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QUASILINEAR DIFFUSION FORTHE CHAOTIC MOTION OF A PARTICLEIN A SET OF LONGITUDINAL WAVES�D.F. Es
ande and Y. ElskensEquipe Turbulen
e Plasma, unité 6633 CNRS, Université de Proven
eCentre de Saint-Jér�me, 13397 Marseille, Cedex 20, Fran
ee-mail: es
ande�newsup.univ-mrs.fre-mail: elskens�newsup.univ-mrs.fr(Re
eived O
tober 29, 2001)The rigorous analyti
al 
al
ulation of the di�usion 
oe�
ient is per-formed for the 
haoti
 motion of a parti
le in a set of longitudinal waveswith random phases and large amplitudes (� A). A �rst step proves theexisten
e of a quasilinear di�usion on a time s
ale � A�2=3 lnA. A se
ondstep uses this property to extend the result to asymptoti
 times by intro-du
ing the 
onditional probability distribution of position and velo
ity ofan orbit at a given time when they are known at a previous time.PACS numbers: 52.35.�g, 05.45.�a, 05.60.�k, 52.20.�j1. Introdu
tionMany 
haoti
 Hamiltonian systems en
ountered in physi
s display a 
ha-oti
 di�usion and in many 
ases the 
orresponding di�usion 
oe�
ient isgiven by a so-
alled quasilinear estimate [1�4℄. The proof that this estimateis 
orre
t exists for the standard map with large 
ontrol parameter [5℄, butis la
king for other systems with a spatially smooth for
e. We provide thisproof for the one-dimensional 
haoti
 motion of a parti
le in a general set ofwaves.This result strengthens the link between the mi
ros
opi
 determinis-ti
 (
haoti
) dynami
s and the ma
ros
opi
 sto
hasti
 motion. Its exten-sion to the self-
onsistent many-body problem is a 
entral problem to non-equilibrium statisti
al physi
s.� Presented at the XIV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 9�14, 2001.(1073)



1074 D.F. Es
ande, Y. ElskensThis paper is organized as follows. First we introdu
e our model dy-nami
s and stress the 
ore of our argument. Then we re
all the traditionalargument deriving the quasilinear di�usion over a time short with respe
tto a 
hara
teristi
 time �spread � A�2=3 (A being a typi
al value of thewave amplitudes) and introdu
e the expli
it form of the quasilinear di�u-sion 
oe�
ient. We re-derive this result within our new approa
h and takeadvantage of a better understanding of the parti
le motion to extend thevalidity of quasilinear di�usion to a time s
ale � A�2=3 lnA, whi
h is longerthan the traditional s
ale �spread for A large. Finally, we introdu
e the 
on-ditional probability distribution of position and velo
ity of a 
haoti
 orbitat a given time when they are known at a previous time and, thanks to thenon-
on�nement of the velo
ity of the 
haoti
 orbit, we further extend thequasilinear estimate to asymptoti
 time s
ales.2. Dynami
al model and assumptionsWe 
onsider the dynami
s of a parti
le in a set of longitudinal waves(e.g. Langmuir waves) with random phases and large amplitude, as de�nedby the HamiltonianH(p; q; t) = p22 + MXm=1Am 
os(kmq � !mt+ 'm) ; (1)where the 'm's are random variables and the (Am; km; !m)'s are pres
ribedtriplets of positive parameters. Su
h a dynami
al system has already beenstudied in the literature, and for large Am's the di�usion 
oe�
ient has beenfound numeri
ally to take on the quasilinear value [4, 6�9℄ de�ned below1.The average over M � A2=3 lnA � 1 random phases is 
entral to ourproof, in agreement with the o

urren
e of un
ontrolled phases in manyexperiments and with the fa
t that the transport in (1) is mu
h less di�usion-like if one averages only over initial 
onditions (p0; q0) [10℄. The large A limit(dynami
ally speaking, the limit of strong resonan
e overlap parameter)
orresponds to the limit of 
ontinuous spe
trum often en
ountered in physi
s.In agreement with most of the literature on quasilinear transport, theanalysis is performed here in terms of quadrati
 means, and not in termsof the probability distribution fun
tions, but we indi
ate at the end of thispaper, how our te
hnique 
ould be used to prove the gaussianity of su
hfun
tions.1 DQL = �A2=2 in the 
ase of Ref. [8℄ (where M = 2M 0 + 1, Am = A, km = 1 and!m = m �M 0 � 1 for all m's) and for the standard map, whi
h is a spe
ial 
ase ofRef. [8℄ in the limit M !1 with all phases 'm = 0.



