 28 (ng,my) with =N < ng,n, < N where

N is a sufficiently large integer number. If k lies outside of the area A we
set h("M (k) = 0. Therefore, we actually compute (2N + 1)? modes. It is

necessary to determine the v( )(k) from the (™ (k). For this, we determine
Vh(Z,ty,) in real space by

Vh(Z,t,) QZzEﬁ k) exp(ik - T) (29)

on M? equidistant grid points in [0, L]? that have the distance Az = L/M.
Then, we calculate [Vh(Z,t,)]? on the M? grid points and finally transform
it back into the Fourier space:

3" (k) = (Az)? D [Vh(Z, 1) exp(—ik - 7). (30)

-

T

Note that M must be a power of 2 because we use the fast Fourier transfor-
mation [21]. In addition, M must also fulfill the condition M > 3N + 1, in
order to take care of the known “aliasing” problem. The sum } ;- in Eq. (29)
is restricted to wave vectors that lie inside the area A. Therefore, the sum
in the relation

[Vh(z =713 Z 5™ (k) exp(ik - ©) (31)

refers to a larger area B of wave vectors k= L T (ng,ny) with integer numbers
ng and n, between —2N and 2N. However, two different Fourier modes with
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y) cannot be distinguished on

the M? grid points if n!, — n, and ny, — ny are divisible by M. In that case
the RHS of Eq. (30) would only yield the sum of their Fourier coefficients.
Since we only need the coefficients (") (k) with k € A, it is sufficient and
necessary that all Fourier modes with wave vectors in A can be distinguished
from different non-vanishing Fourier modes whose wave vectors lie inside the
area B. Therefore, —N + M > 2N + 1 must hold, yielding the condition
M > 3N + 1. Note that in the presence of a third order nonlinearity like
e.g. V-(Vh)? the condition M > 3N +1 had to be replaced by M > 4N +1
and that in the presence of a tenth order term like e.g. (VA)! M had to
fulfill the condition M > 11N + 1, and so on. On the other hand, if we
had to calculate a non-polynomial nonlinearity like e.g. 1/4/1 4+ (Vh)?2, the
“aliasing” of different Fourier modes could not be completely avoided. In that
case, we had to rely on the damping of Fourier modes with large wave vectors
k resulting from stabilizing terms like e.g. a;V*h in Eq. (4) that smooth the
height profile h(Z,t), so that also nonlinearities like 1/4/1 + (Vh)? basically
consist of Fourier modes from a finite area of the Fourier space.

5. _ 2m T 2w (1
wave vectors k = T (ng,ny) and k' = F(ng, n

As a specific application, we have solved Eq. (4) using the spectral
Galerkin method (22)-(27), (29), (30) and using the same parameters as
in the previous section. Fig. 2 shows the resulting surface roughness w(t)
and correlation length R.(¢) for N = 42 and N = 85. Their difference is
not larger than 5.6% for ¢ =5, 15, 30, and 60 and not larger than 0.69% for
t € [100,480]. Therefore it seems that our numerical results arising from the
finite difference method as well as from the spectral Galerkin method are of
sufficient precision. The CPU-times required for one simulation run on the
same computer were 1h 6min for the finite difference method with N? = 2002
grid points, 1h 27min for the spectral Galerkin method with N = 42, 11h
29min for the finite difference method with N? = 400? grid points, and 37h
36min for the spectral Galerkin method with N = 85. As a consequence,
the spectral Galerkin method appears to be computationally less efficient if
high precision of the numerical solution of Eq. (4) is demanded.

