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reverse model rL.C leading to negative values of the Arrhenius activation
energy. The perturbation method of solution of the Boltzmann equation is
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tion and for the nonequilibrium Shizgal-Karplus temperatures. It is shown
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(depending on the molar fraction) in the equilibrium equations for forward
and reverse rate constants confirms these results.
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1. Introduction

Prigogine et al. [1,2] were the first to show that if a bimolecular reaction
proceeds the nonequilibrium rate constant of chemical reaction is smaller
than the equilibrium one. These authors using the perturbation method [3]
of solution of the Boltzmann equation have shown that this nonequilibrium
chemical effect can be large enough to be important in chemical kinetics.
Present et al. |4,5] analyzed this effect for the line-of-centers model — very
convenient because of its simplicity (further denoted as the LC model). This
model was introduced in many papers [see e.g. Refs [6-11].

Shizgal and Karplus [12-15] discussed this problem for two cases: () for
isothermal systems in which in the very beginning of chemical reaction the
products can be neglected (see Ref. [1]), (i) for isolated systems in which
the different nonequilibrium temperatures T4 and T’ could be introduced
(further analyzed as the Shizgal-Karplus temperatures or the SK tempera-
tures).

Many authors analyzed the problem of diminishing the chemical reaction
rate for various cases [16-24] Computer simulations results for the nonequi-
libriun rate constant [25-28], as well as the results from solutions of the sets
of differential equations describing time dependence of concentrations and
the nonequilibrium temperatures of components [29,30] were used to verify
the results for the nonequilibrium rate constant of chemical reaction obtained
from the perturbation method of solution of the Boltzmann equation. Few
years ago Shizgal and Napier [31]| provided a very detailed interpretation of
this effect and of the SK temperatures.

2. Introductory definitions and formulation of the problems

We are interested in an analysis of this effect for the following bimolecular
reaction

A+A=DB+B (2.1)

proceeding in a dilute gas. As this reaction proceeds the number densities
nr (R = A, B) of reagents

nR:/fRch, (2.2)

(where fr and cg denote the velocity distribution function and velocity of
molecules) change with time ¢, however, the total number density n remains
constant

nAa+ng=mn. (2.3)
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The velocity v and the rate constant k for the forward reaction are defined
as

dn
ony = kngne? = =2 = [[[ ol d@demden, (R=A.5).

2.4
where the subscript f denotes the forward reaction, the subscripts Rl(anc)l
R2 are introduced to distinguish two colliding molecules of the same sort,

M is the differential reactive cross section depending on the model M (e.g.,
analyzed in this paper M = LC or M = rLC), £ is the solid angle, whereas

g is the relative velocity. In equilibrium the appropriate Ul(,gj)c and kl(,g) can
be calculated after introduction of the Maxwell-Boltzmann velocity distri-
bution function.

(0) B mp \3/2 _chR2 .
FOT) = np () exp< ) (R=AB).  (25)

where mp denotes the molecular mass, k and T are the Boltzmann constant
and temperature, respectively. However, for obtaining of v 4y it is necessary
to have the nonequilibrium velocity distribution functions fr which can
be obtained from the perturbation method of solution of the appropriate
Boltzmann equation [1,3]. For this reaction in nonequilibrium conditions,
the total reaction rates v4, vg and the rate of the reverse reaction v,4, are

VA = VAf+VAr = VAf —VUBf = —UB. (26)
For the equilibrium case these quantities are

oD =8 o8 = o) ) = o) 27

The fundamental quantity (analyzed in this paper) ng describing the non-

equilibrium relative decrease of the total rate of reaction is defined as

v
nRzl—(—ff)>0. (2.8)

v
R

Another important quantity is the Shizgal-Karplus nonequilibrium temper-

ature Tg

chR
T d R=ADRB 2.9
R=3 an / frder  ( ) (2.9)
The temperature of system is simply related to T4 and Tg
T=xsTsr+2TB, (2.10)