Quasilinear Di�usion for the Chaoti
 Motion of . . . 1075The equations of motion are_q = p ; (2)_p = MXm=1Amkm sin(kmq � !mt+ 'm) : (3)We 
onsider �rst the time to be short enough for the orbit to stay 
loseto the unperturbed orbit q(0)(t) = q0 + p0t, and let �q(t) = q(t) � q(0)(t),�p(t) = p(t) � p0. We 
ompute their statisti
al properties when averagingover all 'm's.For 
ompleteness, we �rst evaluate �p(t) by the traditional te
hnique[1, 2℄ using �rst order perturbation in the amplitudes:�p(t) = MXm=1 Amkm
m h 
os (kmq0 + 'm)� 
os (
mt+ kmq0 + 'm) i ; (4)with 
m = kmp0 � !m; if 
m = 0 for some m, the 
orresponding term inthe sum is the limit as 
m ! 0. At this order, h�p(t)i = 0 andh�p2(t)i = MXm=1�Amkm
m �2 [1� 
os(
mt)℄ :Let vm = !m=km. We assume that �
m = 
m+1 � 
m and �vm =vm+1 � vm have a sign independent of m, whi
h is natural for Langmuirwaves and for the dynami
s of Ref. [8℄. LetDm � �A2mkm2j�vmj = limp0!vm �(Amkm)22j�
mj : (5)Dm may �u
tuate with m, but we assume (for simpli
ity only) that for someL � 0 LXj=�L Dm+j j�vm+j jjvm+L+1 � vm�Ljis a 
onstant DQL, 
alled the quasilinear di�usion 
oe�
ient. Let �
LM =max j
m+L+1 � 
m�Lj, �dis
r = �
�1LM and �
 = (
max � 
min)�1 ; �dis
rand �
 are, respe
tively, the dis
retization time and the 
orrelation time ofthe wave spe
trum as seen by the parti
le.



1076 D.F. Es
ande, Y. Elskens3. Non-
haoti
 initial quasilinear transportAssuming �
 � t� �dis
r, one obtainsh�p(t)2i = 2DQL� 1Z�1 
�2h1� 
os(
t)id
 = 2DQLt ;where the dis
rete sum has been turned into an integral.As a result, the di�usion 
oe�
ient takes on the quasilinear value DQL.A similar 
al
ulation for q yields h�q(t)i = 0 and h�q(t)2i = 2DQLt3=3.For t� �
, �p grows linearly with time, and h�p2i grows quadrati
ally, asall modes a
t with a 
onstant for
e on the orbit. For �
 � t � �dis
r, therange ofm 
ontributing to the di�usion (modes a
ting with a nearly 
onstantfor
e) narrows like 1=t. The range of t is further restri
ted by the 
onditionfor the orbit to remain 
lose to the unperturbed one. This is traditionallyobtained by requiring hk2max�q2(t)i � 4�2, namely t� �spread with�spread = �6�2k�2maxD�1QL�1=3 = 4
�1D ; (6)where we introdu
e the resonan
e broadening frequen
y 
Dn � (k2nDQL)1=3and take 
D � maxn 
Dn.In our approa
h, we evaluate �p(t) as in Ref. [8℄ by integrating for-mally the equation of motion for p. This yields h�p(t)i = 0 over the range0 � t� �QL de�ned below, and h�p2(t)i = �0 +�+ +��, with�j=��j tZ0 tZ0 MXm1=1 MXm2=1 Am1km1Am2km22 D
os [�m1(t1)+�j�m2(t2)℄Edt1 dt2 ;(7)where �m(t) = km�q(t) + 
mt + 'm, with �� = �1 and �0 = �1, andunder 
ondition m1 6= m2 for j = �, and 
ondition m1 = m2 for j = 0.Let t� = t1 � t2 and t+ = (t1 + t2)=2. For t� � �spread�exp �i km��q�t+ + t�2 ���q�t+ � t�2 ����may be 
onsidered as equal to 1. Therefore the support in t� of the in-tegrand in �0 is of the order of �
. We assume �
 � �spread. Hen
ethe integration domain in t� may be restri
ted to jt�j � ��
 where � isa few units. In the limit where ��
 � t� �dis
r, we obtain



