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QUASILINEAR DIFFUSION FORTHE CHAOTIC MOTION OF A PARTICLEIN A SET OF LONGITUDINAL WAVES�D.F. Esande and Y. ElskensEquipe Turbulene Plasma, unité 6633 CNRS, Université de ProveneCentre de Saint-Jér�me, 13397 Marseille, Cedex 20, Franee-mail: esande�newsup.univ-mrs.fre-mail: elskens�newsup.univ-mrs.fr(Reeived Otober 29, 2001)The rigorous analytial alulation of the di�usion oe�ient is per-formed for the haoti motion of a partile in a set of longitudinal waveswith random phases and large amplitudes (� A). A �rst step proves theexistene of a quasilinear di�usion on a time sale � A�2=3 lnA. A seondstep uses this property to extend the result to asymptoti times by intro-duing the onditional probability distribution of position and veloity ofan orbit at a given time when they are known at a previous time.PACS numbers: 52.35.�g, 05.45.�a, 05.60.�k, 52.20.�j1. IntrodutionMany haoti Hamiltonian systems enountered in physis display a ha-oti di�usion and in many ases the orresponding di�usion oe�ient isgiven by a so-alled quasilinear estimate [1�4℄. The proof that this estimateis orret exists for the standard map with large ontrol parameter [5℄, butis laking for other systems with a spatially smooth fore. We provide thisproof for the one-dimensional haoti motion of a partile in a general set ofwaves.This result strengthens the link between the mirosopi determinis-ti (haoti) dynamis and the marosopi stohasti motion. Its exten-sion to the self-onsistent many-body problem is a entral problem to non-equilibrium statistial physis.� Presented at the XIV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 9�14, 2001.(1073)



1074 D.F. Esande, Y. ElskensThis paper is organized as follows. First we introdue our model dy-namis and stress the ore of our argument. Then we reall the traditionalargument deriving the quasilinear di�usion over a time short with respetto a harateristi time �spread � A�2=3 (A being a typial value of thewave amplitudes) and introdue the expliit form of the quasilinear di�u-sion oe�ient. We re-derive this result within our new approah and takeadvantage of a better understanding of the partile motion to extend thevalidity of quasilinear di�usion to a time sale � A�2=3 lnA, whih is longerthan the traditional sale �spread for A large. Finally, we introdue the on-ditional probability distribution of position and veloity of a haoti orbitat a given time when they are known at a previous time and, thanks to thenon-on�nement of the veloity of the haoti orbit, we further extend thequasilinear estimate to asymptoti time sales.2. Dynamial model and assumptionsWe onsider the dynamis of a partile in a set of longitudinal waves(e.g. Langmuir waves) with random phases and large amplitude, as de�nedby the HamiltonianH(p; q; t) = p22 + MXm=1Am os(kmq � !mt+ 'm) ; (1)where the 'm's are random variables and the (Am; km; !m)'s are presribedtriplets of positive parameters. Suh a dynamial system has already beenstudied in the literature, and for large Am's the di�usion oe�ient has beenfound numerially to take on the quasilinear value [4, 6�9℄ de�ned below1.The average over M � A2=3 lnA � 1 random phases is entral to ourproof, in agreement with the ourrene of unontrolled phases in manyexperiments and with the fat that the transport in (1) is muh less di�usion-like if one averages only over initial onditions (p0; q0) [10℄. The large A limit(dynamially speaking, the limit of strong resonane overlap parameter)orresponds to the limit of ontinuous spetrum often enountered in physis.In agreement with most of the literature on quasilinear transport, theanalysis is performed here in terms of quadrati means, and not in termsof the probability distribution funtions, but we indiate at the end of thispaper, how our tehnique ould be used to prove the gaussianity of suhfuntions.1 DQL = �A2=2 in the ase of Ref. [8℄ (where M = 2M 0 + 1, Am = A, km = 1 and!m = m �M 0 � 1 for all m's) and for the standard map, whih is a speial ase ofRef. [8℄ in the limit M !1 with all phases 'm = 0.