4. Finite element method

In this section, we explain how the deposition noise 1 can be taken into
consideration in a third numerical simulation method, the finite element
solution of Eq. (4). To that end, Eq. (4) is decomposed into the system of
equations

oh = Viw +ay(Vh)? +1, (32)
w = arh+asV*h + a3(Vh)?. (33)



1058 M. RAIBLE, S.J. Linz, P. HANGGI

These equations are multiplied with test functions @; from the Sobolev space
Hlljer([O,L]Q) and then integrated on [0, L]? [22]. In order to simulate the
time evolution an implicit Euler scheme can be applied. The resulting com-
putational scheme then reads

/ ;D) = / &;h™ — At, / (V&) - (Vu D)

+Abyay / &; (VA TD)2 4z (34)
/ o™t = g / S / (V&;) - (VA D)
ban [ B(THODP (35)
tn+Atp
2" / dt / P 6(F)n(F,1) (36)
tn

where A and w(™ denote the functions h and w at the time ¢,. The
equations (34)—(36) can actually only be solved for a finite number of linearly
independent test functions &1,..., &y € Hl ([0, L]*). Therefore, we try to

find the solutions 2™ and w(™*1) in the subspace Vy being spun by the
functions @1,..., Pn.

In order to find the test functions @i,..., @5 we subdivide the area
[0, L]? into triangles. The triangulation complies with the periodic bound-
ary conditions and the following rules. Two different triangles should share
either one edge or one corner or not a single point. Two mesh points of
the triangulation should not be connected by more than one edge. The test
functions @; are defined by the properties, that (i) they are continuous func-
tions on [0, L]? and fulfill periodic boundary conditions, (i) they are linear
functions on each triangle, and (i11) that @; assumes the value 1 at the mesh
point P; and the value 0 at all other mesh points P.. As a result of this
definition, @; differs from zero only on the triangles that surround the mesh
point P;.

Before one can solve the system of the equations (34)—(35), the random

numbers ZZ-(n) have to be generated. These random numbers are normally

distributed and have the moments

<Z§”)> — 0, (37)

<Z.(”)Z,§”)> — 2DAt, / b, By (38)
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for all 4,k =1,...,N. This yields in case 1 = k

<<ZZ_(”))2> - QDAtn% zz; An, (39)

where ), Ax denotes the sum of the areas of the triangles that surround
the mesh point P;. If i # k, but P; and Py are neighbouring points, i.e. they
are connected by a triangle edge, Eq. (38) yields

<ZZ.(”) z,ﬁ”)> = QDAtn% 3 Aa, (40)
ik

where )., Aa denotes the sum of the areas of the two triangles that have
one corner in P; and one corner in Py. If 4 # k, and P; and P, are not
neighbouring points, Eq. (38) yields

<Z.(”)Z,§")> = 0. (41)

)

In order to get such random numbers, one can generate for each triangle

edge P;P; an independent, normally distributed random number Yiscn), that
possesses the moments

(V") = o, (42)
<<Yi§c"))2> = 2DAtn11—QZAA. (43)
ik

Then the random numbers ZZ-(n) can be determined by [23]

7" = > v, (4
Py, # P; is a neighbouring point of P;

An alternative possibility to get the random numbers ZZ-(n) is to generate
for each mesh point P; an independent, normally distributed random num-

ber ZZ-(n) and for each triangle P; PP, an independent, normally distributed
(n)

random number X Z:l , that have the moments

(V) =0, (45)
> = 2DAtn11—22AA, (46)
(xii)) =0, (47)

1
= 2DAt, EAikz ; (48)
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where A;p; is the area of the triangle P;P;P;. Then the random numbers
Z™ can be calculated by

)

Z"™ = Z" 4 3 xm. (49)

P; P, P, has one corner in P;

Since the number of triangle edges is equal to the number of mesh points plus
the number of triangles in [0, L]? (because the periodic boundary conditions
are considered), the two alternatives (42)-(44) and (45)-(49) require the
same number of independent random numbers and therefore have the same
efficiency.

