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s, Gdansk UniversityWita Stwosza 57, 80-952 Gda«sk, Polande-mail: koziel�iftia6.univ.gda.plWªadysªaw A. MajewskiInstitute of Theoreti
al Physi
s and Astrophysi
s, Gdansk UniversityWita Stwosza 57, 80-952 Gda«sk, Polande-mail: fizwam�univ.gda.pl(Re
eived De
ember 5, 2001)Two models of quantum sto
hasti
 jump type pro
esses are analyzedwith spe
ial emphasis on the time evolution of quantum 
orrelations. It isshown that the generalized 
onditional expe
tation de�ning the time evolu-tion of XXZ model 
ontains the proper (i.e. genuine quantum) intera
tionsbetween subsystem and its environment while this is not the 
ase for thesto
hasti
 
ounterpart of the Ising model.PACS numbers: 05.30.�d, 05.50.+q, 02.50.�r1. Introdu
tionIn the 
lassi
al theory of parti
le systems one of the obje
tives is toprodu
e, des
ribe and analyze dynami
al systems with evolution originatedfrom sto
hasti
 pro
esses in su
h a way that their equilibrium states areGibbs states (
f. [2℄). A well known illustration is a number of papers de-s
ribing the so 
alled Glauber dynami
s [1℄. To perform a detailed analysis ofdynami
al system of that type, it is 
onvenient to use the theory of Markovpro
esses in the 
ontext of Lp-spa
es. Re
ently, this program was 
arried out� Presented at the XIV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 9�14, 2001.(1103)



1104 S. Kozieª, W.A. Majewskiin the setting of quantum me
hani
s [4�7℄. In parti
ular, guided by the 
las-si
al theory and applying generalized 
onditional expe
tations (in the senseof A

ardi�Ce
hnini), it was possible to de�ne the 
orresponding Markovgenerators of the underlying quantum Markov�Feller dynami
s. Further-more, su
h an analysis led to a general s
heme for 
onstru
ting quantumjump pro
esses on a latti
e (
f. [4℄). We emphasize that interpretation ofsu
h quantum pro
esses is the same as in the 
lassi
al 
ase. Namely, havinga transition rate (dependent on the state �), one 
an des
ribe a Markovsemigroup 
orresponding to quantum Markov pro
ess (de�ned by transitionrates). Clearly, while des
ribing a physi
al pro
ess in su
h a way, we do notknow (expli
itly) the intera
tions whi
h are responsible for the underlyingtransition rates. Therefore, it is natural to pose the following question: Arethe intera
tions proper (i.e. genuine quantum ones) or not? To answer thisquestion we pro
eed with a detailed analysis of properly 
hosen 
orrelationfun
tions. To be more spe
i�
 let us 
onsider two-point 
orrelation fun
tionhTt(A)Bi� � Tr(�Tt(A)B), where � is a separable state, Tt is a Markovsemigroup, A and B are observables. Obviously, the following fun
tionCT;�(A;B) � hTt(A)Bi� � hTt(A)i� hBi�
an be taken as a measure of 
orrelation between Tt(A) and B. However,only quantum 
orrelation 
an be 
onsidered as an indi
ation of existen
e ofproper intera
tions in the studied evolution. In other words, we should takeaway the 
lassi
al 
orrelations from CT;�(A;B). We re
all that separablestates display 
lassi
al 
orrelation only. We writeCT;�(A;B) = hTt(A)Bi� � hTt(A)i�hBi� = hTt(A)Bi� � hAi�hBi�= (hTt(A)Bi� � hABi�) + (hABi� � hAi�hBi�) :As the se
ond 
omponent measures 
lassi
al 
orrelations, one 
an 
on-sider the �rst one as a measure of quantum 
orrelations. Consequently, inorder to �nd an indi
ation of proper intera
tion in the time evolution Tt, wewill study CQT;�(A;B) = hTt(A)Bi� � hABi� (1)for a separable state. In our re
ent paper [8℄, a detailed analysis of CQT;�for spin �ip type dynami
s has been done. Here, we will study CQT;� forquantum sto
hasti
 dynami
s, determined by the Gibbs state of the Isingand XXZ model. Throughout the paper we shall use the normalized tra
e.
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s � 
onstru
tion sket
hConsider a 
omposite system I+II asso
iated with a region � = �I[�II ,where �I ; �II � Zd. The system � is des
ribed by H1 
H2, S1 
 S2 andB(H1) 
 B(H2) �= B(H1 
 H2), where H1 (H2) are the �nite dimensionalHilbert spa
es asso
iated with �I (�II), S1 (S2), respe
tive sets of densitymatri
es, are the spa
es of mixed states, B(H1) (B(H2)), the sets of allbounded linear operators, are the algebras of observables. Systems withintera
tions are des
ribed by intera
tion potentials asso
iated with region �(�I , �II , respe
tively). This leads to the 
orresponding Hamiltonians H�(H�I , H�II ) and to Gibbs state�� = e��H�Tr (e��H�) � � ;(� is an invertible operator, i.e. ��1 exists). In this work we study a 
on
retekind of the jump pro
ess, i.e. ex
hange type dynami
s. This kind of dynam-i
s is indu
ed by a lo
al symmetry. Consider a symmetry transformation(lo
al automorphism)  on B(H1 
H2) su
h that (A) = A for A 2 B(H1);  2 = 1 :Note that if dim(H1);dim(H2) < 1, the above properties implyTr( (�)) = Tr(�). We shall 
onsider a parti
ular type of symmetries, whi
hare implemented by ex
hanges of observables between sites of the spin 
hain.Using transformation  one 
an de�ne a proje
tion � on B(H1
H2) as fol-lows �(�) � 12(1+  )(�) :We observe that � is not a morphism. A