Quasilinear Di�usion for the Chaoti Motion of . . . 1075The equations of motion are_q = p ; (2)_p = MXm=1Amkm sin(kmq � !mt+ 'm) : (3)We onsider �rst the time to be short enough for the orbit to stay loseto the unperturbed orbit q(0)(t) = q0 + p0t, and let �q(t) = q(t) � q(0)(t),�p(t) = p(t) � p0. We ompute their statistial properties when averagingover all 'm's.For ompleteness, we �rst evaluate �p(t) by the traditional tehnique[1, 2℄ using �rst order perturbation in the amplitudes:�p(t) = MXm=1 Amkm
m h os (kmq0 + 'm)� os (
mt+ kmq0 + 'm) i ; (4)with 
m = kmp0 � !m; if 
m = 0 for some m, the orresponding term inthe sum is the limit as 
m ! 0. At this order, h�p(t)i = 0 andh�p2(t)i = MXm=1�Amkm
m �2 [1� os(
mt)℄ :Let vm = !m=km. We assume that �
m = 
m+1 � 
m and �vm =vm+1 � vm have a sign independent of m, whih is natural for Langmuirwaves and for the dynamis of Ref. [8℄. LetDm � �A2mkm2j�vmj = limp0!vm �(Amkm)22j�
mj : (5)Dm may �utuate with m, but we assume (for simpliity only) that for someL � 0 LXj=�L Dm+j j�vm+j jjvm+L+1 � vm�Ljis a onstant DQL, alled the quasilinear di�usion oe�ient. Let �
LM =max j
m+L+1 � 
m�Lj, �disr = �
�1LM and � = (
max � 
min)�1 ; �disrand � are, respetively, the disretization time and the orrelation time ofthe wave spetrum as seen by the partile.



1076 D.F. Esande, Y. Elskens3. Non-haoti initial quasilinear transportAssuming � � t� �disr, one obtainsh�p(t)2i = 2DQL� 1Z�1 
�2h1� os(
t)id
 = 2DQLt ;where the disrete sum has been turned into an integral.As a result, the di�usion oe�ient takes on the quasilinear value DQL.A similar alulation for q yields h�q(t)i = 0 and h�q(t)2i = 2DQLt3=3.For t� �, �p grows linearly with time, and h�p2i grows quadratially, asall modes at with a onstant fore on the orbit. For � � t � �disr, therange ofm ontributing to the di�usion (modes ating with a nearly onstantfore) narrows like 1=t. The range of t is further restrited by the onditionfor the orbit to remain lose to the unperturbed one. This is traditionallyobtained by requiring hk2max�q2(t)i � 4�2, namely t� �spread with�spread = �6�2k�2maxD�1QL�1=3 = 4�1D ; (6)where we introdue the resonane broadening frequeny Dn � (k2nDQL)1=3and take D � maxn Dn.In our approah, we evaluate �p(t) as in Ref. [8℄ by integrating for-mally the equation of motion for p. This yields h�p(t)i = 0 over the range0 � t� �QL de�ned below, and h�p2(t)i = �0 +�+ +��, with�j=��j tZ0 tZ0 MXm1=1 MXm2=1 Am1km1Am2km22 Dos [�m1(t1)+�j�m2(t2)℄Edt1 dt2 ;(7)where �m(t) = km�q(t) + 
mt + 'm, with �� = �1 and �0 = �1, andunder ondition m1 6= m2 for j = �, and ondition m1 = m2 for j = 0.Let t� = t1 � t2 and t+ = (t1 + t2)=2. For t� � �spread�exp �i km��q�t+ + t�2 ���q�t+ � t�2 ����may be onsidered as equal to 1. Therefore the support in t� of the in-tegrand in �0 is of the order of �. We assume � � �spread. Henethe integration domain in t� may be restrited to jt�j � �� where � isa few units. In the limit where �� � t� �disr, we obtain