where 24 and xp are the molar fractions.
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Recently, it has also been shown [32] that in the case of isolate gaseous
system the quantity 14 for the LC model can be very large. Namely, it can
be even that n = 45 percent. Moreover, in the ranges of the molar fraction of
product zp in which the perturbation method of solution of the Boltzmann
equation works this large effect, e.g. 45% is constant and does not depend
on zp (for a fast reaction zp cannot be too small) [33]. It means that 74
does not change as the reaction proceeds. Such a possibility of constant
value of 74 has been already shown in another way by Nowakowski [34].
After having obtained such a large value of n4 we decided to check it in
another way. Namely, we have already shown [25,35] that the nonequilibrium
values of k4 can be obtained with a good approximation after replacing the
temperature in the equilibrium expression for k45 by the Shizgal-Karplus
temperature. After introduction of the SK temperatures T4 and Tz to the
equilibrium expressions k for the forward and reverse reactions we confirmed
the constant value of n4 for the LC model in general and also for the case
of 45% mentioned. It is interesting that the values for Ty and T derived
in Ref. [32] could be also obtained from the formulas analyzed in Ref. [36].

However, the equations for the LC model are very simple. That is
why, we decided to check the possibility of the constant value of n4 for a
model leading to more complicated equations, namely for the reversed line-
of-centers model (the rLLC model). The rLC model was already discussed
in previous papers [25, 37-42]. The rLC model is also interesting because
negative values of the Arrhenius activation energy can be obtained from this
model.

Our paper is organized in the following way. In Section 3 we present the
formulas derived from the Boltzmann equation, in Section 4 we analyze the
results for the LC model in more detailed way, in Section 5 we continue such
an analysis for the rLC model, in Section 6 we summarize and discuss the
results obtained.

3. Formulas obtained from the perturbation solution
of the Boltzmann equation

The Boltzmann equation for the component A can be written as

0
% = e1+Irea (3‘1)

where the elastic and reactive terms I, and I, are
I = //(fiufﬁm — farfa2) oaagdf dey
+//(fixfﬁa ~ fafB)oapgdQ des, (3.2)
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Ie = / / (i f2 — fy1 fho) oM g d2 des (3.3)

f' denotes the distribution function after collision, 044 and op are the
elastic differential cross sections and ¢ the reactive ones (depending on
the model M which will be introduced in Sections 4 and 5 as the LC and
rL.C models).

As in Refs [32,33] in the reaction analyzed the molecules are assumed to
be spheres which do not change their masses m and diameters d, i.e.

map=mp=m, (3.4)
dy=dp=d. (3.5)
Therefore,
1
OAA = 0AB = Zd?. (3.6)

We solve this equation by the perturbation method described by Shizgal
and Karplus [12-15]. We introduce

fa= P +pa) = £+ £ (3.7)

the quantity 14 is expanded in the Sonine polynomials [1,3,13]
pa= {80 C3), (3.8)
i

where
2
2 Mmacx
AT 2kpT

(3.9)

We solve Eq. (3.1) within one Sonine expansion for the velocity distribution
function.

A) (1 A) o1
pa =a{V st e2) = alVsy) (3.10)
where we introduce 51(41) to write the first Sonine polynomial in a shorter
way.
We define

1 i .
hri(ere) = nr’q // R SY ol gdo2desde, (R=A,B) (i=0,1),
(3.11)
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where
kT 1/2
q = d <”—> , (3.12)
m
Bl
eM — M"; (3.13)

The quantities hp; depend on the model of reactive collision because ¥

denotes the reduced (dimensionless) value of the characteristic energy EM
(e.g. the threshold energy for the LC model)
Using the perturbation method (see Refs [13,21,32]) we can obtain

] (s IE (3.14)

From Egs (3.7), (3.10) and (3.14) we get the nonequilibrium value of the
velocity distribution function

fa=19 [1 — %m <1 -1 B ) hl(eﬁ‘f)sg)] . (3.15)
-

Taking into consideration Eqs (2.4), (2.6), (2.7) and (3.7) we can write

var =) + o), (3.16)
where
vﬁ?} - // F YoM g ds de des (3.17)
oy} = / / / (fﬁol)félﬁ + £ f/(ﬁ))affg dQ2 deay deas . (3.18)
In a similar way as in Ref. [13] we can obtain
oli} = na’ghao (1), (3.19)
1 T 9
vl = —5na’q <1 -7 _P;CB) [ha1(el)]”. (3.20)
We can also write .
vy = nu’ahao(el). (3.21)

