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1086 A.S. Cukrowski, J. Fort, S. Fritzshe1. IntrodutionPrigogine et al. [1,2℄ were the �rst to show that if a bimoleular reationproeeds the nonequilibrium rate onstant of hemial reation is smallerthan the equilibrium one. These authors using the perturbation method [3℄of solution of the Boltzmann equation have shown that this nonequilibriumhemial e�et an be large enough to be important in hemial kinetis.Present et al. [4,5℄ analyzed this e�et for the line-of-enters model � veryonvenient beause of its simpliity (further denoted as the LC model). Thismodel was introdued in many papers [see e.g. Refs [6�11℄.Shizgal and Karplus [12�15℄ disussed this problem for two ases: (i) forisothermal systems in whih in the very beginning of hemial reation theproduts an be negleted (see Ref. [1℄), (ii) for isolated systems in whihthe di�erent nonequilibrium temperatures TA and TB ould be introdued(further analyzed as the Shizgal�Karplus temperatures or the SK tempera-tures).Many authors analyzed the problem of diminishing the hemial reationrate for various ases [16�24℄ Computer simulations results for the nonequi-libriun rate onstant [25�28℄, as well as the results from solutions of the setsof di�erential equations desribing time dependene of onentrations andthe nonequilibrium temperatures of omponents [29,30℄ were used to verifythe results for the nonequilibrium rate onstant of hemial reation obtainedfrom the perturbation method of solution of the Boltzmann equation. Fewyears ago Shizgal and Napier [31℄ provided a very detailed interpretation ofthis e�et and of the SK temperatures.2. Introdutory de�nitions and formulation of the problemsWe are interested in an analysis of this e�et for the following bimoleularreation A+A
 B +B (2.1)proeeding in a dilute gas. As this reation proeeds the number densitiesnR (R = A;B) of reagents nR = Z fR dR ; (2.2)(where fR and R denote the veloity distribution funtion and veloity ofmoleules) hange with time t, however, the total number density n remainsonstant nA + nB = n : (2.3)



Simple Models for Nonequilibrium E�ets : : : 1087The veloity v and the rate onstant k for the forward reation are de�nedasvRf = kRfnR2 = �dnRdt = ZZZ fR1fR2�Mre g d
dR1dR2 (R = A;B) ;(2.4)where the subsript f denotes the forward reation, the subsripts R1 andR2 are introdued to distinguish two olliding moleules of the same sort,�Mre is the di�erential reative ross setion depending on the modelM (e.g.,analyzed in this paper M = LC or M = rLC), 
 is the solid angle, whereasg is the relative veloity. In equilibrium the appropriate v(0)Rf and k(0)Rf anbe alulated after introdution of the Maxwell�Boltzmann veloity distri-bution funtion.f (0)R (T ) = nR� mR2�kT �3=2 exp��mRR22kT � (R = A;B) ; (2.5)where mR denotes the moleular mass, k and T are the Boltzmann onstantand temperature, respetively. However, for obtaining of vAf it is neessaryto have the nonequilibrium veloity distribution funtions fR whih anbe obtained from the perturbation method of solution of the appropriateBoltzmann equation [1,3℄. For this reation in nonequilibrium onditions,the total reation rates vA, vB and the rate of the reverse reation vAr arevA = vAf + vAr = vAf � vBf = �vB : (2.6)For the equilibrium ase these quantities arev(0)A = v(0)Af + v(0)Ar = v(0)Af � v(0)Bf = �v(0)B : (2.7)The fundamental quantity (analyzed in this paper) �R desribing the non-equilibrium relative derease of the total rate of reation is de�ned as�R = 1� vRv(0)R > 0 : (2.8)Another important quantity is the Shizgal�Karplus nonequilibrium temper-ature TR TR = 23 1nRk Z mRR22 fR dR (R = A;B) : (2.9)The temperature of system is simply related to TA and TBT = xATA + xBTB ; (2.10)where xA and xB are the molar frations.