5. Conclusions

In this paper we have presented a detailed account of three different
numerical simulation methods for the solution of a stochastic field equation
for amorphous thin film growth. We have shown, that the finite difference
method and the spectral Galerkin method yield the same surface roughness
w(t) and the same correlation length R.(#) and that these two methods
practically have the same accuracy and efficiency. It remains to show, that
also the method using finite element approximations yields the same results.
A further mathematical challenge presents the lack of rigorous proofs of
the convergence of the different numerical approximations of Eq. (4) and
even a mathematical proof of existence of a solution of Eq. (4) in the two-
dimensional case.

This work has been supported by the DFG-Sonderforschungsbereich 438
Miinchen/Augsburg, TP Al. We thank E. Nash for helpful discussions and
an introduction to the non-stochastic Galerkin and finite element methods.

REFERENCES

[1] A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth, Cambridge
University Press, Cambridge, UK 1995; W.M. Tong, R.S. Williams, Annu.
Rev. Phys. Chem. 45, 401 (1994); J. Krug, Adv. Phys. 46, 139 (1997); M. Mar-
sili, A. Maritan, F. Toigo, J.R. Banavar, Rev. Mod. Phys. 68, 963 (1996).

[2] D.E. Wolf, J. Villain, Furophys. Lett. 13, 389 (1990).

[3] J. Villain, J. Phys. I1, 19 (1991).

[4] S. Das Sarma, P. Tamborenea, Phys. Rev. Lett. 66, 325 (1991).
[5] Z.-W. Lai, S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).

[6] M. Siegert, M. Plischke, Phys. Rev. E50, 917 (1994).



7
]
9

[10]

11]

12

13

[14]

[15]

[16]

17]

18]

[19]

120]

j21]

2]

[23]

Amorphous Thin Film Growth: Simulation Methods . .. 1061

B. Reinker, M. Moske, K. Samwer, Phys. Rev. B56, 9887 (1997).
S.G. Mayr, M. Moske, K. Samwer, Mater. Sci. Forum 343-346, 221 (2000).

S.G. Mayr, M. Moske, K. Samwer, The Growth of Vapor Deposited Amor-
phous ZrAlCu-Alloy Films: Experiment and Simulation, in H.-J. Bungartz,
R.H.W. Hoppe, C. Zenger: Lectures on Applied Mathematics, 2000, p. 233.

T. Salditt, T.H. Metzger, J. Peisl, B. Reinker, M. Moske, K. Samwer, Euro-
phys. Lett. 32, 331 (1995).

M. Raible, S.G. Mayr, S.J. Linz, M. Moske, P. Hinggi, K. Samwer, Europhys.
Lett. 50, 61 (2000).

M. Raible, S.J. Linz, P. Hanggi, Phys. Rev. E62, 1691 (2000).
M. Raible, S.J. Linz, P. Hanggi, Phys. Rev. E64, 31506 (2001).

M. Moske, Mechanische Spannungen als Sonde fiir Schichtwachstum und
Schichtreaktionen, Habilitationsschrift, Universitat Augsburg, 1997.

D. Blomker, C. Gugg, M. Raible, Thin-Film-Growth-Models: Roughness and
Correlation Functions, Europ. J. Appl. Math., in press 2002.

K. Moser, J. Kertész, D.E. Wolf, Physica A 178, 215 (1991).

J.G. Amar, F. Family, Phys. Rev. A41, 3399 (1990).

C.-H. Lam, F.G. Shin, Phys. Rev. E58, 5592 (1998).

M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).

P.E. Kloeden, E. Platen, H. Schurz, Numerical Solution of SDE Through Com-
puter Experiments, Springer-Verlag, Berlin, Heidelberg 1994.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C, Cambridge University Press, Cambridge, UK 1992.

C. Grofkmann, H.-G. Roos, Numerik partieller Differentialgleichungen, B.G.
Teubner, Stuttgart 1992.

M. Raible, Stochastische Feldgleichungen fiir amorphes Schichtwachstum, Dis-
sertation, Universitdt Augsburg, Shaker Verlag, Aachen 2000.



