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EVOLUTION OF QUANTUM CORRELATIONSFOR JUMP-TYPE QUANTUM STOCHASTICDYNAMICS�Sªawomir KozieªInstitute of Experimental Physis, Gdansk UniversityWita Stwosza 57, 80-952 Gda«sk, Polande-mail: koziel�iftia6.univ.gda.plWªadysªaw A. MajewskiInstitute of Theoretial Physis and Astrophysis, Gdansk UniversityWita Stwosza 57, 80-952 Gda«sk, Polande-mail: fizwam�univ.gda.pl(Reeived Deember 5, 2001)Two models of quantum stohasti jump type proesses are analyzedwith speial emphasis on the time evolution of quantum orrelations. It isshown that the generalized onditional expetation de�ning the time evolu-tion of XXZ model ontains the proper (i.e. genuine quantum) interationsbetween subsystem and its environment while this is not the ase for thestohasti ounterpart of the Ising model.PACS numbers: 05.30.�d, 05.50.+q, 02.50.�r1. IntrodutionIn the lassial theory of partile systems one of the objetives is toprodue, desribe and analyze dynamial systems with evolution originatedfrom stohasti proesses in suh a way that their equilibrium states areGibbs states (f. [2℄). A well known illustration is a number of papers de-sribing the so alled Glauber dynamis [1℄. To perform a detailed analysis ofdynamial system of that type, it is onvenient to use the theory of Markovproesses in the ontext of Lp-spaes. Reently, this program was arried out� Presented at the XIV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 9�14, 2001.(1103)



1104 S. Kozieª, W.A. Majewskiin the setting of quantum mehanis [4�7℄. In partiular, guided by the las-sial theory and applying generalized onditional expetations (in the senseof Aardi�Cehnini), it was possible to de�ne the orresponding Markovgenerators of the underlying quantum Markov�Feller dynamis. Further-more, suh an analysis led to a general sheme for onstruting quantumjump proesses on a lattie (f. [4℄). We emphasize that interpretation ofsuh quantum proesses is the same as in the lassial ase. Namely, havinga transition rate (dependent on the state �), one an desribe a Markovsemigroup orresponding to quantum Markov proess (de�ned by transitionrates). Clearly, while desribing a physial proess in suh a way, we do notknow (expliitly) the interations whih are responsible for the underlyingtransition rates. Therefore, it is natural to pose the following question: Arethe interations proper (i.e. genuine quantum ones) or not? To answer thisquestion we proeed with a detailed analysis of properly hosen orrelationfuntions. To be more spei� let us onsider two-point orrelation funtionhTt(A)Bi� � Tr(�Tt(A)B), where � is a separable state, Tt is a Markovsemigroup, A and B are observables. Obviously, the following funtionCT;�(A;B) � hTt(A)Bi� � hTt(A)i� hBi�an be taken as a measure of orrelation between Tt(A) and B. However,only quantum orrelation an be onsidered as an indiation of existene ofproper interations in the studied evolution. In other words, we should takeaway the lassial orrelations from CT;�(A;B). We reall that separablestates display lassial orrelation only. We writeCT;�(A;B) = hTt(A)Bi� � hTt(A)i�hBi� = hTt(A)Bi� � hAi�hBi�= (hTt(A)Bi� � hABi�) + (hABi� � hAi�hBi�) :As the seond omponent measures lassial orrelations, one an on-sider the �rst one as a measure of quantum orrelations. Consequently, inorder to �nd an indiation of proper interation in the time evolution Tt, wewill study CQT;�(A;B) = hTt(A)Bi� � hABi� (1)for a separable state. In our reent paper [8℄, a detailed analysis of CQT;�for spin �ip type dynamis has been done. Here, we will study CQT;� forquantum stohasti dynamis, determined by the Gibbs state of the Isingand XXZ model. Throughout the paper we shall use the normalized trae.