1088 A.S. Cukrowski, J. Fort, S. FritzsheReently, it has also been shown [32℄ that in the ase of isolate gaseoussystem the quantity �A for the LC model an be very large. Namely, it anbe even that � = 45 perent. Moreover, in the ranges of the molar fration ofprodut xB in whih the perturbation method of solution of the Boltzmannequation works this large e�et, e.g. 45% is onstant and does not dependon xB (for a fast reation xB annot be too small) [33℄. It means that �Adoes not hange as the reation proeeds. Suh a possibility of onstantvalue of �A has been already shown in another way by Nowakowski [34℄.After having obtained suh a large value of �A we deided to hek it inanother way. Namely, we have already shown [25,35℄ that the nonequilibriumvalues of kAF an be obtained with a good approximation after replaing thetemperature in the equilibrium expression for kAf by the Shizgal�Karplustemperature. After introdution of the SK temperatures TA and TB to theequilibrium expressions k for the forward and reverse reations we on�rmedthe onstant value of �A for the LC model in general and also for the aseof 45% mentioned. It is interesting that the values for TA and TB derivedin Ref. [32℄ ould be also obtained from the formulas analyzed in Ref. [36℄.However, the equations for the LC model are very simple. That iswhy, we deided to hek the possibility of the onstant value of �A for amodel leading to more ompliated equations, namely for the reversed line-of-enters model (the rLC model). The rLC model was already disussedin previous papers [25, 37�42℄. The rLC model is also interesting beausenegative values of the Arrhenius ativation energy an be obtained from thismodel.Our paper is organized in the following way. In Setion 3 we present theformulas derived from the Boltzmann equation, in Setion 4 we analyze theresults for the LC model in more detailed way, in Setion 5 we ontinue suhan analysis for the rLC model, in Setion 6 we summarize and disuss theresults obtained.3. Formulas obtained from the perturbation solutionof the Boltzmann equationThe Boltzmann equation for the omponent A an be written as�fA�t = Iel + Ire ; (3.1)where the elasti and reative terms Iel and Ire areIel = Z Z (f 0A1f 0A2 � fA1fA2)�AAg d
 d2+Z Z (f 0Af 0B � fAfB)�ABg d
 d2 ; (3.2)



Simple Models for Nonequilibrium E�ets : : : 1089Ire = Z Z (fB1fB2 � f 0A1f 0A2)�Mre g d
 d2 (3.3)f 0 denotes the distribution funtion after ollision, �AA and �AB are theelasti di�erential ross setions and �Mre the reative ones (depending onthe model M whih will be introdued in Setions 4 and 5 as the LC andrLC models).As in Refs [32,33℄ in the reation analyzed the moleules are assumed tobe spheres whih do not hange their masses m and diameters d, i.e.mA = mB = m; (3.4)dA = dB = d : (3.5)Therefore, �AA = �AB = 14d2 : (3.6)We solve this equation by the perturbation method desribed by Shizgaland Karplus [12�15℄. We introduefA = f (0)A (1 +  A) = f (0)A + f (1)A (3.7)the quantity  A is expanded in the Sonine polynomials [1,3,13℄ A =Xi a(i)A S(i)1=2(C2A) ; (3.8)where C2A = mAA22kBT : (3.9)We solve Eq. (3.1) within one Sonine expansion for the veloity distributionfuntion.  A1 = a(A)1 S(1)1=2(C2A) = a(A)1 S(1)A ; (3.10)where we introdue S(1)A to write the �rst Sonine polynomial in a shorterway.We de�nehRi("Mre ) = 1nR2q ZZZ f (0)R1 f (0)R2S(i)R �Mre gd
d2d1 (R = A;B) (i = 0; 1) ;(3.11)



1090 A.S. Cukrowski, J. Fort, S. Fritzshewhere q = d2��kTm �1=2 ; (3.12)"Mre = EMrekT : (3.13)The quantities hRi depend on the model of reative ollision beause "Mredenotes the redued (dimensionless) value of the harateristi energy EMre(e.g. the threshold energy for the LC model)Using the perturbation method (see Refs [13,21,32℄) we an obtaina(A)1 = �14xA�1� xB1� xB�hA1("Mre ) : (3.14)From Eqs (3.7), (3.10) and (3.14) we get the nonequilibrium value of theveloity distribution funtionfA = f (0)A �1� 14xA�1� xB1� xB�h1("Mre )S(1)A � : (3.15)Taking into onsideration Eqs (2.4), (2.6), (2.7) and (3.7) we an writevAf = v(0)Af + v(1)Af ; (3.16)where v(0)Af = ZZZ f (0)A1 f (0)A2 �Mre g d
 dA1 dA2 ; (3.17)v(1)Af = ZZZ �f (0)A1 f (1)A2 + f (0)A2 f (1)A1��Mre g d
 dA1 dA2 : (3.18)In a similar way as in Ref. [13℄ we an obtainv(0)Af = nA2qhA0 �"Mre � ; (3.19)v(1)Af = �12nA2q�1� xB1� xB� [hA1("Mre )℄2 : (3.20)We an also write v(0)Bf = nB2q hB0("Mre ) : (3.21)As shown by Shizgal and Karplus [13℄nAa(A)1 + nBa(B)1 = 0 : (3.22)