Quasilinear Di�usion for the Chaoti
 Motion of . . . 1077
�0 = MXm=1 tZ0 2Dm� ��
Z0 h
os[
mt�℄i�
mdt�dt+= 2DQL MXm=1(�
m)�1hsin[
m��
℄i�
mt= 2DQLt ;with the dis
rete sum over m approximated by an integral.For t � �spread we approximate q(t) by its unperturbed value q(0)(t).As this orbit does not depend on the phases, the averaged 
osines in (7)are zero for j = �, and so are the ��'s. Then our se
ond approa
h showsagain that the di�usion 
oe�
ient takes on the quasilinear value. h�q2(t)itoo may be 
omputed by integrating the equation of motion2. This involves
al
ulating h�p(t1)�p(t2)i, in the same way as h�p2(t)i, and one re
oversthe traditional estimate for h�q2(t)i. This provides a way for introdu
ingthe 
ondition t � �spread without resorting to the traditional perturbativeapproa
h, and shows that the usual quasilinear di�usion 
oe�
ient may bere
overed independently by our se
ond approa
h.4. Chaoti
 traje
tory spreadingIn fa
t our se
ond approa
h is mu
h more powerful. As was pointed outin Ref. [8℄, �� vanishes provided that the dependen
e of�q over any N' = 2phases with all other phases �xed is weak, a 
ondition far less stringent thanthe previous 
ondition N' = M whi
h led to t� �spread. Ref. [8℄ estimatedthe upper bound in time of the initial quasilinear di�usion through numeri
al
al
ulations for moderate values of the waves amplitude. Here we derive su
ha bound analyti
ally for large enough amplitudes.We measure these amplitudes by the parameter En= [2DQLknj�vnj=�℄1=2whi
h 
orresponds to the typi
al ele
tri
 �eld of a wave. A related dimen-sionless quantity 
hara
terizes our s
aling, namely the Chirikov resonan
eoverlap parameter s(vn) = 2�A1=2n +A1=2n+1�j�vnj (8)or equivalently the ratioB(vn) � knj�vnj
Dn ' 5s�4=3 (9)2 The pro
ess �q(t) is found to be Gaussian, and its moment generating fun
tion readshei u(�q(t2)��q(t1))i = e�u2DQL[jt2�t1j3=3+jt2�t1j2min(t1;t2)℄.



1078 D.F. Es
ande, Y. Elskensof the frequen
y mismat
h between neighboring waves (in the frame of eitherwave) to their resonan
e broadening frequen
y. As these quantities dependon n, they 
hara
terize the dynami
s lo
ally. In the following, we are in-terested in the dense spe
trum, or strong overlap, or large amplitude limit.To ensure a genuine s
aling, we 
onsider families of dynami
s (1) whereEn = Ean and the referen
e amplitudes an are 
onstant while E ! 1, orB(vn) = Bbn and the 
oe�
ients bn are 
onstant while B ! 0.Apart from the small dimensionless parameter B, we also introdu
e theKubo number K
 � �
=�spread. The wide velo
ity spe
trum of the wavesensures that K
 � 1.The limit of interest is the joint limit K
 ! 0 and B ! 0 (or K
 ! 0and s!1). 4.1. Spreading due to a single random phaseIn order to avoid too heavy formulas, we give the expli
it derivationfor the spreading due to one phase, and extend the result to two phasesafterwards. To estimate this spreading we study how the orbit whi
h isat (q0; p0) at t = 0 is modi�ed when phase 'n 
hanges from 0 to a �nitevalue. Let (q6n(t); p6n(t)) be the orbit for 'n = 0, let Æqn(t) = q(t) � q6n(t)and Æpn(t) = Æ _qn(t) = p(t)� p 6n(t). We assume t to be small enough so thatkmaxjÆqn(t)j � �. As Æqn(t) is small, we may linearize the motionÆ _pn(t) ' F (t)Æqn(t) +Ankn(sin	n(t)� sin	n0(t)) ; (10)where F (t) = PMm=1 k2mAm 
os	m(t), with 	m = kmq6n(t) � !mt + 'm and	n0=knq6n(t)�!nt. Then (10) and initial 
onditions (Æqn(0); Æpn(0))=(0; 0)imply Æqn(t) = tZ0 (t� t00)F (t00)Æqn(t00)dt00 + Æqn0(t) ; (11)where Æqn0(t) = Ankn tZ0 t0Z0 � sin	n(t00)� sin	n0(t00)�dt00dt0 :In the short-time limit, the dominant term in this expression (11) for Æqn willbe Æqn0, but over longer times the �rst term may self-amplify and overtakethe se
ond one.We estimate only hÆqn(t)2i, but hÆqn(t)i 
an be 
omputed by the samete
hnique and it turns out to be negligible over the time interval of interest.In a �rst stage, 
onsider the 
ontribution of Æqn0 to the varian
eC0(t) ' hÆqn0(t)2i = k2nA2n2 tZ0 t01Z0 tZ0 t02Z0 