Evolution of Quantum Correlations for Jump-Type . . . 11052. Jump-type dynamis � onstrution skethConsider a omposite system I+II assoiated with a region � = �I[�II ,where �I ; �II � Zd. The system � is desribed by H1 
H2, S1 
 S2 andB(H1) 
 B(H2) �= B(H1 
 H2), where H1 (H2) are the �nite dimensionalHilbert spaes assoiated with �I (�II), S1 (S2), respetive sets of densitymatries, are the spaes of mixed states, B(H1) (B(H2)), the sets of allbounded linear operators, are the algebras of observables. Systems withinterations are desribed by interation potentials assoiated with region �(�I , �II , respetively). This leads to the orresponding Hamiltonians H�(H�I , H�II ) and to Gibbs state�� = e��H�Tr (e��H�) � � ;(� is an invertible operator, i.e. ��1 exists). In this work we study a onretekind of the jump proess, i.e. exhange type dynamis. This kind of dynam-is is indued by a loal symmetry. Consider a symmetry transformation(loal automorphism)  on B(H1 
H2) suh that (A) = A for A 2 B(H1);  2 = 1 :Note that if dim(H1);dim(H2) < 1, the above properties implyTr( (�)) = Tr(�). We shall onsider a partiular type of symmetries, whihare implemented by exhanges of observables between sites of the spin hain.Using transformation  one an de�ne a projetion � on B(H1
H2) as fol-lows �(�) � 12(1+  )(�) :We observe that � is not a morphism. Aording to the general theory ofsemigroups [3℄ the dynami Tt indued by the loal transformation  is ofthe form Tt(�) = exp(tL(�)) ; (2)with L = E � 1 ;where E : B(H1 
H2) ! B(H1 
H2) is a generalized onditional expeta-tion in the Aardi�Cehini sense. Performing alulations similar as in theappendix of [7℄ one an show that for the onsidered dynamis operator Etakes the following form



1106 S. Kozieª, W.A. MajewskiE(A) = �(�A) ; (3)where  = � 12 (��)� 12 : (4)The presented onstrution has a straightforward generalization to thein�nite dimensional ase, thus, thermodynami limit an be performed [4,6℄.Again, as a result we get uniformly ontinuous semigroup Tt.Using (2) and a Taylor expansion of Tt we an write CQT;�(A;B) asCQT;�(A;B) = hTt(A)Bi� � hABi�= (hABi� + t hL(A)Bi� + : : :)� hABi�= t (hE(A)Bi� � hABi�) + : : : ;in whih the remaining terms are of higher order in time. Thus,~CQT;�(A;B) = hE(A)Bi� � hABi� (5)desribes dominating hanges of the hosen dynamis for short times. In thiswork we will examine funtion ~CQT;� rather than CQT;�, sine it is muh moreomputationally tratable and also enables us to answer the main questionposed in the introdution.In order to study onrete physial models we have to deal with on-rete Gibbs states. In this work we analyze two models that stem fromone dimensional quantum Ising model and one dimensional quantum XXZmodel. In partiular we will onsider a one-dimensional �nite 1=2-spin hainwith N + 1 sites indexed from 0 to N and the orresponding algebra ofobservables generated by �i0 
 �i1 
 : : :
 �iN ;where ik 2 f0; 1; 2; 3g, k = 0; : : : N , and �j , j = 0; 1; 2; 3 are Pauli matries.3. Ising modelConsider the Ising model as desribed in the previous setion. TheHamiltonian of the system has the form:H = NXn=1�n�3n�1�3n= NXn=1�n � 1
 : : :
 1
 �3 
 �3 
 1
 : : : 
 1 ; (6)