As shown by Shizgal and Karplus [13]

nAagA) + nBagB) =0. (3.22)
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Therefore, similarly to Eq. (3.20) we can derive
m__1 o __Ta M2
Upp = ~MB 4 <1 1—30,4) [hB1(ew )] - (3.23)
Using Eqs (2.4)-(2.7), (3.16), (3.19), (3.20) and (3.23) we get
oY) = o) = o) = (na? + np?)ghao (1) | (3.24)
1 2
1)1(41) = US} — vg} = §(nA2 +np?)q[har (eX)]". (3.25)

We can write the quantity 14 (see Eq. (2.8)) as
(1) (1) 1)

_ v vy Yay Uy
M=l == = o0 (8.26)
Vg Uy Vafr — Upy

and after taking into consideration Eqs (3.24) and (3.25) in the following
form
1 [ha(EM)?
2 hao(efd)
This fundamental quantity describing the change of the rate of chemical
reaction does not depend on the molar fraction of product B, 7.e. is con-
stant and does not change as the reaction proceeds. We write here n4 as
14(T) to emphasize that this quantity depends on the temperature of system
(T is constant in the reaction analyzed).
In order to confirm this independence of n4 on zp in another way we
derive the formulas for the nonequilibrium Shizgal-Karplus temperatures
which can be written as [13]

na(T) (3.27)

Tr=TK =T(1-d®) (R=A4,B). (3.28)
From Eqs (3.28), (3.14) and (3.22) we have
11-2zp w
Ty=T(1+--—"""Bp 2
=1 (14 T ). (3.29)
11-2
Tg =T <1 + - TﬁBhBl(&}]«\g)> . (330)
B

In order to get the expression for 94 (T4, Tg) we replace the temperature T

in the formulas for vf} and vg)} (see Eqs (3.11), (3.19) and (3.21)) by the
temperatures T4 and T’g, respectively

(0

(0) (0) T,) — ) T
Na(Ta, Tp)=1— A (%)’ TB)‘ =1- UA(fO() Y Uﬁ)J)C( ) (3.31)
vy vap(T) —vp(T)



1092 A.S. CukrowsKl, J. FORT, S. FRITZSCHE

and we write

EY
) = k(T2 (R=a.), (3.32)
By
UROJ)‘(TR) = nr qhro <ﬁ)
= 'n'RQthO(gf"\g TR)) (R = A7 B) ’ (333)
where y a
Tg) = =X, .34

It is worthwhile to observe that n4(T) (see Eq. (3.27) does not depend on x g
and in contrary n4(T4,Tp) depends because the temperatures T4 and Ty
depend on zp (see Egs (3.29), (3.30)). We are going to compare 14 (7) with
NA(T4,Tg) for the models LC and rLC in Sections 4 and 5, respectively.

4. The line-of-centers model

We introduce in the equations for the line-of-centers model (LC)
oM = 5%, (4.1)

which is defined as follows

. 0 ; 9<9% 4o
of = %SFd2<1_992)’ 9> g (4.2)

where sp denotes the steric factor and the threshold relative velocity g* is
connected with the threshold energy E*
mg*2

E* =
4

(4.3)

The dimensionless reduced threshold energy €* is introduced for the tem-
perature T

E’*
= k_T .
A similar quantity ¢*(Tg) is introduced for the nonequilibrium Shizgal-
Karplus temperatures Tgr

*

€ (4.4)

Ebk
kTh

& (Tg) = (R=A,B). (4.5)
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These definitions for the cross section (Eqgs (4.1)-(4.5)) can be introduced
into appropriate formulas presented in Section 3. For the quantities h
(see Egs (3.11), (3.20), (3.21), (3.32) and (3.33)) we get

hao(e*) = 4spexp(—¢"), (4.6)
1
haie”) = =2sp(e" +5) exp(—<"), (4.7)
hro(e*(Tg)) = 4spexp(—e*(Tr)) (R=A,B). (4.8)
For agA) (see Eq. (3.14)) we can obtain
(A) 1 1—-2zp % 1 %
ay’ = SFl—xB (5 —|—2>exp( %) (4.9)

For the reaction rates from Eqs (3.16)—(3.25) we can derive

7\ 1/2

US)} = 4nA2st2<%) exp(—¢"), (4.10)
1/2 2

1) _ o 2. 2 (TKT __7TB s 1 %

o) = —2n,%sp%d ( hy ) <1 1_$B)<5 +2) exp(—2¢*) ,(4.11)

7N 1/2

vj(f) = 4(ns* —np?)spd® <%) exp(—e*), (4.12)
kT \/? . 2 .

