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The rigorous analytical calculation of the diffusion coefficient is per-
formed for the chaotic motion of a particle in a set of longitudinal waves
with random phases and large amplitudes (~ A). A first step proves the
existence of a quasilinear diffusion on a time scale ~ A=2/31n A. A second
step uses this property to extend the result to asymptotic times by intro-
ducing the conditional probability distribution of position and velocity of
an orbit at a given time when they are known at a previous time.

PACS numbers: 52.35.—g, 05.45.—a, 05.60.-k, 52.20.—j

1. Introduction

Many chaotic Hamiltonian systems encountered in physics display a cha-
otic diffusion and in many cases the corresponding diffusion coefficient is
given by a so-called quasilinear estimate [1-4]. The proof that this estimate
is correct exists for the standard map with large control parameter [5], but
is lacking for other systems with a spatially smooth force. We provide this
proof for the one-dimensional chaotic motion of a particle in a general set of
waves.

This result strengthens the link between the microscopic determinis-
tic (chaotic) dynamics and the macroscopic stochastic motion. Its exten-
sion to the self-consistent many-body problem is a central problem to non-
equilibrium statistical physics.

* Presented at the XTIV Marian Smoluchowski Symposium on Statistical Physics,
Zakopane, Poland, September 9-14, 2001.
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This paper is organized as follows. First we introduce our model dy-
namics and stress the core of our argument. Then we recall the traditional
argument deriving the quasilinear diffusion over a time short with respect
to a characteristic time Tgpread ~ A~2/3 (A being a typical value of the
wave amplitudes) and introduce the explicit form of the quasilinear diffu-
sion coefficient. We re-derive this result within our new approach and take
advantage of a better understanding of the particle motion to extend the
validity of quasilinear diffusion to a time scale ~ A~2/31n A, which is longer
than the traditional scale Tgpreaq for A large. Finally, we introduce the con-
ditional probability distribution of position and velocity of a chaotic orbit
at a given time when they are known at a previous time and, thanks to the
non-confinement of the velocity of the chaotic orbit, we further extend the
quasilinear estimate to asymptotic time scales.

2. Dynamical model and assumptions

We consider the dynamics of a particle in a set of longitudinal waves
(e.g. Langmuir waves) with random phases and large amplitude, as defined
by the Hamiltonian

9 M
H(p,q,t) = % + Z Apm cos(kmq —wpt+ (Pm) ) (1)

m=1

where the ¢,,’s are random variables and the (A, kn, wm)’s are prescribed
triplets of positive parameters. Such a dynamical system has already been
studied in the literature, and for large A,,’s the diffusion coefficient has been
found numerically to take on the quasilinear value [4,6-9] defined below!.
The average over M > A?/3In A > 1 random phases is central to our
proof, in agreement with the occurrence of uncontrolled phases in many
experiments and with the fact that the transport in (1) is much less diffusion-
like if one averages only over initial conditions (pg, go) [10]. The large A limit
(dynamically speaking, the limit of strong resonance overlap parameter)
corresponds to the limit of continuous spectrum often encountered in physics.

In agreement with most of the literature on quasilinear transport, the
analysis is performed here in terms of quadratic means, and not in terms
of the probability distribution functions, but we indicate at the end of this
paper, how our technique could be used to prove the gaussianity of such
functions.

! Dqr = mwA%/2 in the case of Ref. [8] (where M = 2M' + 1, A, = A, kyy = 1 and
wm = m — M' — 1 for all m’s) and for the standard map, which is a special case of
Ref. [8] in the limit M — oo with all phases ¢, = 0.
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The equations of motion are

q¢=p, (2)
M

p = Z Apk sin(kpyq — wpt + ©m) - (3)
m=1

We consider first the time to be short enough for the orbit to stay close
to the unperturbed orbit ¢(0(t) = qo + pot, and let Aq(t) = q(t) — ¢ (t),
Ap(t) = p(t) — po. We compute their statistical properties when averaging
over all ¢,,’s.

For completeness, we first evaluate Ap(t) by the traditional technique
[1,2] using first order perturbation in the amplitudes:

M

Amkm

Ap(t) =" 7 [COS (km@o + ¢m) — cos (2pt + kmgo + (Pm)] , o (4)
m=1 m

with 2, = knmpo — wm; if 2, = 0 for some m, the corresponding term in
the sum is the limit as 2, — 0. At this order, (Ap(¢)) = 0 and

M 2
(Ap*(t)) = Z <Ag:m) [1 — cos(2mt)].

m=1

Let vy = wpm/km. We assume that A2, = 2,11 — 2, and Av,, =
Um+1 — Um have a sign independent of m, which is natural for Langmuir
waves and for the dynamics of Ref. [8]. Let

A2 _ T(Amkm)?