Evolution of Quantum Correlations for Jump-Type . . . 1107where �3 denotes 3rd Pauli matrix (i.e. �311 = 1, �322 = �1, �312 = �321 = 0)and �3 are loalized at sites n � 1 and n. We also assume that the modelis translationally invariant, whih implies that �n = �, n = 1; : : : ; N . Theorresponding Gibbs state ! is represented by the density matrix� = Z�1 exp(��H) ; (7)where Z=Tr(e��H ) and � is the inverse temperature. Here, Z=oshN (���).Thus, we have !(A) = Z�1Tr(e��HA) :We will need the expliit form of the matrix �. Note thate ��3 = osh(�) + �3 � sinh(�) :Using the above and the fat that all onstituents in (6) ommute, we obtain� = �1 �2 ; (8)where�1 = (1
 1+t � �30 
 �31)
 : : :
 (1
 1+ t � �3N�1 
 �3N ) ; (9)�2 = 1
 (1
 1+t � �31 
 �32)
 : : : 
 (1
 1+ t � �3N�2 
 �3N�1)
 1 ; (10)with t = tanh(���), if N is an odd number, and�1 = (1
 1+ t � �30 
 �31)
 : : :
 (1
 1+ t � �3N�2 
 �3N�1)
 1 ; (11)�2 = 1
 (1
 1+ t � �31 
 �32)
 : : :
 (1
 1+ t � �3N�1 
 �3N ) ; (12)if N is an even number. The subsripts index sites for whih Pauli matries�3 are assigned to.Having spei�ed regions �I and �II and a loal symmetry operator  as disussed in Setion 2, one an alulate an expliit form of generator Eof the dynamis. As an example, let us onsider a loal transformation  klde�ned as follows  kl(A1 
 : : :
Ak 
 : : :
Al 
 : : :
AN )= A1 
 : : :
Al 
 : : :
Ak 
 : : : 
AN ; (13)whih desribes the exhange between the sites. Respetive projetion �kl isde�ned by �kl(�)= 12 (1+ kl)(�). In partiular, one an hoose l=k+1 whihis related to a possible desription of transport properties in the onsidered



1108 S. Kozieª, W.A. Majewskimodel. Aording to the notation introdued in Setion 2, we have that� = f0; 1; : : : ; Ng, �I = �nfk; lg, �II = fk; lg, while B(H1) and B(H2) are2N�1- and 22-dimensional Hilbert spaes, respetively. First, we alulatean expliit form of the operator . Without loss of generality we an assumethat k is an even number. Then, we note that �1 is invariant under  kl.Using this and (4) we get = (2�2) 12 (�2 +  kl�2)� 12 : (14)It is an easy observation that  is nontrivial only in sites fk�1; k; k+1; k+2g,i.e. we have = 1
 : : : 1
 (2~�2) 12 (~�2 +  kl~�2)� 12 
 1 : : : 
 1: (15)where ~�2 is the restrition of �2 to the sub-algebra generated by observablesloalized in sites fk� 1; k; k +1; k+2g. Obviously for k = 0 we would have = (2~�2) 12 (~�2 +  kl~�2)� 12 
 1
 : : :
 1, while for k+1 = N we would have = 1
 : : :
 1
 (2~�2) 12 (~�2 +  kl~�2)� 12 . In the sequel we shall assume that0 < k < N � 1. If k = 0 or k = N � 1, all the subsequent onsiderationsan be repeated up to the hanges pointed out while disussing the expliitform of . Moreover, we shall use the symbol ~ denoting the restrition of to fk�1; : : : ; k+2g, i.e. we have  = 1
 ~
1. Using (14) and (10) (respe-tively (12)), one an obtain an expliit form of ~, whih is the following~ = 1
 1
 1
 1+ P0 
 1 
 P1 + P1 
 2 
 P0 ; (16)where 1 = �+ � P0 
 P1 + �� � P1 
 P0 ;2 = �� � P0 
 P1 + �+ � P1 
 P0 ;and �+ = 1 + tp1 + t2 � 1 ; �� = 1� tp1 + t2 � 1 :P0 and P1 are the spetral projetors of the Pauli matrix �3, i.e.(P0)11 = 1 ; (P0)12 = (P0)21 = (P0)22 = 0 ;(P1)22 = 1 ; (P1)11 = (P1)12 = (P1)21 = 0 :Now, we are ready to alulate the expliit form of the operator E. Observethat ~� = ~,  kl(1) = 2 and  kl(2) = 1. It follows that kl~ = 1
 1
 1
 1+ P0 
 2 
 P1 + P1 
 1 
 P0 ; (17)