US) = —2(nys%—np?)spd? <7) <6 +§) exp(—2¢¥). (4.13)

From Eqs (3.27), (4.6) and (4.7) we obtain the first important result for
the nonequilibrium relative decrease of the rate of chemical reaction

2

mo(T) = %SF(e* + %) exp(—c*) . (4.14)

This decrease can be compared with such a decrease obtained from
Egs (3.31)—(3.34) (the second important result) as follows

O) () _ O (p
mo(Ta,Tg) =1 - UA(fO() 4) Uﬁ'){( 5) : (4.15)
vap(T) —vpy(T)

where

<7TkTR

1/2
ug}(TR) = dng’sp d? ) exp(—e*(Tg)) (R=A,B) (4.16)



1094 A.S. CukrowsKl, J. FORT, S. FRITZSCHE

and the nonequilibrium Shizgal-Karplus temperatures are

1 1-2zp 1
Ta=T 1= ssp =2 (& + ) exp(~e" 4.1
=1 e T (e Jewt-e| . @)
1 1-2 1
Tp =T [1 4 osp 2B (e* + —) exp(—e*)] . (4.18)
2 TR 2
As shown in Ref. [27] in the very beginning of reaction we can write
T5(0) 1 1
=1+ (e +5). 4.1
T + G +3 (4.19)

As shown in Ref. [32] in this case the sufficient condition to avoid too large
value of Ts from Eq. (4.18) is

0.5

rg > .
1+ ﬁ exp(—e*)

(4.20)

We emphasize again that the first result (Eq. (4.14)) does not depend on
zp and the second result (Eqs (4.15)-(4.18)) depends on xg. In Fig. 1 we
compare these results. We present npc(7T) and nr,c(Ta,Tg) as function of
the reduced threshold energy e*, for g = 0.25. For this value of zg only
small differences between both the results can be observed. In order to see
better these differences in Figs 2 and 3 we present np,c(T') and nc(T4,TB)

as a function of z g for three values of £*. Additionally, we present the ratios
TA/T, Tp/T and Tp(0)/T.

LC

n! n(TAiTB)

E*

Fig. 1. Relative change of the rate constant of chemical as a function of the reduced
threshold energy £*(see Eq. (4.4). Solid line represents 7 (see Eq. (4.14)) and small
circles (T4, Tg) (see Eqs (4.15)—(4.18)).
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5. The reverse line-of-centers model

For the reverse line-of-centers model (rL.C) we introduce

Uﬁ\g = o, (5.1)

{istQ, 9<gr ,
ar =

1 291>
ZSnggL2a 9> 9L,

and define the characteristic energy Fp, and the reduced energies as

2
B, = -, (5.3)
Ey,
- L 4
€L k’BT’ (5 )
E
er(Tr) = —kTLR' (5.5)

In this model the collisions which are reactive in the LC model become elastic
and wvice versa (see Ref. [37]). That is why we call this model the reverse line-
of-centers model or shortly the rLLC model. In order to present the results for
the rLLC model in a relatively clear way, we introduce the same numbers in
equations as those in Section 4, e.g. the appropriate reduced dimensionless
characteristic energies (see Eqgs (4.4) and (4.5)) are introduced as Eqgs (5.4)
and (5.5). Thus, instead of Eqs (4.6)—(4.8) we introduce Eqs (5.6)—(5.8) and

SO Oon.

hAo(eL) = 48F(1 - exp(—eL)) y (56)
hAl(gL) = —2sp |:% — <5L + %)] exp(—eL), (5.7)
hRO(gL(TR)) = 48F exp (1 - {:‘L(TR)) . (58)

The further corresponding equations derived in the same way as in Section 4
are:

() _ 1 172201 LY exp(—
ay”’ = QSFl—JEB [2 5L+2 exp(—er)| , (5.9)
7\ 1/2
US)} = dna’spd? <%> [1 —exp(—er)], (5.10)
1 kT \ Y/? TR
1)1(4} = —27[,A2S%d2 <7) 1-— ]_—IB

x [% - <5L + %) exp(—&?L)] y (5.11)
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o0 = 403 — np?)srd (W) 1 — exp(—ep)] (5.12)
1/2 2
US) = —2(n} —np?)spd? <7rk7T) B - <EL + %) exp(—&?L)] (5.13)