Quasilinear Di�usion for the Chaoti Motion of . . . 1077
�0 = MXm=1 tZ0 2Dm� ��Z0 hos[
mt�℄i�
mdt�dt+= 2DQL MXm=1(�
m)�1hsin[
m��℄i�
mt= 2DQLt ;with the disrete sum over m approximated by an integral.For t � �spread we approximate q(t) by its unperturbed value q(0)(t).As this orbit does not depend on the phases, the averaged osines in (7)are zero for j = �, and so are the ��'s. Then our seond approah showsagain that the di�usion oe�ient takes on the quasilinear value. h�q2(t)itoo may be omputed by integrating the equation of motion2. This involvesalulating h�p(t1)�p(t2)i, in the same way as h�p2(t)i, and one reoversthe traditional estimate for h�q2(t)i. This provides a way for introduingthe ondition t � �spread without resorting to the traditional perturbativeapproah, and shows that the usual quasilinear di�usion oe�ient may bereovered independently by our seond approah.4. Chaoti trajetory spreadingIn fat our seond approah is muh more powerful. As was pointed outin Ref. [8℄, �� vanishes provided that the dependene of�q over any N' = 2phases with all other phases �xed is weak, a ondition far less stringent thanthe previous ondition N' = M whih led to t� �spread. Ref. [8℄ estimatedthe upper bound in time of the initial quasilinear di�usion through numerialalulations for moderate values of the waves amplitude. Here we derive suha bound analytially for large enough amplitudes.We measure these amplitudes by the parameter En= [2DQLknj�vnj=�℄1=2whih orresponds to the typial eletri �eld of a wave. A related dimen-sionless quantity haraterizes our saling, namely the Chirikov resonaneoverlap parameter s(vn) = 2�A1=2n +A1=2n+1�j�vnj (8)or equivalently the ratioB(vn) � knj�vnjDn ' 5s�4=3 (9)2 The proess �q(t) is found to be Gaussian, and its moment generating funtion readshei u(�q(t2)��q(t1))i = e�u2DQL[jt2�t1j3=3+jt2�t1j2min(t1;t2)℄.



1078 D.F. Esande, Y. Elskensof the frequeny mismath between neighboring waves (in the frame of eitherwave) to their resonane broadening frequeny. As these quantities dependon n, they haraterize the dynamis loally. In the following, we are in-terested in the dense spetrum, or strong overlap, or large amplitude limit.To ensure a genuine saling, we onsider families of dynamis (1) whereEn = Ean and the referene amplitudes an are onstant while E ! 1, orB(vn) = Bbn and the oe�ients bn are onstant while B ! 0.Apart from the small dimensionless parameter B, we also introdue theKubo number K � �=�spread. The wide veloity spetrum of the wavesensures that K � 1.The limit of interest is the joint limit K ! 0 and B ! 0 (or K ! 0and s!1). 