Simple Models for Nonequilibrium E�ets : : : 1091Therefore, similarly to Eq. (3.20) we an derivev(1)Bf = �12nB2q�1� xA1� xA� [hB1("Mre )℄2 : (3.23)Using Eqs (2.4)�(2.7), (3.16), (3.19), (3.20) and (3.23) we getv(0)A = v(0)Af � v(0)Bf = (nA2 + nB2)q hA0 �"Mre � ; (3.24)v(1)A = v(1)Af � v(1)Bf = 12(nA2 + nB2)q�hA1 �"Mre ��2 : (3.25)We an write the quantity �A (see Eq. (2.8)) as�A = 1� vv(0)A = �v(1)Av(0)A = v(1)Af � v(1)Bfv(0)Af � v(0)Bf (3.26)and after taking into onsideration Eqs (3.24) and (3.25) in the followingform �A(T ) = 12 �hA1("Mre )�2hA0("Mre ) : (3.27)This fundamental quantity desribing the hange of the rate of hemialreation does not depend on the molar fration of produt B, i.e. is on-stant and does not hange as the reation proeeds. We write here �A as�A(T ) to emphasize that this quantity depends on the temperature of system(T is onstant in the reation analyzed).In order to on�rm this independene of �A on xB in another way wederive the formulas for the nonequilibrium Shizgal�Karplus temperatureswhih an be written as [13℄TR = T SKR = T (1� a(R)1 ) (R = A;B) : (3.28)From Eqs (3.28), (3.14) and (3.22) we haveTA = T �1 + 14 1� 2xB1� xB hA1("Mre )� ; (3.29)TB = T �1 + 14 1� 2xBxB hB1("Mre )� : (3.30)In order to get the expression for �A(TA; TB) we replae the temperature Tin the formulas for v(0)Af and v(0)Bf (see Eqs (3.11), (3.19) and (3.21)) by thetemperatures TA and TB, respetively�A(TA; TB) = 1� v(0)A (TA; TB)v(0)A = 1� v(0)Af (TA)� v(0)Bf (TB)v(0)Af (T )� v(0)Bf (T ) (3.31)



1092 A.S. Cukrowski, J. Fort, S. Fritzsheand we write v(0)Rf (T ) = nR2q hR0�EMrekT � (R = A;B) ; (3.32)v(0)Rf (TR) = nR2q hR0 �EMrekTR�= nR2q hR0("Mre (TR)) (R = A;B) ; (3.33)where "Mre (TR) = EMrekTR : (3.34)It is worthwhile to observe that �A(T ) (see Eq. (3.27) does not depend on xBand in ontrary �A(TA; TB) depends beause the temperatures TA and TBdepend on xB (see Eqs (3.29), (3.30)). We are going to ompare �A(T ) with�A(TA; TB) for the models LC and rLC in Setions 4 and 5, respetively.4. The line-of-enters modelWe introdue in the equations for the line-of-enters model (LC)�Mre = ��; (4.1)whih is de�ned as follows�� = ( 0; g � g�;14sFd2 �1� g�2g2 � ; g > g� ; (4.2)where sF denotes the steri fator and the threshold relative veloity g� isonneted with the threshold energy E�E� = mg�24 : (4.3)The dimensionless redued threshold energy "� is introdued for the tem-perature T "� = E�kT : (4.4)A similar quantity "�(TR) is introdued for the nonequilibrium Shizgal�Karplus temperatures TR"�(TR) = E�kTR (R = A;B) : (4.5)



Simple Models for Nonequilibrium E�ets : : : 1093These de�nitions for the ross setion (Eqs (4.1)�(4.5)) an be introduedinto appropriate formulas presented in Setion 3. For the quantities h(see Eqs (3.11), (3.20), (3.21), (3.32) and (3.33)) we gethA0("�) = 4sF exp(�"�) ; (4.6)hA1("�) = �2sF�"� + 12� exp(�"�) ; (4.7)hR0("�(TR)) = 4sF exp (� "�(TR)) (R = A;B) : (4.8)For a(A)1 (see Eq. (3.14)) we an obtaina(A)1 = 12sF 1� 2xB1� xB �"� + 12� exp(�"�) : (4.9)For the reation rates from Eqs (3.16)�(3.25) we an derivev(0)Af = 4nA2sFd2��kTm �1=2 exp(�"�) ; (4.10)v(1)Af = �2nA2sF 2d2��kTm �1=2�1� xB1� xB��"� + 12�2 exp(�2"�) ;(4.11)v(0)A = 4(nA2 � nB2)sF d2��kTm �1=2exp(�"�) ; (4.12)v(1)A = �2(nA2 � nB2)sF d2��kTm �1=2�"� + 12�2 exp(�2"�) : (4.13)From Eqs (3.27), (4.6) and (4.7) we obtain the �rst important result forthe nonequilibrium relative derease of the rate of hemial reation�LC(T ) = 12sF�"� + 12�2 exp(�"�) : (4.14)This derease an be ompared with suh a derease obtained fromEqs (3.31)�(3.34) (the seond important result) as follows�LC(TA; TB) = 1� v(0)Af (TA)� v(0)Bf (TB)v(0)Af (T )� v(0)Bf (T ) ; (4.15)wherev(0)Rf (TR) = 4nR2sF d2��kTRm �1=2 exp (� "�(TR)) (R = A;B) (4.16)