Evolution of Quantum Correlations for Jump-Type . . . 1109Hene, for any A 2 B(H2),E(A) = �kl (~A~)= 12 ~A~ + 12 kl(~) kl(A) kl(~) = 12�1
 (A+  klA)
 1�+ 12 P0
�1A+A1+1A1+2 kl(A)+ kl(A)2+2 kl(A)2�
P1+12P1
�2A+A2+2A2+1 kl(A)+ kl(A)1+1 kl(A)1�
P0: (18)One an show using (18) that the quantum orrelations oe�ient ~CQT;�(A;B)(with A 2 B(H2); B 2 B(H1) arbitrary) equals zero for our partiular ex-ample of exhange transformation.Now, we turn to the general ase. We are interested in examining~CQT;�(A;B) for A 2 B(H2) and B 2 B(H1). We reall that its nonzerovalue is an indiation of proper interation in the system as disussed in theintrodution. In partiular, ~CQT;�(A;B) 6= 0 means that quantum orrela-tions our between the two parts of the system orresponding to regions�I and �II . We shall identify operators on B(H1) and B(H2) with theirembeddings into B(H1 
H2). We will need the followingFat 1 Suppose that A;B 2 B(H1
H2). Let  be a symmetry transforma-tion on B(H1 
H2) (i.e. a morphism suh that  (G) = G for G 2 B(H1)and  2 = 1). Suppose that  (A) = �A and  (B) = B. Then, we haveTr(AB) = 0.Proof. Indeed, sine  is a morphism and Tr( (�)) = Tr(�), one hasTr(AB) = Tr( (AB)) = Tr( (A) (B)) = Tr(�AB) = �Tr(AB) :Hene, Tr(AB) = 0.Note that any operator A 2 B(H1 
 H2) an be represented as a sumA = A+ + A�, where  (A+) = A+ and  (A�) = �A� (we have A+ =12(A+  (A)) and A� = 12(A�  (A))). Obviously, any operator B 2 B(H1)is invariant under  , so B+ = B, B� = 0. We will also use another de-omposition of operators from B(H1 
 H2). For any A 2 B(H1 
 H2) wehave A = A + An, where A ommutes with �, while An does not om-mute with �. This is beause eah A 2 B(H1 
 H2) an be written as alinear ombination of simple tensors of the form �i0 
 : : : 
 �iN , with �ijbeing Pauli matries, j = 0; 1; : : : ; N . Then, A =Pi �i�i0i 
 : : :
 �iNi suhthat ij 2 f0; 3g, j = 0; 1; : : : ; N , and An =Pp �p�p0p 
 : : : 
 �pNp suh thatpj 2 f1; 2g for at least one j 2 f0; 1; : : : ; Ng.



1110 S. Kozieª, W.A. MajewskiNow, we are ready to alulate ~CQT;�(A;B) for the Ising model for anyA 2 B(H2) and B 2 B(H1). Note that in ase of Ising model any ex-hange transformation  suh as desribed in Setion 2 satis�es [ �; �℄ = 0,whih also implies that � = . In partiular, operator  kl onsideredabove satis�es this ondition. Let A = A + An be a deomposition of Asuh that A ommutes with � and An does not ommute with �. Eahsimple tensor in An ontains at least one Pauli matrix �1 or �2 loalizedat site belonging to �II . This implies that hAnBi� = Tr(�AnB) = 0.Moreover, all simple tensors in An must ontain at least one matrix withtrae zero, loalized at site belonging to �II . It follows thathE(An)Bi� = Tr(��(An)B)= 12 Tr(�(An)B) + 12 Tr(�( (An))B)= 12 Tr(�(An)B) + 12 Tr( (�)(An)B) = 0 :This proves that An does not ontribute to ~CQT;�(A;B). By similar reasoningone an show that also Bn does not ontribute to ~CQT;�(A;B). We havearrived at the following assertionProposition 1 For any A 2 B(H2) and B 2 B(H1) the quantum orrela-tions oe�ient for Ising model is given by the following formula~CQT;�(A;B) = ~CQT;�(A; B) :where A (B) is the part of A (B) that ommutes with � .By virtue of Proposition 1 we an assume that [A; �℄ = 0. Then we haveA = 2A. Sine  = � 12 (��)� 12 = � 12 (12(� +  �))� 12 , we have A =�(12 (�+  �))�1A. This means thatE(A) = �(A)= 12���12(�+  �)��1A+ ( �)�12(�+  �)��1 ( A)�: (19)Consider a deomposition of A into symmetri and antisymmetri partA = A+ +A�. For A+ we have (from (19))E(A+) = 12(�+  �)�12(�+  �)��1A+ = A+ :It follows that ~CQT;�(A+; B) = hE(A+)Bi� � hA+Bi� = 0 : (20)