D, =—>—= .
2 Avm|  posom 2/AD] 5)

D,,, may fluctuate with m, but we assume (for simplicity only) that for some
L>0

L
3 Dy j | Avpy|
P [Vm+ 141 — Vm—1|
is a constant Dqr,, called the quasilinear diffusion coefficient. Let Af2;5r =
max |-Qm+L+1 - -Qm—L|a Tdiscr — A-QZ]& and 7, = (-Qmax - -anin)i1 ; Tdiscr
and 7, are, respectively, the discretization time and the correlation time of
the wave spectrum as seen by the particle.
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3. Non-chaotic initial quasilinear transport
Assuming 7, < t < Tgjscr, On€ obtains

(Ap(t)?) = 2P

o.¢]
/ 22 [1 - cos(Qt)] df2 = 2Dqrt,

—00

where the discrete sum has been turned into an integral.

As a result, the diffusion coefficient takes on the quasilinear value Dqy,.
A similar calculation for ¢ yields (Aq(t)) = 0 and (Aq(t)?) = 2Dqrt?/3.
For t < 7¢, Ap grows linearly with time, and (Ap?) grows quadratically, as
all modes act with a constant force on the orbit. For 7. € t < Tgjscr, the
range of m contributing to the diffusion (modes acting with a nearly constant
force) narrows like 1/¢. The range of ¢ is further restricted by the condition
for the orbit to remain close to the unperturbed one. This is traditionally
obtained by requiring (k2,,, A¢*(t)) < 47, namely ¢ < Tspread With

_1\1/3 _
Tspread = (6772kmzx Qi) = 4’7D1 > (6)

where we introduce the resonance broadening frequency yp, = (ngQL)l/ 3

and take yp = maxy, Ypy.-

In our approach, we evaluate Ap(t) as in Ref. [8] by integrating for-
mally the equation of motion for p. This yields (Ap(t)) = 0 over the range
0 <t < 7qr, defined below, and (Ap%(t)) = Ag + Ay + A_, with

M:

tt M
Ay by Ay ki
Z eI (o8 (B (1) +1 P (t2)] )t

2 / :
")

where @,,(t) = kpnAq(t) + 2nt + @, with o = £1 and 9y = —1, and
under condition my # mg for j = —, and condition m; = mg for j = 0.
Lett_ =t —ty and t4 = (tl + t2)/2. For t_ <« Tspread

(ol s o)~ -5))])

may be considered as equal to 1. Therefore the support in ¢_ of the in-
tegrand in Ag is of the order of 7. We assume 7. < Tgpread- Hence
the integration domain in ¢_ may be restricted to |t—| < v7. where v is
a few units. In the limit where v7. € t < Tgjser, We obtain

mi
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M t VTe
2Dp,
2o =3 / 2D / (008 Ot 1) AQdt _dt,
m=1j : 0
M
= 2DqL Y (72m) " (sin[Q2mv7e]) ALt
m=1
= 2Dqrt,

with the discrete sum over m approximated by an integral.

For t < Typread We approximate ¢(t) by its unperturbed value O ().
As this orbit does not depend on the phases, the averaged cosines in (7)
are zero for j = 4, and so are the A4’s. Then our second approach shows
again that the diffusion coefficient takes on the quasilinear value. (Agq?(t))
too may be computed by integrating the equation of motion?. This involves
calculating (Ap(t1)Ap(t2)), in the same way as (Ap?(t)), and one recovers
the traditional estimate for (Ag?(t)). This provides a way for introducing
the condition ¢ < Tgpreaq Without resorting to the traditional perturbative
approach, and shows that the usual quasilinear diffusion coefficient may be
recovered independently by our second approach.

4. Chaotic trajectory spreading

In fact our second approach is much more powerful. As was pointed out
in Ref. [8], A4 vanishes provided that the dependence of Aq over any N, = 2
phases with all other phases fixed is weak, a condition far less stringent than
the previous condition N, = M which led to ¢t < Tspread- Ref. [8] estimated
the upper bound in time of the initial quasilinear diffusion through numerical
calculations for moderate values of the waves amplitude. Here we derive such
a bound analytically for large enough amplitudes.