1094 A.S. Cukrowski, J. Fort, S. Fritzsheand the nonequilibrium Shizgal�Karplus temperatures areTA = T �1� 12sF 1� 2xB1� xB �"� + 12� exp(�"�)� ; (4.17)TB = T �1 + 12sF 1� 2xBxB �"� + 12� exp(�"�)� : (4.18)As shown in Ref. [27℄ in the very beginning of reation we an writeTB(0)T = 1 + 13�"� + 12� : (4.19)As shown in Ref. [32℄ in this ase the su�ient ondition to avoid too largevalue of TB from Eq. (4.18) isxB > 0:51 + 13sF exp(�"�) : (4.20)We emphasize again that the �rst result (Eq. (4.14)) does not depend onxB and the seond result (Eqs (4.15)�(4.18)) depends on xB . In Fig. 1 weompare these results. We present �LC(T ) and �LC(TA; TB) as funtion ofthe redued threshold energy "�, for xB = 0:25. For this value of xB onlysmall di�erenes between both the results an be observed. In order to seebetter these di�erenes in Figs 2 and 3 we present �LC(T ) and �LC(TA; TB)as a funtion of xB for three values of "�. Additionally, we present the ratiosTA=T , TB=T and TB(0)=T .
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Fig. 1. Relative hange of the rate onstant of hemial as a funtion of the reduedthreshold energy "�(see Eq. (4.4). Solid line represents � (see Eq. (4.14)) and smallirles �(TA; TB) (see Eqs (4.15)�(4.18)).



Simple Models for Nonequilibrium E�ets : : : 10955. The reverse line-of-enters modelFor the reverse line-of-enters model (rLC) we introdue�Mre = �L ; (5.1)�L = ( 14sF d2; g � gL ,14sF d2 gL2g2 ; g > gL , (5.2)and de�ne the harateristi energy EL and the redued energies asEL = mgL24 ; (5.3)"L = ELkBT ; (5.4)"L(TR) = ELkTR : (5.5)In this model the ollisions whih are reative in the LC model beome elastiand vie versa (see Ref. [37℄). That is why we all this model the reverse line-of-enters model or shortly the rLC model. In order to present the results forthe rLC model in a relatively lear way, we introdue the same numbers inequations as those in Setion 4, e.g. the appropriate redued dimensionlessharateristi energies (see Eqs (4.4) and (4.5)) are introdued as Eqs (5.4)and (5.5). Thus, instead of Eqs (4.6)�(4.8) we introdue Eqs (5.6)�(5.8) andso on. hA0("L) = 4sF (1� exp(�"L)) ; (5.6)hA1("L) = �2sF �12 ��"L + 12�� exp(�"L) ; (5.7)hR0("L(TR)) = 4sF exp (1� "L(TR)) : (5.8)The further orresponding equations derived in the same way as in Setion 4are: a(A)1 = 12sF 1� 2xB1� xB �12 ��"L + 12� exp(�"L)� ; (5.9)v(0)Af = 4nA2sFd2��kTm �1=2 [1� exp(�"L)℄ ; (5.10)v(1)Af = �2nA2s2Fd2��kTm �1=2 �1� xB1� xB�� �12 ��"L + 12� exp(�"L)�2 ; (5.11)