Evolution of Quantum Correlations for Jump-Type . . . 1111For A� we haveE(A�) = 12(��  �)�12(�+  �)��1A� = ����1+ A� :where �+ � 12(�+  �) and �� � 12(��  �). It follows that~CQT;�(A�; B) = hE(A�)Bi� � hA�Bi� = h(E(A�)�A)Bi�= Tr��(����1+ � 1)A�B� = Tr�(�+ + ��)(����1+ � 1)A�B�= Tr��� � �+ + �2���1+ � ��)A�B� = Tr�A�B(�2���1+ � �+)� :Now, sine B and �2���1+ � �+ are invariant under  we have from Fat 1that ~CQT;�(A�; B) = hE(A�)Bi� � hA�Bi� = 0 : (21)Theorem 1 For any A 2 B(H2) and B 2 B(H1), the quantum orrelationsoe�ient ~CQT;�(A;B) for Ising model equals 0.Proof. See (20) and (21).The above result shows the lassial harater of evolution in the Isingmodel. 4. XXZ modelConsider the XXZ model as desribed in Setion 2. The Hamiltonianof the system has the form:H = � NXn=1(�1n�1�1n + �2n�1�2n +��3n�1�3n) (22)= � NXn=11
 : : :
 1
 (�1 
 �1 + �2 
 �2 +��3 
 �3)
 1
 : : :
 1 ;where �j, j = 1; 2; 3 are Pauli matries. We reall that � 6= 1 is responsiblefor anisotropy of the model. The orresponding Gibbs state is representedby the density matrix � = Z�1 exp(��H); (23)where Z = Tr(e��H) and � is the inverse temperature. Sine this model ismuh more ompliated than the Ising one, we shall use a high-temperature



1112 S. Kozieª, W.A. Majewskiexpansion, i.e. we will use the approximation exp(��H) � 1 � �H, whihis valid for small �. Performing neessary alulation, one an obtain theexpliit form of operator  for XXZ model: = 1+ �4 ( H �H) � 1+ ~H:Observe that � =  and  ~H = � ~H. This allows us to get the expliit formof the generator E of our dynami. For A 2 B(H2) we haveE(A) = 12(1+ ~H)A(1 + ~H) + 12(1� ~H)( A)(1 � ~H); (24)where A in the above formula is identi�ed with its embedding into the al-gebra B(H1 
 H2). Leaving out the fators of seond order in �, we anexpress E(A) as followsE(A) = 12h(A+  (A)) + ~H(A�  (A)) + (A�  (A)) ~Hi: (25)Assume that  A = A. Then, we have E(A) = A, whih implies ~CQT;�(A;B)= 0 for any B 2 B(H1). Now suppose that  A = �A. This impliesE(A) = ~HA + A ~H. Now, we are in position to alulate ~CQT;�(A;B) forA 2 B(H2),  A = �A and B 2 B(H1). We have~CQT;�(A;B) = hE(A)Bi� � hABi� = Tr(�(E(A) �A)B)= Tr((1� �H)( ~HA+A ~H �A)B)= Tr(( ~HA+A ~H+�HA)B)�Tr(AB)�Tr(�H( ~HA+A ~H)B):The seond term in the above equality equals zero by Fat 1. The �rst terman be rewritten in the following formTr(( ~HA+A ~H + �HA)B)= �4 Tr((( H �H)A+A( H �H) + 4HA)B)= �4 Tr(( H +H)AB) + �4 Tr(A( H +H)B) + �2 Tr((HA�AH)B) :All these terms equal zero; the �rst and seond one by Fat 1 (sine  H+His invariant under  ) and the last one due to the fat that A ommuteswith B. Thus we have obtained~CQT;�(A;B) = �Tr(�H( ~HA+A ~H)B);