4.1. Spreading due to a single random phaseIn order to avoid too heavy formulas, we give the expliit derivationfor the spreading due to one phase, and extend the result to two phasesafterwards. To estimate this spreading we study how the orbit whih isat (q0; p0) at t = 0 is modi�ed when phase 'n hanges from 0 to a �nitevalue. Let (q6n(t); p6n(t)) be the orbit for 'n = 0, let Æqn(t) = q(t) � q6n(t)and Æpn(t) = Æ _qn(t) = p(t)� p 6n(t). We assume t to be small enough so thatkmaxjÆqn(t)j � �. As Æqn(t) is small, we may linearize the motionÆ _pn(t) ' F (t)Æqn(t) +Ankn(sin	n(t)� sin	n0(t)) ; (10)where F (t) = PMm=1 k2mAm os	m(t), with 	m = kmq6n(t) � !mt + 'm and	n0=knq6n(t)�!nt. Then (10) and initial onditions (Æqn(0); Æpn(0))=(0; 0)imply Æqn(t) = tZ0 (t� t00)F (t00)Æqn(t00)dt00 + Æqn0(t) ; (11)where Æqn0(t) = Ankn tZ0 t0Z0 � sin	n(t00)� sin	n0(t00)�dt00dt0 :In the short-time limit, the dominant term in this expression (11) for Æqn willbe Æqn0, but over longer times the �rst term may self-amplify and overtakethe seond one.We estimate only hÆqn(t)2i, but hÆqn(t)i an be omputed by the sametehnique and it turns out to be negligible over the time interval of interest.In a �rst stage, onsider the ontribution of Æqn0 to the varianeC0(t) ' hÆqn0(t)2i = k2nA2n2 tZ0 t01Z0 tZ0 t02Z0 
os �	n(t001)� 	n(t002)�� dt002dt02dt001dt01 :



Quasilinear Di�usion for the Chaoti Motion of . . . 1079To estimate this expression, note that	n �t001�� 	n �t002��
n �t001 � t002� = kn �q6n(t001)� q 6n(t002)�� kn p0 �t001 � t002�and, for the range of time of interest, q 6n(t00) � q(0)(t00) is essentially thesum of M � 1 terms in whih a random phase 'm (m 6= n) is added toa term whih has a weak dependene on 'm. Therefore, this sum is almostGaussian, and forM � 1 we may approximate _q 6n(t00) by a Brownian motion.Furthermore, as M � 1, we approximate q 6n(t00) by q(t00) in the averages.Using the distribution of �q(t2)��q(t1), we �nd3 the estimateC0(t) � C0M (t) � 0:28 knj�vnj 2Dnt3 = 0:28B (Dnt)3 : (12)For the seond stage, we take into aount the �rst term in the righthand side of (10). As Æqn is small, we may treat F (t) as a Gaussian proesswith moments hF (t)i = 0 and hF (t1)F (t2)i = 23DnÆ(t1 � t2) where Æ(t) isthe Dira distribution. Indeed q6n(t) has a weak dependene on any phase'm, whih makes hF (t1)F (t2)i a Bragg-like funtion with the small width �in t1� t2. Higher moments of F are assumed to fatorize, i.e. F is treated asa white noise, whih is onsistent with approximating _q6n(t) by a Brownianmotion.We estimate the spreading of Æqn(t) by omputingC(t) � hÆqn(t)2i' tZ0 t01Z0 tZ0 t02Z0 hF (t001)F (t002)i hÆqn(t001)Æqn(t002)i dt002dt02dt001dt01 + C0(t)= E22 t1Z0 t2Z0 min(t01;t02)Z0 C(t00) dt00dt02dt01 + C0(t) : (13)It follows from (10) and our assumptions on F that C(t)=C0(t)+LC(t) withLf(t) = E22 tZ0 tZ0 min(t01;t02)Z0 f(t00)dt00dt02dt01:3 By previous footnote, one �nds ���hos(	n(t001 ) � 	n(t002 ))i��� . ���os
n(t002 � t001 )���� exp[� 13k2nDQLjt002 � t001 j3℄ � exp[� 13k2nDQLjt002 � t001 j3℄. Integration yields C0(t) �(knAn)2� (4=3)(k2nDQL=3)�1=3 tR0 tR0 min(t01; t02)dt02dt01, where � (x) is the Euler gammafuntion.