ording to the general theory ofsemigroups [3℄ the dynami
 Tt indu
ed by the lo
al transformation  is ofthe form Tt(�) = exp(tL(�)) ; (2)with L = E � 1 ;where E : B(H1 
H2) ! B(H1 
H2) is a generalized 
onditional expe
ta-tion in the A

ardi�Ce
hini sense. Performing 
al
ulations similar as in theappendix of [7℄ one 
an show that for the 
onsidered dynami
s operator Etakes the following form
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�A
) ; (3)where 
 = � 12 (��)� 12 : (4)The presented 
onstru
tion has a straightforward generalization to thein�nite dimensional 
ase, thus, thermodynami
 limit 
an be performed [4,6℄.Again, as a result we get uniformly 
ontinuous semigroup Tt.Using (2) and a Taylor expansion of Tt we 
an write CQT;�(A;B) asCQT;�(A;B) = hTt(A)Bi� � hABi�= (hABi� + t hL(A)Bi� + : : :)� hABi�= t (hE(A)Bi� � hABi�) + : : : ;in whi
h the remaining terms are of higher order in time. Thus,~CQT;�(A;B) = hE(A)Bi� � hABi� (5)des
ribes dominating 
hanges of the 
hosen dynami
s for short times. In thiswork we will examine fun
tion ~CQT;� rather than CQT;�, sin
e it is mu
h more
omputationally tra
table and also enables us to answer the main questionposed in the introdu
tion.In order to study 
on
rete physi
al models we have to deal with 
on-
rete Gibbs states. In this work we analyze two models that stem fromone dimensional quantum Ising model and one dimensional quantum XXZmodel. In parti
ular we will 
onsider a one-dimensional �nite 1=2-spin 
hainwith N + 1 sites indexed from 0 to N and the 
orresponding algebra ofobservables generated by �i0 
 �i1 
 : : :
 �iN ;where ik 2 f0; 1; 2; 3g, k = 0; : : : N , and �j , j = 0; 1; 2; 3 are Pauli matri
es.3. Ising modelConsider the Ising model as des
ribed in the previous se
tion. TheHamiltonian of the system has the form:H = NXn=1�n�3n�1�3n= NXn=1�n � 1
 : : :
 1
 �3 
 �3 
 1
 : : : 
 1 ; (6)



Evolution of Quantum Correlations for Jump-Type . . . 1107where �3 denotes 3rd Pauli matrix (i.e. �311 = 1, �322 = �1, �312 = �321 = 0)and �3 are lo
alized at sites n � 1 and n. We also assume that the modelis translationally invariant, whi
h implies that �n = �, n = 1; : : : ; N . The
orresponding Gibbs state ! is represented by the density matrix� = Z�1 exp(��H) ; (7)where Z=Tr(e��H ) and � is the inverse temperature. Here, Z=
oshN (���).Thus, we have !(A) = Z�1Tr(e��HA) :We will need the expli
it form of the matrix �. Note thate ��3 = 
osh(�) + �3 � sinh(�) :Using the above and the fa
t that all 
onstituents in (6) 
ommute, we obtain� = �1 �2 ; (8)where�1 = (1
 1+t � �30 
 �31)
 : : :
 (1
 1+ t � �3N�1 
 �3N ) ; (9)�2 = 1
 (1
 1+t � �31 
 �32)
 : : : 
 (1
 1+ t � �3N�2 
 �3N�1)
 1 ; (10)with t = tanh(���), if N is an odd number, and�1 = (1
 1+ t � �30 
 �31)
 : : :
 (1
 1+ t � �3N�2 
 �3N�1)
 1 ; (11)�2 = 1
 (1
 1+ t � �31 
 �32)
 : : :
 (1
 1+ t � �3N�1 
 �3N ) ; (12)if N is an even number. The subs
ripts index sites for whi
h Pauli matri
es�3 are assigned to.Having spe
i�ed regions �I and �II and a lo
al symmetry operator  as dis
ussed in Se
tion 2, one 
an 
al
ulate an expli
it form of generator Eof the dynami
s. As an example, let us 
onsider a lo
al transformation  klde�ned as follows  kl(A1 
 : : :
Ak 
 : : :
Al 
 : : :
AN )= A1 
 : : :
Al 
 : : :
Ak 
 : : : 
AN ; (13)whi
h des
ribes the ex
hange between the sites. Respe
tive proje
tion �kl isde�ned by �kl(�)= 12 (1+ kl)(�). In parti
ular, one 
an 
hoose l=k+1 whi
his related to a possible des
ription of transport properties in the 
onsidered
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ording to the notation introdu
ed in Se
tion 2, we have that� = f0; 1; : : : ; Ng, �I = �nfk; lg, �II = fk; lg, while B(H1) and B(H2) are2N�1- and 22-dimensional Hilbert spa
es, respe
tively. First, we 
al
ulatean expli
it form of the operator 
. Without loss of generality we 
an assumethat k is an even number. Then, we note that �1 is invariant under  kl.Using this and (4) we get
 = (2�2) 12 (�2 +  kl�2)� 12 : (14)It is an easy observation that 
 is nontrivial only in sites fk�1; k; k+1; k+2g,i.e. we have
 = 1
 : : : 1
 (2~�2) 12 (~�2 +  kl~�2)� 12 
 1 : : : 
 1: (15)where ~�2 is the restri
tion of �2 to the sub-algebra generated by observableslo
alized in sites fk� 1; k; k +1; k+2g. Obviously for k = 0 we would have
 = (2~�2) 12 (~�2 +  kl~�2)� 12 
 1
 : : :
 1, while for k+1 = N we would have
 = 1
 : : :
 1
 (2~�2) 12 (~�2 +  kl~�2)� 12 . In the sequel we shall assume that0 < k < N � 1. If k = 0 or k = N � 1, all the subsequent 
onsiderations
an be repeated up to the 
hanges pointed out while dis
ussing the expli
itform of 
. Moreover, we shall use the symbol ~
 denoting the restri
tion of 
to fk�1; : : : ; k+2g, i.e. we have 
 = 1
 ~