Evolution of Quantum Correlations for Jump-Type . . . 1113whih an be rewritten (using the properties of operator  and  A = �A)as ~CQT;�(A;B) = �24 Tr(( H +H)(HA+AH)B) :Using the deomposition of A into symmetri and antisymmetri partA = A+ + A�, with  A+ = A+ and  A� = �A� we an summarize ouronsiderations as followsProposition 2 For any A 2 B(H2) and B 2 B(H1) the quantum orrela-tions oe�ient for XXZ model is given by the following formula~CQT;�(A;B) = �24 Tr(( H +H)(HA� +A�H)B) ; (26)where A� is the antisymmetri part of A.We observe that ~CQT;�(A;B) is proportional to �2. It is easy to give examplesof observables for whih nonzero quantum orrelations our inXXZ model.Consider the exhange transformation  kl given by (13) (f. Setion 3) withl = k+1 (reall that we have � = f0; 1; : : : ; Ng, �I = �nfk; lg, �II = fk; lgin this ase). Suppose that A 2 B(H2) is suh that A = P1 
 P0 andB 2 B(H1), B = NNi=0On with Ok�1 = P0 and Oj = 1 for j 6= k � 1.This pair of observables has a very straightforward physial interpretationas exhanging of spin direted downwards at kth site with the spin diretedupwards at (k+1)th site. Using Proposition 2 one an alulate ~CQT;�(A;B)for our spei�ed A and B. Of ourse, A� = 12(P1
P0�P0
P1). InsertingA� into (26) and using the expliit form of H we get~CQT;�(A;B) = �2�28 ;whih means that nonzero quantum orrelations our for any �nite tem-perature. 5. ConlusionsWe studied two partiular models of quantum stohasti dynamis, i.e.the dynamis whih an be onsidered as examples of quantum general-izations of Glauber dynamis. The �rst model is exhange type dynamiswhih is originated from one dimensional Ising model with nearest neighborinterations only while the seond model is also exhange type dynamis butoriginated from XXZ type Hamiltonian. For both ases we took the initial



1114 S. Kozieª, W.A. Majewskistate to be a separable one. In other words, both models have only lassialorrelations for time t = 0. In the �rst model (Setion 3) the Hamiltoniandevelopment has a multi-periodi nature for non �xed points (f. [3℄). Inthat sense, suh the Hamiltonian model exhibits a behavior typial for las-sial interations. Our analysis of stohasti quantum Ising dynamis learlyshows that the transition from that Hamiltonian model to quantum stohas-ti Ising model preserves the above mentioned property. On the other hand,it is well known that quantum Hamiltonian XXZ model has muh moreinteresting propagation than the Ising model. This feature is also re�etedin our analysis of its quantum stohasti generalization (f. [3℄). This an betaken as a lear indiation that generalized onditional expetations, gen-erating time evolution for that model, ontain non-trivial interations. Inother words, the transition rates de�ning the Markov evolution and deter-mined by the orresponding Hamiltonians are orretly designed for XXZmodel in the sense that they ontain the proper interation between thesubsystem and its environment. It is worth pointing out that similar re-sults were obtained for another generalization of Glauber dynamis whihwas onsidered in [8℄. Our results gain interest if we realize that the quan-tum orrelations are losely related to entangled states. In other words,we demonstrated a non-trivial evolution of entanglement for the onsideredmodels. As the analysis of relations between quantum orrelations and en-tanglement is a mathematial question and therefore exeeds the sope ofthis paper, it will be disussed in the forthoming publiation.This work was partially supported by the grant BW/5400-5-0160-1 andthe Polish State Committee for Sienti� Researh (KBN) grant no.PB/0273/PO3/99/16. REFERENCES[1℄ R.J. Glauber, J. Mat. Phys. 4, 294 (1963).[2℄ T.M. Ligget, Interating Partile Systems, Springer Verlag, 1985.[3℄ O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistial Me-hanis, Springer Verlag, Vol. I (1979), Vol. II (1981).[4℄ A.W. Majewski, B. Zegarlinski, Math. Phys. Eletroni J. 1, Paper 2 (1995).[5℄ A.W. Majewski, B. Zegarlinski, Lett. Math. Phys. 36, 337 (1996).[6℄ A.W. Majewski, B. Zegarlinski, Rev. Math. Phys. 8, 689 (1996).[7℄ A.W. Majewski, B. Zegarlinski, Markov Pro. Rel. Fields 2, 87 (1996).[8℄ S. Kozieª, A.W. Majewski, LANL preprint quant-ph/0101033, (2001).