We would like to emphasize that the first important result for the nonequi-
librium relative decrease of the chemical reaction rate for the rL.C model we
obtain in a more complicate form than in Section 3 (see Eq. (4.14))

1_ 1 expl— 2
nic(T) = %SF E (iL_t)fp)(_fL() | (5.14)

The second important result for comparisons is

Bf
anc(TA,TB) =1- 0 0 s (515)
of{)(T) — vigy(T)
where
kTR \ /2
vioh(Tr) = dng’sp d* < R) [1—exp(—en(Tr))]. (R=A,B)
(5.16)
The results for the Shizgal-Karplus temperatures are
1 1-2zp[1 1
Ty=T{1— —sp——8 |- _ - - 1
{22 1 (e Do), o
1 1-2zp |1 1
Tg=T<1+-sp—— |= — — — . 1
' { + 55F - [2 <5L+ 2) exp( 6L)]} (5.18)
Naturally, T can not be negative
Tp(0) > 0. (5.19)

For the rLC model, for small values of ¢; and for small values of xp (es-
pecially for the very beginning of reaction) the perturbation method would
not work and Tp calculated from Eq. (5.18) could become negative. From
Egs. (5.18) and (5.19) it follows that the condition for zp to avoid the prob-
lem is

(6L + %) exp(—er) — %
(er +3) exp(—er) + 5

In Fig. 4 we present (in the same way as in Fig. 1) n,.c(T) and ny,c(Ta, TB)
as a function of the characteristic reduced energy ey, for zp = 0.25. In a

B (5.20)
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similar way as in Figs 2 and 3 we present in Figs 5, 6 and 7 the quantities
nerc(T) and ny,c(Ta, Th) as a function of z g for three values of e7,. Addi-
tionally, we present the results T4 /T and Tg/T in order to show that for
small values of and for very small zp (for the very beginning of reaction)
negative T’ could appear.

£¥=0.5
| TgO)T

. , To/T ;
o 1.0 I ]

= TAT
= i J
057 N(TaTg) ]

n

O TN T T T NN T TN TN TN Y ST SN S TN (NN TN TN TN T NN SO SO S |

0 0.1 0.2 0.3 0.4 0.5

X
Fig.2. Relative change of the rate constant: n (see Eq. (4.14)) and n(Ta,Tg) (see
Eqs (4.15)—(4.18)), respectively; temperatures ratios: T4 /T, Tp/T and Tp(0)/T
(see Eqs (4.17)—(4.19)) as a function of xp, for the reduced threshold energy
e* =0.5.

e*=1.5
T >\‘ T

| TgO)/T ]
157 To/T |

o L
- L 4

X L
= 1.0 AT 1
= ﬁ/ﬁ
05 ! -
L PR RS \n(TA’TR)\ PR R S R

0 0.1 0.2 0.3 0.4 0.5

Xg

Fig. 3. The results presented as in Fig. 2 for ¢* = 1.5.
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rLC
0.020 [ ‘ : :
_. 0015 |
m
K i
<
£ 0.010
< i
=
0.005
O 1 L 1
0 0.5 1.0
gL

Fig. 4. Relative change of the rate constant of chemical as a function of the reduced
characteristic €7, (see Eq. (5.4)). Solid line represents 7 (see Eq. (5.14)) and small
circles (T4, Tg) (see Egs (5.15)—(5.18)).

£L=O.3

20 i T T T T ]

100*n i

15 F  100(T,Tg) ]

|_m l ]

) TA/T ]
S
05

0 L | | | |

0 0.1 0.2 0.3 0.4 0.5

Fig.5. Relative change of the rate constant: 7 (see Eq. (5.14)) and (T4, Tg) (see
Eqgs (5.15)—(5.18)), respectively; temperatures ratios: T4 /T, Tp/T (see Eqs (5.17),
(5.18)) as a function of x g, for the reduced characteristic energy 7, = 0.3.
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sL=O.5
2.0 [
15 | 100 .
o 100*n(T,, T
- i (TaTe) T
1.0
= [
05
0 L L
0

Fig.6. The results presented as in Fig. 5 for e;, = 0.5.

g =2

25 —7—

100"N(T 5, Tg)

B

15
I 100*n T

r B

T T

TAT

05 fF .

O"H‘\HH\HH\HH\HH
0 0.1 0.2 0.3 0.4 0.5

X

Fig.7. The results presented as in Fig. 5 for 7, = 2.0.