os �	n(t001)� 	n(t002)�� dt002dt02dt001dt01 :



Quasilinear Di�usion for the Chaoti
 Motion of . . . 1079To estimate this expression, note that	n �t001�� 	n �t002��
n �t001 � t002� = kn �q6n(t001)� q 6n(t002)�� kn p0 �t001 � t002�and, for the range of time of interest, q 6n(t00) � q(0)(t00) is essentially thesum of M � 1 terms in whi
h a random phase 'm (m 6= n) is added toa term whi
h has a weak dependen
e on 'm. Therefore, this sum is almostGaussian, and forM � 1 we may approximate _q 6n(t00) by a Brownian motion.Furthermore, as M � 1, we approximate q 6n(t00) by q(t00) in the averages.Using the distribution of �q(t2)��q(t1), we �nd3 the estimateC0(t) � C0M (t) � 0:28 knj�vnj 
2Dnt3 = 0:28B (
Dnt)3 : (12)For the se
ond stage, we take into a

ount the �rst term in the righthand side of (10). As Æqn is small, we may treat F (t) as a Gaussian pro
esswith moments hF (t)i = 0 and hF (t1)F (t2)i = 2
3DnÆ(t1 � t2) where Æ(t) isthe Dira
 distribution. Indeed q6n(t) has a weak dependen
e on any phase'm, whi
h makes hF (t1)F (t2)i a Bragg-like fun
tion with the small width �
in t1� t2. Higher moments of F are assumed to fa
torize, i.e. F is treated asa white noise, whi
h is 
onsistent with approximating _q6n(t) by a Brownianmotion.We estimate the spreading of Æqn(t) by 
omputingC(t) � hÆqn(t)2i' tZ0 t01Z0 tZ0 t02Z0 hF (t001)F (t002)i hÆqn(t001)Æqn(t002)i dt002dt02dt001dt01 + C0(t)= E22 t1Z0 t2Z0 min(t01;t02)Z0 C(t00) dt00dt02dt01 + C0(t) : (13)It follows from (10) and our assumptions on F that C(t)=C0(t)+LC(t) withLf(t) = E22 tZ0 tZ0 min(t01;t02)Z0 f(t00)dt00dt02dt01:3 By previous footnote, one �nds ���h
os(	n(t001 ) � 	n(t002 ))i��� . ���
os
n(t002 � t001 )���� exp[� 13k2nDQLjt002 � t001 j3℄ � exp[� 13k2nDQLjt002 � t001 j3℄. Integration yields C0(t) �(knAn)2� (4=3)(k2nDQL=3)�1=3 tR0 tR0 min(t01; t02)dt02dt01, where � (x) is the Euler gammafun
tion.