We measure these amplitudes by the parameter E, = [2Dqr.ky|Avy, |/ 7]
which corresponds to the typical electric field of a wave. A related dimen-
sionless quantity characterizes our scaling, namely the Chirikov resonance

overlap parameter
2 (A}/2 +AM? )

1/2

s(on) = = o (8)

or equivalently the ratio

ken | Avp, -
B(vy) = % ~ 5g /3 (9)

2 The process Aq(t) is found to be Gaussian, and its moment generating function reads
<eiu(A11(t2)—AII(t1))> e_'MQDQL“tZ_tl‘3/3+‘t2—t1|2 min(tq,t2)]
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of the frequency mismatch between neighboring waves (in the frame of either
wave) to their resonance broadening frequency. As these quantities depend
on n, they characterize the dynamics locally. In the following, we are in-
terested in the dense spectrum, or strong overlap, or large amplitude limit.
To ensure a genuine scaling, we consider families of dynamics (1) where
FE, = Fa, and the reference amplitudes a,, are constant while £ — oo, or
B(v,) = Bby, and the coefficients b, are constant while B — 0.

Apart from the small dimensionless parameter B, we also introduce the
Kubo number K. = 7¢/Tspread- The wide velocity spectrum of the waves
ensures that . < 1.

The limit of interest is the joint limit . — 0 and B — 0 (or K. — 0
and s — 00).

4.1. Spreading due to a single random phase

In order to avoid too heavy formulas, we give the explicit derivation
for the spreading due to one phase, and extend the result to two phases
afterwards. To estimate this spreading we study how the orbit which is

t (qo,po) at t = 0 is modified when phase ¢,, changes from 0 to a finite
value. Let (gy(t),py(t)) be the orbit for ¢, = 0, let dg,(t) = q(t) — qu(t)
and 6py, (t) = 0¢n(t) = p(t) — py(t). We assume ¢ to be small enough so that

Emax|0gn ()| < 7. As dgn(t) is small, we may linearize the motion
8pn (t) ~ F( )0qn () + Apky (sin @, (t) — sin¥yo(t)) , (10)
where F(t) = Y | k2, Ay, cos Uy, (1), with ¥, = kpgy(t) — wmt + om and

V0 =kngy(t)—w,t. Then (10) and initial conditions (dgy,(0), ép,(0))=(0,0)
imply

t
8qn (t) / —t"F(t")oqn(t")dt" + dqno(t) , (11)
0

where
tt

Sqno(t) = Ak, / / <sin11/n(t”) — sin Wno(t”)>dt”dt’.

In the short-time limit, the dominant term in this expression (11) for d¢g, will
be dgno, but over longer times the first term may self-amplify and overtake
the second one.

We estimate only (dgy,(t)?), but (g, (t)) can be computed by the same
technique and it turns out to be negligible over the time interval of interest.
In a first stage, consider the contribution of dg,o to the variance

Co(t) ~ (dgno(t)?) = % / / / / (cos (W, (t]) — Wn(t))) dtsdtsdt!dt] .
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To estimate this expression, note that
T () = P (82) = O (87 = t2) = kn (0(11) — a(82)) = knpo (1 = 1)

and, for the range of time of interest, gy(t") — ¢(%)(¢") is essentially the
sum of M — 1 terms in which a random phase ¢, (m # n) is added to
a term which has a weak dependence on ¢,,. Therefore, this sum is almost
Gaussian, and for M >> 1 we may approximate ¢,(¢") by a Brownian motion.
Furthermore, as M > 1, we approximate gy (") by ¢(t") in the averages.
Using the distribution of Aq(ty) — Aq(t1), we find? the estimate

Co(t) < Conr(t) = 0.28 k| Avy | vH,t> = 0.28 B (ypnt)®. (12)

For the second stage, we take into account the first term in the right
hand side of (10). As dg, is small, we may treat F'(¢) as a Gaussian process
with moments (F(t)) = 0 and (F(t,)F(t2)) = 2v3,6(t1 — t2) where 4(t) is
the Dirac distribution. Indeed gy(t) has a weak dependence on any phase
©m, which makes (F'(t1)F'(t2)) a Bragg-like function with the small width 7,
in t; —t9. Higher moments of F' are assumed to factorize, i.e. F'is treated as
a white noise, which is consistent with approximating q,(t) by a Brownian
motion.