6. Discussion

We have analyzed the results following from the perturbation solution
of the Boltzmann equation. We have obtained the results for the nonequi-
librium decrease of the rate of chemical reaction directly from this solution
(see na(T) in Eq. (3.27)). We have also obtained such results in an indi-
rect way. Namely, we have introduced the nonequilibrium Shizgal-Karplus
temperatures (see Eqs (3.29) and (3.30)) to the equilibrium expressions for
the rate constants for the reactions A+ A - B+ Band B+ B - A+ A
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(see na(Ta,Tg), i.e. Egs (3.31)-(3.34)). Such quantities 74 have been
compared for two models. For the LC model Eqs (4.14), and (4.15) have
been used for comparison of n,c(T') and n.c (T4, TR).

From Fig. 1 it can be seen that the decrease of the chemical reaction
rate (1) can be equal even to 45 percent. We have already looked for large
effects for n in the LC model [25,27]. However, as shown by Shizgal and
Napier [31] our theoretical results were obtained for the system in which
the forward reaction proceeded in a large excess of a second nonreactive
component (with the same mass of A). Dahler [30] has stimulated us to
analyze the reverse reaction too.

The differences between npc(T) and nrc(Ta,Tp) are very small for
xp = 0.25. From Fig. 2 it can be seen that such differences for fast re-
action (e* = 0.5) can be large if zp is small. For small values of zp the
ratio T /T would be larger than the possible value of T5(0)/7T (in the very
beginning of reaction). That is why for x5 < 0.3 following from Eq. (4.20)
the differences between the two values of 1 could be visible (especially for
very small values of xp), i.e. the perturbation method would not work
because the reaction would be too fast. From Figs 2 and 3 it can be seen
that the slower the reaction is (if €* is larger) the smaller is zp for which
these differences could be visible.

The analysis has been also performed for the rLC model for which such
equations are more complicated (the Arrhenius activation energy can be
negative [37,39]). It is interesting that for the rLC model the values of
nenc(T) (calculated from Eq.(5.14)) as well as the values of n,.c(T4,TB)
(calculated from Eq. (5.15)) are small. That is why for this model the
perturbation method works even better than for the LC model (see Figs
4,5 and 6). In order to see the range of small values of zp for which the
perturbation method would not work for the rLC model we have presented
Figs 5, 6 and 7 in the same way as Figs 2 and 3 (for the LC model). From
Figs 5 and 6 it can be seen that for small values of e7, (e, = 0.3 and 0.5) the
problem with the negative Tg could appear for very small 25 (see Eqs (5.19),
(5.20)). For large values of €, e.g. e, = 2, (see Fig. 7) this problem of
negative T'g does not appear.

We would like to emphasize that we are mainly interested in confirming
(as in Ref. [33]) that large decrease (even 45 percent) of the rate constant
of bimolecular chemical reaction can be connected with the nonequilibriun
effects. This relative decrease can be constant for a large range of the molar
fraction of product. One Sonine approximation is sufficient for this pur-
pose. Introduction of the nonequilibrium Shizgal-Karplus temperatures to
the equilibrium rates of forward and reverse chemical reactions confirms our
results. Naturally, as shown by Shizgal and Karplus [13], for the LC model
for the slow reactions in which £* > 6, more Sonine polynomials should be
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introduced. However, we are only interested to show that even in the case of
large nonequilibrium decrease of the rate of chemical reaction 1 can be con-
stant. We have analyzed the rLLC model mainly to see whether, in the case
of a model which can give negative values of the Arrhenius activation energy
and leads to more complicated equations, such a treatment is satisfactory.

Just to summarize, we have compared, for two models, the effect of
nonequilibrium relative decrease of the rate of bimolecular chemical reaction
calculated directly from the perturbation solution of the Boltzmann equa-
tion with such a decrease calculated indirectly from the Shizgal-Karplus
temperatures. We have confirmed and clearly shown that such a treatment
permits to verify that this effect (in some cases very large and in the other
small) is constant, i.e. does not change as the reaction proceeds.

The authors would like to thank the Polish State Committee for Scien-
tific Research (KBN), the Spanish Ministry of Science (grants BEM-2000-
0351 and REN-2000-1621) and the Deutscheforschungsgemeinshaft (in the
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