1080 D.F. Esande, Y. ElskensAs (1�L)�1 preserves positivity4, C = (1�L)�1C0 � (1�L)�1C0M �CM .Applying the Laplae transform to both sides of equation CM = C0M+LCM ,we ompute CM and �ndC(t) � CM (t) = 0:14Bk�2n �et0 � 1 + 2g(t0)� (14)with t0 � 41=3Dnt and g(t0) = e�t0=2 os(t0p3=2) � 1. This estimate forthe variane of Æqn(t) starts from zero at t = 0 and diverges exponentiallyfor t ! 1. Its exponentiation time sale �Liap � �1Dn � �spread is thereiproal of the Liapunov harateristi instability rate (this is reminisentof Ref. [4℄). However, as the oe�ient in front of the exponential goes tozero as E !1, the time needed by our upper estimate on k2nC(t) to reahunity is of the order of �QL = �1D j lnBj : (15)Though this time goes to zero as E ! 1, it is O(lnB�1) times largerthan the time �spread over whih the initial quasilinear approximation istraditionally justi�ed.4.2. Spreading due to two random phasesThe result of this disussion is that q(t) depends little on any givenphase over a time �QL. For M � 1, the argument is easily strength-ened into q(t) depends little on any two given phases over a time �QL. Tothis end (q6m1;6m2(t); p6m1;6m2(t)) and (Æq(t); Æp(t)) are de�ned starting from'm1 = 'm2 = 0, and a third term similar to the seond one adds in the righthand side of (10). The �rst stage of our iteration proedure now estimatesthe ontribution of both phases 'm1 and 'm2 by a term again of the orderof B�23Dt3, while the seond stage does not hange.As a result, for t � �QL, the non-quasilinear terms �� are negligiblesine q has a small dependene on any given pair of phases in this timerange. Furthermore these terms may be estimated by making expliit inthe argument of the osine of (7) the main dependene over 'm1 and 'm2through estimates Æ�m1 and Æ�m2 of the type kmÆqn0 for both phases, and byexpanding to seond order in these Æ�'s. Suh estimates hold for t� ��QLwith 0 < � < 1 for E large enough, and yield �+ � E4�2 t2 and �� � E4t5whih are negligible with respet to �0 in the time interval of interest, anddo not grow with M although there are 2M2 �M �o�-diagonal� terms.4 Indeed, L preserves positivity and is a ontration operator for funtions on [0;1℄with the norm kfk� = � 1R0 e��tjf(t)jdt, for any � > 41=3D.



Quasilinear Di�usion for the Chaoti Motion of . . . 10815. Quasilinear transport over large timesFinally, we show that the quasilinear estimate holds for asymptoti times.Let pmin = min(vm) and pmax = max(vm). We assume that in the veloitydomain [pmin; pmax℄ the dynamis is haoti enough for a typial orbit tobe unon�ned in p within this domain, but that the time of interest is alsosmaller than the time for the orbit to reah the boundaries of the haotidomain. Therefore we set the onditionmin �(p0 � pmin)2; (p0 � pmax)2�� DQL�QL � k�2n 2Dn ln(B�1) ;to ompute now the di�usion oe�ient due to the haoti motion when Mand E are large. We de�ne Æq(� jp; q; t) = q(t+ �)�q�p� , where q(t0) is theposition at time t0 of an orbit whih is at (p; q) at time t: Æq(� jp; q; t) tellsthe departure of this orbit from the free motion during the time interval � .Integrating formally the equation of motion for p yieldsh�p2(t)i = � MXm;n=1 X"=�1 " AmkmAnkn2 tZ0 tZ0 hos�idt0dt00 ; (16)where � = (km + "kn)q(t00) + kmÆq �t0 � t00jp(t00); q(t00); t00�+ kmp(t00)(t0 � t00)� !mt0 � "!nt00 + 'm + "'n :We introdue the probability distribution P (Æp; tjp0) of Æp = p(t) � p0 foran orbit started at p = p0 at t0 = 0; it is independent of q0.hos[kmÆq(t0� t00jp(t00); q(t00); t00)℄i is independent of q(t00), and its ontri-bution for diagonal (m = n, " = �1) terms to (16) isB � limt!1 MXm=1 (Amkm)24t tZ0 tZ0 Z P (Æp; t00jp0)hos [kmÆq(t0�t00jp0; q(t00); t00)℄i�� os �km(p0 + Æp)(t0 � t00)� !m(t0 � t00)� dÆpdt0dt00= limt!1 MXm=1 (Amkm)24t < tZ0 t�t00Z�t00 ~P (km�; t00jp0) exp [i 
m� ℄� 
exp [i kmÆq(� jp0; q(t00); t00)℄�� d�dt00 ; (17)where the starred average means the average done with the onstraint p(t00)= p0 + Æp, and where the Fourier transform~P (�; t00jp0) = 1Z�1 P (Æp; t00jp0) exp(i �Æp) dÆp (18)