1080 D.F. Es
ande, Y. ElskensAs (1�L)�1 preserves positivity4, C = (1�L)�1C0 � (1�L)�1C0M �CM .Applying the Lapla
e transform to both sides of equation CM = C0M+LCM ,we 
ompute CM and �ndC(t) � CM (t) = 0:14Bk�2n �et0 � 1 + 2g(t0)� (14)with t0 � 41=3
Dnt and g(t0) = e�t0=2 
os(t0p3=2) � 1. This estimate forthe varian
e of Æqn(t) starts from zero at t = 0 and diverges exponentiallyfor t ! 1. Its exponentiation time s
ale �Liap � 
�1Dn � �spread is there
ipro
al of the Liapunov 
hara
teristi
 instability rate (this is reminis
entof Ref. [4℄). However, as the 
oe�
ient in front of the exponential goes tozero as E !1, the time needed by our upper estimate on k2nC(t) to rea
hunity is of the order of �QL = 
�1D j lnBj : (15)Though this time goes to zero as E ! 1, it is O(lnB�1) times largerthan the time �spread over whi
h the initial quasilinear approximation istraditionally justi�ed.4.2. Spreading due to two random phasesThe result of this dis
ussion is that q(t) depends little on any givenphase over a time �QL. For M � 1, the argument is easily strength-ened into q(t) depends little on any two given phases over a time �QL. Tothis end (q6m1;6m2(t); p6m1;6m2(t)) and (Æq(t); Æp(t)) are de�ned starting from'm1 = 'm2 = 0, and a third term similar to the se
ond one adds in the righthand side of (10). The �rst stage of our iteration pro
edure now estimatesthe 
ontribution of both phases 'm1 and 'm2 by a term again of the orderof B�2
3Dt3, while the se
ond stage does not 
hange.As a result, for t � �QL, the non-quasilinear terms �� are negligiblesin
e q has a small dependen
e on any given pair of phases in this timerange. Furthermore these terms may be estimated by making expli
it inthe argument of the 
osine of (7) the main dependen
e over 'm1 and 'm2through estimates Æ�m1 and Æ�m2 of the type kmÆqn0 for both phases, and byexpanding to se
ond order in these Æ�'s. Su
h estimates hold for t� ��QLwith 0 < � < 1 for E large enough, and yield �+ � E4�2
 t2 and �� � E4t5whi
h are negligible with respe
t to �0 in the time interval of interest, anddo not grow with M although there are 2M2 �M �o�-diagonal� terms.4 Indeed, L preserves positivity and is a 
ontra
tion operator for fun
tions on [0;1℄with the norm kfk� = � 1R0 e��tjf(t)jdt, for any � > 41=3
D.



Quasilinear Di�usion for the Chaoti
 Motion of . . . 10815. Quasilinear transport over large timesFinally, we show that the quasilinear estimate holds for asymptoti
 times.Let pmin = min(vm) and pmax = max(vm). We assume that in the velo
itydomain [pmin; pmax℄ the dynami
s is 
haoti
 enough for a typi
al orbit tobe un
on�ned in p within this domain, but that the time of interest is alsosmaller than the time for the orbit to rea
h the boundaries of the 
haoti
domain. Therefore we set the 
onditionmin �(p0 � pmin)2; (p0 � pmax)2�� DQL�QL � k�2n 
2Dn ln(B�1) ;to 
ompute now the di�usion 
oe�
ient due to the 
haoti
 motion when Mand E are large. We de�ne Æq(� jp; q; t) = q(t+ �)�q�p� , where q(t0) is theposition at time t0 of an orbit whi
h is at (p; q) at time t: Æq(� jp; q; t) tellsthe departure of this orbit from the free motion during the time interval � .Integrating formally the equation of motion for p yieldsh�p2(t)i = � MXm;n=1 X"=�1 " AmkmAnkn2 tZ0 tZ0 h
os�idt0dt00 ; (16)where � = (km + "kn)q(t00) + kmÆq �t0 � t00jp(t00); q(t00); t00�+ kmp(t00)(t0 � t00)� !mt0 � "!nt00 + 'm + "'n :We introdu
e the probability distribution P (Æp; tjp0) of Æp = p(t) � p0 foran orbit started at p = p0 at t0 = 0; it is independent of q0.h
os[kmÆq(t0� t00jp(t00); q(t00); t00)℄i is independent of q(t00), and its 
ontri-bution for diagonal (m = n, " = �1) terms to (16) isB � limt!1 MXm=1 (Amkm)24t tZ0 tZ0 Z P (Æp; t00jp0)h
os [kmÆq(t0�t00jp0; q(t00); t00)℄i�� 
os �km(p0 + Æp)(t0 � t00)� !m(t0 � t00)� dÆpdt0dt00= limt!1 MXm=1 (Amkm)24t < tZ0 t�t00Z�t00 ~P (km�; t00jp0) exp [i 
m� ℄� 
exp [i kmÆq(� jp0; q(t00); t00)℄�� d�dt00 ; (17)where the starred average means the average done with the 
onstraint p(t00)= p0 + Æp, and where the Fourier transform~P (�; t00jp0) = 1Z�1 P (Æp; t00jp0) exp(i �Æp) dÆp (18)