We estimate the spreading of g, (t) by computing

C(t) = (dqn(t)*)

F(#\)F(t3)) (0qn(t))dqn(t9)) dtydtydtidty + Co(t)

[2
L=
>

E t1 to Min tl,t2
- / / / Ct") dt"dtydt, + Co(t) . (13)

It follows from (10) and our assumptions on F' that C(t)=Cy(t)+LC(t) with

t ¢ min(
E2
=5 / / / f t")dt" dthdt, .
00

3 By previous footnote, one finds ‘(cos(&l'fn(t'l') - Wn(t'z')))‘ < ‘cos Q,(t5 — t7)

~

x exp[—zknDqults — t/|*] < exp[—1k; Dqu|ty — t{|?]. Integration yields Co(t) <

tt
(knAn)2I(4/3)(k2Dqr/3)"/3 [ [ min(t}, th)dthdt), where I'(z) is the Euler gamma
00

function.
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As (1—L)~! preserves positivity?, C = (1-L)"'Cy < (1—L)"'Coprr = Cpr.
Applying the Laplace transform to both sides of equation Cyy = Copr+LClyy,
we compute C)s and find

O(t) < Cu(t) = 0.14 Bk (et’ 1+ 29(t’)) (14)

with ¢/ = 4'3yp,t and g(t') = e ¥/2cos(t'v/3/2) — 1. This estimate for
the variance of dqy,(t) starts from zero at ¢ = 0 and diverges exponentially
for ¢ — oo. Its exponentiation time scale 7riap ~ 75711 ~ Tgpread 15 the
reciprocal of the Liapunov characteristic instability rate (this is reminiscent
of Ref. [4]). However, as the coefficient in front of the exponential goes to
zero as E/ — oo, the time needed by our upper estimate on k2C(t) to reach
unity is of the order of

Tqu =" | InB]. (15)

Though this time goes to zero as E — oo, it is O(InB~!) times larger
than the time Tgyreaq Over which the initial quasilinear approximation is
traditionally justified.

4.2. Spreading due to two random phases

The result of this discussion is that ¢(t) depends little on any given
phase over a time Tqr,. For M > 1, the argument is easily strength-
ened into ¢(t) depends little on any two given phases over a time 1qr,. To
this end (g, o (t), Py gho () and (dg(t), dp(t)) are defined starting from
©m; = ¢m, = 0, and a third term similar to the second one adds in the right
hand side of (10). The first stage of our iteration procedure now estimates
the contribution of both phases ¢,,, and ¢,,, by a term again of the order
of B2~3 3, while the second stage does not change.

As a result, for ¢ < 7qr,, the non-quasilinear terms A4 are negligible
since ¢ has a small dependence on any given pair of phases in this time
range. Furthermore these terms may be estimated by making explicit in
the argument of the cosine of (7) the main dependence over ¢,,, and @,
through estimates 6®,,, and d®,,, of the type k,,dg,o for both phases, and by
expanding to second order in these d®’s. Such estimates hold for ¢ < B7qr,
with 0 < 8 < 1 for E large enough, and yield A, ~ E*72t? and A ~ E*%®
which are negligible with respect to 4Aj in the time interval of interest, and
do not grow with M although there are 2M? — M “off-diagonal” terms.

* Indeed, L preserves positivity and is a contraction operator for functions on [0, o]

with the norm ||f||x = X [ e™*|f(t)|dt, for any A > 4'/3~p.
0
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5. Quasilinear transport over large times

Finally, we show that the quasilinear estimate holds for asymptotic times.
Let pmin = min(v,,) and ppax = max(v,,). We assume that in the velocity
domain [pmin, Pmax] the dynamics is chaotic enough for a typical orbit to
be unconfined in p within this domain, but that the time of interest is also
smaller than the time for the orbit to reach the boundaries of the chaotic
domain. Therefore we set the condition

min [(py — Pmin)?, (o — pmax)2] > Dqurqr ~ k; 2vh, In(B™1),

to compute now the diffusion coefficient due to the chaotic motion when M

and F are large. We define dq(7|p, q,t) = q(t+7) — q—p7, where g(¢') is the

position at time ¢’ of an orbit which is at (p,q) at time ¢: dq(7|p, q,t) tells

the departure of this orbit from the free motion during the time interval 7.
Integrating formally the equation of motion for p yields

(Ap Z d e Ak A i // (cos ®)dt'dt" (16)

m,n=1e==+1
where
D = (ky + ekn)q(t") + kmdq [t — "|p(t"), q(t"),1"]
+ Enp(t") (' — ") — wpt’ — ewnt” + Om + eon .

We introduce the probability distribution P(dp,t|pg) of dp = p(t) — po for
an orbit started at p = py at tg = 0; it is independent of ¢p.