1082 D.F. Esande, Y. Elskenswas used. As Æq is omputed with the knowledge of p at time t00 whih setsonly one ondition on a set of many phases, an average with the onstraintp(t00) = p0 + Æp may be omputed by using the initial quasilinear estimateat time jt0 � t00j � �QL. Hene the funtion hexp[i kmÆq(t0 � t00jp; q(t00); t00)℄i�is orretly omputed by the previous quasilinear estimate over its wholesupport in t0 � t00 as �QL � �spread. This estimate is independent of p, andwe ould set p = p0 in the average osine. Up to t = �QL, the widthof P is growing, sine we proved h�p2(t)i grows linearly over this timeinterval. Later on this width annot derease beause of the loality ofhaoti motion [8, 11℄. We assume t � �spread. Then the width w of ~P isnarrow enough for the spread of Æq to be negligible over a time � � w=km.Therefore hexp[i kmÆq(� jp0; q(t00); t00)℄i� ' 1 in the part of the integrationdomain over � where ~P takes appreiable values in (17), andB = limt!1 MXm=1 �A2mkm2t tZ0 P �vm � p0; t00jp0� dt00= tZ0 MXm=1 Dm�vm2t P �vm � p0; t00jp0� dt00 ; (19)where the inverse Fourier transform was provided by the integral over � .Now, if t is large enough for P to be almost onstant over the range[vm�L; vm+L℄ for all m's, we approximateLXj=�L Dm+j j�vm+j jjvm+L+1 � vm�Lj ' DQL ;and substitute the sum over vm by an integral:B = 2 tZ0 Z DQLP �p� p0; t00jp0� dp dt00 = 2DQLt :The general term of (16) an be estimated by a similar alulation.A sequene of two Fourier transforms is again reovered. After the �rst one,averages of the kind hexp i [kmÆq(� jp0; q(t00); t00) + 'm + "'n℄i� are found.They vanish as the onstraint p(t00) = p0+ Æp leaves almost free the averageon any two phases, and sine Æq is negligible for � small. Therefore only Bontributes to h�p2(t)i whih thus grows in a quasilinear way. This endsour proof of the quasilinear estimate for asymptoti times.



Quasilinear Di�usion for the Chaoti Motion of . . . 1083Note that the onditional probability P permits to use the knowledge ofinitial quasilinear di�usion for proving it over asymptoti times only beausewe proved before that �QL � �spread. In ontrast with the initial non-haotiquasilinear regime, the number of modes ating on the partile inreaseswith t. This agrees with the fat that the orbit visits an inreasing numberof resonanes when time inreases.6. ConlusionThus we prove the quasilinear harater of the di�usion for the motionof a partile in a spetrum of large amplitude longitudinal waves. Our teh-nique an be adapted to systems with a slow dependene of the quasilineardi�usion oe�ient on p. As many Hamiltonian systems may be loally re-dued to ase (1) (see [12℄), this further extends its range of appliabilityand shows that the universality lass of quasilinear di�usion is broad. It alsoprovides insight for the ase where partiles and waves are self-onsistentlyoupled [13℄.Higher order moments of �p ould be omputed using a similar teh-nique. Indeed, preliminary alulations indiate that the use of onditionalprobabilities should enable one to retain after Fourier transforms the sameterms for the moment of order � as in the ase where q(t) is weakly de-pendent on any phase provided that � � B�1, whih yields a Gaussianestimate. Proving the Gaussianity of f would also lead to a Fokker�Plank�Smoluhowski evolution equation for f .The value of B (whih depends only on loal aspets of the spetrum:A, k, Æv) determines the time sale over whih the quasilinear approximationholds. Given B � 1, this time sale is t � �QL. On the other hand, werequire that the motion remains away from the boundaries pmin and pmax ofthe wave spetrum. Given the saling h�p2i � 2Dt, the boundary is reahedfor tbound � D�1M2�v2 � M2B�QL. As M is independent of B, one maylet M !1 to ensure tbound to be as large as desirable.Comments by D. Bénisti and A. Henriet on this work are gratefullyaknowledged. YE thanks the organizers and partiipants of the M. Smolu-howski symposium for disussions.
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