1082 D.F. Es
ande, Y. Elskenswas used. As Æq is 
omputed with the knowledge of p at time t00 whi
h setsonly one 
ondition on a set of many phases, an average with the 
onstraintp(t00) = p0 + Æp may be 
omputed by using the initial quasilinear estimateat time jt0 � t00j � �QL. Hen
e the fun
tion hexp[i kmÆq(t0 � t00jp; q(t00); t00)℄i�is 
orre
tly 
omputed by the previous quasilinear estimate over its wholesupport in t0 � t00 as �QL � �spread. This estimate is independent of p, andwe 
ould set p = p0 in the average 
osine. Up to t = �QL, the widthof P is growing, sin
e we proved h�p2(t)i grows linearly over this timeinterval. Later on this width 
annot de
rease be
ause of the lo
ality of
haoti
 motion [8, 11℄. We assume t � �spread. Then the width w of ~P isnarrow enough for the spread of Æq to be negligible over a time � � w=km.Therefore hexp[i kmÆq(� jp0; q(t00); t00)℄i� ' 1 in the part of the integrationdomain over � where ~P takes appre
iable values in (17), andB = limt!1 MXm=1 �A2mkm2t tZ0 P �vm � p0; t00jp0� dt00= tZ0 MXm=1 Dm�vm2t P �vm � p0; t00jp0� dt00 ; (19)where the inverse Fourier transform was provided by the integral over � .Now, if t is large enough for P to be almost 
onstant over the range[vm�L; vm+L℄ for all m's, we approximateLXj=�L Dm+j j�vm+j jjvm+L+1 � vm�Lj ' DQL ;and substitute the sum over vm by an integral:B = 2 tZ0 Z DQLP �p� p0; t00jp0� dp dt00 = 2DQLt :The general term of (16) 
an be estimated by a similar 
al
ulation.A sequen
e of two Fourier transforms is again re
overed. After the �rst one,averages of the kind hexp i [kmÆq(� jp0; q(t00); t00) + 'm + "'n℄i� are found.They vanish as the 
onstraint p(t00) = p0+ Æp leaves almost free the averageon any two phases, and sin
e Æq is negligible for � small. Therefore only B
ontributes to h�p2(t)i whi
h thus grows in a quasilinear way. This endsour proof of the quasilinear estimate for asymptoti
 times.



Quasilinear Di�usion for the Chaoti
 Motion of . . . 1083Note that the 
onditional probability P permits to use the knowledge ofinitial quasilinear di�usion for proving it over asymptoti
 times only be
ausewe proved before that �QL � �spread. In 
ontrast with the initial non-
haoti
quasilinear regime, the number of modes a
ting on the parti
le in
reaseswith t. This agrees with the fa
t that the orbit visits an in
reasing numberof resonan
es when time in
reases.6. Con
lusionThus we prove the quasilinear 
hara
ter of the di�usion for the motionof a parti
le in a spe
trum of large amplitude longitudinal waves. Our te
h-nique 
an be adapted to systems with a slow dependen
e of the quasilineardi�usion 
oe�
ient on p. As many Hamiltonian systems may be lo
ally re-du
ed to 
ase (1) (see [12℄), this further extends its range of appli
abilityand shows that the universality 
lass of quasilinear di�usion is broad. It alsoprovides insight for the 
ase where parti
les and waves are self-
onsistently
oupled [13℄.Higher order moments of �p 
ould be 
omputed using a similar te
h-nique. Indeed, preliminary 
al
ulations indi
ate that the use of 
onditionalprobabilities should enable one to retain after Fourier transforms the sameterms for the moment of order � as in the 
ase where q(t) is weakly de-pendent on any phase provided that � � B�1, whi
h yields a Gaussianestimate. Proving the Gaussianity of f would also lead to a Fokker�Plan
k�Smolu
howski evolution equation for f .The value of B (whi
h depends only on lo
al aspe
ts of the spe
trum:A, k, Æv) determines the time s
ale over whi
h the quasilinear approximationholds. Given B � 1, this time s
ale is t � �QL. On the other hand, werequire that the motion remains away from the boundaries pmin and pmax ofthe wave spe
trum. Given the s
aling h�p2i � 2Dt, the boundary is rea
hedfor tbound � D�1M2�v2 � M2B�QL. As M is independent of B, one maylet M !1 to ensure tbound to be as large as desirable.Comments by D. Bénisti and A. Henriet on this work are gratefullya
knowledged. YE thanks the organizers and parti
ipants of the M. Smolu-
howski symposium for dis
ussions.
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