(cos[kmdq(t' —t"|p(t"), q(t"),¢")]) is independent of ¢(¢"), and its contri-
bution for diagonal (m =n, e = —1) terms to (16) is

t t
2
B=am bl [ [ (o, o) cos Bt~ (). ).
*)OO
- 00
X €OS [km( po + 0p) (' — ") — wi(t' — t")] dopdt'dt”
M t t—t"
. (A k
= tlggo Z §R// kmT,t"|po) exp [i 2, 7]
m=1 0 —¢
X (exp [i kmdq(t|po, q(t"),¢")]), drdt" (17)

where the starred average means the average done with the constraint p(t")
= po + dp, and where the Fourier transform

oo

Plat"|py) = / P(6p, '|po) exp(i adp) dip (18)

— 00
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was used. As dq is computed with the knowledge of p at time #” which sets
only one condition on a set of many phases, an average with the constraint
p(t") = po + dp may be computed by using the initial quasilinear estimate
at time |¢' —¢"| < 7qr.. Hence the function (exp[i ky,dq(t' —t"|p, q(¢"),t")])«
is correctly computed by the previous quasilinear estimate over its whole
support in t' — " as 7qQr, > Tepread- This estimate is independent of p, and
we could set p = po in the average cosine. Up to ¢ = 7qr,, the width
of P is growing, since we proved (Ap?(t)) grows linearly over this time
interval. Later on this width cannot decrease because of the locality of
chaotic motion [8,11]. We assume t >> Typread- Then the width w of P is
narrow enough for the spread of dq to be negligible over a time 7 ~ w/ky,.
Therefore (expli kmdq(T|po, q(t"),t")])x ~ 1 in the part of the integration

domain over 7 where P takes appreciable values in (17), and

u t
) A2 k
B = i 32 [ G i)
m=1 0
Loy
D, Av
= [ 32 P (= pon o) (19
0 m=1

where the inverse Fourier transform was provided by the integral over 7.
Now, if ¢ is large enough for P to be almost constant over the range
[Um—1,Um+r] for all m’s, we approximate

L
Dm+j |A'Um+j|

~ Dq1,,

and substitute the sum over v,, by an integral:

t
B=2 // Dqr.P (p — po,t"|po) dpdt" = 2Dqt .
0

The general term of (16) can be estimated by a similar calculation.
A sequence of two Fourier transforms is again recovered. After the first one,
averages of the kind (expi [kndq(T|po, q(t"),t") + ©m + €pn])« are found.
They vanish as the constraint p(t") = pg + dp leaves almost free the average
on any two phases, and since dq is negligible for 7 small. Therefore only B
contributes to (Ap?(t)) which thus grows in a quasilinear way. This ends
our proof of the quasilinear estimate for asymptotic times.
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Note that the conditional probability P permits to use the knowledge of
initial quasilinear diffusion for proving it over asymptotic times only because
we proved before that 7qr, > Tgpread. In contrast with the initial non-chaotic
quasilinear regime, the number of modes acting on the particle increases
with ¢. This agrees with the fact that the orbit visits an increasing number
of resonances when time increases.

6. Conclusion

Thus we prove the quasilinear character of the diffusion for the motion
of a particle in a spectrum of large amplitude longitudinal waves. Our tech-
nique can be adapted to systems with a slow dependence of the quasilinear
diffusion coefficient on p. As many Hamiltonian systems may be locally re-
duced to case (1) (see [12]), this further extends its range of applicability
and shows that the universality class of quasilinear diffusion is broad. It also
provides insight for the case where particles and waves are self-consistently
coupled [13].

Higher order moments of Ap could be computed using a similar tech-
nique. Indeed, preliminary calculations indicate that the use of conditional
probabilities should enable one to retain after Fourier transforms the same
terms for the moment of order x as in the case where ¢(t) is weakly de-
pendent on any phase provided that s < B~!, which yields a Gaussian
estimate. Proving the Gaussianity of f would also lead to a Fokker—Planck—
Smoluchowski evolution equation for f.

The value of B (which depends only on local aspects of the spectrum:
A, k, év) determines the time scale over which the quasilinear approximation
holds. Given B < 1, this time scale is ¢ > 7qr,. On the other hand, we
require that the motion remains away from the boundaries ppin and ppax of
the wave spectrum. Given the scaling (Ap?) ~ 2Dt, the boundary is reached
for tpouna ~ DT M?Av? ~ MQBTQL. As M is independent of B, one may
let M — oo to ensure tpound t0 be as large as desirable.

Comments by D. Bénisti and A. Henriet on this work are gratefully
acknowledged. YE thanks the organizers and participants of the M. Smolu-
chowski symposium for discussions.
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