1096 A.S. Cukrowski, J. Fort, S. Fritzshev(0)A = 4(n2A � nB2)sF d2��kTm �1=2 [1� exp(�"L)℄ ; (5.12)v(1)A = �2(n2A � nB2)sF 2 d2��kTm �1=2 �12 ��"L + 12� exp(�"L)�2 :(5.13)We would like to emphasize that the �rst important result for the nonequi-librium relative derease of the hemial reation rate for the rLC model weobtain in a more ompliate form than in Setion 3 (see Eq. (4.14))�rLC(T ) = 12sF �12 � �"L + 12� exp(�"L)�21� exp(�"L) : (5.14)The seond important result for omparisons is�rLC(TA; TB) = 1� v(0)Af (TA)� v(0)Bf (TB)v(0)Af (T )� v(0)Bf (T ) ; (5.15)wherev(0)Rf (TR) = 4nR2sF d2��kTRm �1=2 [1� exp (� "L(TR))℄ : (R = A;B)(5.16)The results for the Shizgal�Karplus temperatures areTA = T �1� 12sF 1� 2xB1� xB �12 ��"L + 12� exp(�"L)�� ; (5.17)TB = T �1 + 12sF 1� 2xBxB �12 ��"L + 12� exp(�"L)�� : (5.18)Naturally, TB an not be negativeTB(0) > 0 : (5.19)For the rLC model, for small values of "L and for small values of xB (es-peially for the very beginning of reation) the perturbation method wouldnot work and TB alulated from Eq. (5.18) ould beome negative. FromEqs. (5.18) and (5.19) it follows that the ondition for xB to avoid the prob-lem is xB > �"L + 12� exp(�"L)� 12�"L + 12� exp(�"L) + 12 : (5.20)In Fig. 4 we present (in the same way as in Fig. 1) �rLC(T ) and �rLC(TA; TB)as a funtion of the harateristi redued energy "L for xB = 0:25. In a



Simple Models for Nonequilibrium E�ets : : : 1097similar way as in Figs 2 and 3 we present in Figs 5, 6 and 7 the quantities�rLC(T ) and �rLC(TA; TB) as a funtion of xB for three values of "L. Addi-tionally, we present the results TA=T and TB=T in order to show that forsmall values of and for very small xB (for the very beginning of reation)negative TB ould appear.
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1100 A.S. Cukrowski, J. Fort, S. Fritzshe(see �A(TA; TB), i.e. Eqs (3.31)�(3.34)). Suh quantities �A have beenompared for two models. For the LC model Eqs (4.14), and (4.15) havebeen used for omparison of �LC(T ) and �LC(TA; TB).From Fig. 1 it an be seen that the derease of the hemial reationrate (�) an be equal even to 45 perent. We have already looked for largee�ets for � in the LC model [25,27℄. However, as shown by Shizgal andNapier [31℄ our theoretial results were obtained for the system in whihthe forward reation proeeded in a large exess of a seond nonreativeomponent (with the same mass of A). Dahler [30℄ has stimulated us toanalyze the reverse reation too.The di�erenes between �LC(T ) and �LC(TA; TB) are very small forxB = 0:25. From Fig. 2 it an be seen that suh di�erenes for fast re-ation ("� = 0:5) an be large if xB is small. For small values of xB theratio TB=T would be larger than the possible value of TB(0)=T (in the verybeginning of reation). That is why for xB < 0:3 following from Eq. (4.20)the di�erenes between the two values of � ould be visible (espeially forvery small values of xB), i.e. the perturbation method would not workbeause the reation would be too fast. From Figs 2 and 3 it an be seenthat the slower the reation is (if "� is larger) the smaller is xB for whihthese di�erenes ould be visible.The analysis has been also performed for the rLC model for whih suhequations are more ompliated (the Arrhenius ativation energy an benegative [37,39℄). It is interesting that for the rLC model the values of�rLC(T ) (alulated from Eq.(5.14)) as well as the values of �rLC(TA; TB)(alulated from Eq. (5.15)) are small. That is why for this model theperturbation method works even better than for the LC model (see Figs4, 5 and 6). In order to see the range of small values of xB for whih theperturbation method would not work for the rLC model we have presentedFigs 5, 6 and 7 in the same way as Figs 2 and 3 (for the LC model). FromFigs 5 and 6 it an be seen that for small values of "L ("L = 0:3 and 0:5) theproblem with the negative TB ould appear for very small xB (see Eqs (5.19),(5.20)). For large values of "L, e.g. "L = 2, (see Fig. 7) this problem ofnegative TB does not appear.We would like to emphasize that we are mainly interested in on�rming(as in Ref. [33℄) that large derease (even 45 perent) of the rate onstantof bimoleular hemial reation an be onneted with the nonequilibriune�ets. This relative derease an be onstant for a large range of the molarfration of produt. One Sonine approximation is su�ient for this pur-pose. Introdution of the nonequilibrium Shizgal�Karplus temperatures tothe equilibrium rates of forward and reverse hemial reations on�rms ourresults. Naturally, as shown by Shizgal and Karplus [13℄, for the LC modelfor the slow reations in whih "� > 6, more Sonine polynomials should be
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