1. Using (14) and (10) (respe-
tively (12)), one 
an obtain an expli
it form of ~
, whi
h is the following~
 = 1
 1
 1
 1+ P0 
 
1 
 P1 + P1 
 
2 
 P0 ; (16)where 
1 = �+ � P0 
 P1 + �� � P1 
 P0 ;
2 = �� � P0 
 P1 + �+ � P1 
 P0 ;and �+ = 1 + tp1 + t2 � 1 ; �� = 1� tp1 + t2 � 1 :P0 and P1 are the spe
tral proje
tors of the Pauli matrix �3, i.e.(P0)11 = 1 ; (P0)12 = (P0)21 = (P0)22 = 0 ;(P1)22 = 1 ; (P1)11 = (P1)12 = (P1)21 = 0 :Now, we are ready to 
al
ulate the expli
it form of the operator E. Observethat ~
� = ~
,  kl(
1) = 
2 and  kl(
2) = 
1. It follows that kl~
 = 1
 1
 1
 1+ P0 
 
2 
 P1 + P1 
 
1 
 P0 ; (17)
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e, for any A 2 B(H2),E(A) = �kl (~
A~
)= 12 ~
A~
 + 12 kl(~
) kl(A) kl(~
) = 12�1
 (A+  klA)
 1�+ 12 P0
�
1A+A
1+
1A
1+
2 kl(A)+ kl(A)
2+
2 kl(A)
2�
P1+12P1
�
2A+A
2+
2A
2+
1 kl(A)+ kl(A)
1+
1 kl(A)
1�
P0: (18)One 
an show using (18) that the quantum 
orrelations 
oe�
ient ~CQT;�(A;B)(with A 2 B(H2); B 2 B(H1) arbitrary) equals zero for our parti
ular ex-ample of ex
hange transformation.Now, we turn to the general 
ase. We are interested in examining~CQT;�(A;B) for A 2 B(H2) and B 2 B(H1). We re
all that its nonzerovalue is an indi
ation of proper intera
tion in the system as dis
ussed in theintrodu
tion. In parti
ular, ~CQT;�(A;B) 6= 0 means that quantum 
orrela-tions o

ur between the two parts of the system 
orresponding to regions�I and �II . We shall identify operators on B(H1) and B(H2) with theirembeddings into B(H1 
H2). We will need the followingFa
t 1 Suppose that A;B 2 B(H1
H2). Let  be a symmetry transforma-tion on B(H1 
H2) (i.e. a morphism su
h that  (G) = G for G 2 B(H1)and  2 = 1). Suppose that  (A) = �A and  (B) = B. Then, we haveTr(AB) = 0.Proof. Indeed, sin
e  is a morphism and Tr( (�)) = Tr(�), one hasTr(AB) = Tr( (AB)) = Tr( (A) (B)) = Tr(�AB) = �Tr(AB) :Hen
e, Tr(AB) = 0.Note that any operator A 2 B(H1 
 H2) 
an be represented as a sumA = A+ + A�, where  (A+) = A+ and  (A�) = �A� (we have A+ =12(A+  (A)) and A� = 12(A�  (A))). Obviously, any operator B 2 B(H1)is invariant under  , so B+ = B, B� = 0. We will also use another de-
omposition of operators from B(H1 
 H2). For any A 2 B(H1 
 H2) wehave A = A
 + An, where A
 
ommutes with �, while An does not 
om-mute with �. This is be
ause ea
h A 2 B(H1 
 H2) 
an be written as alinear 
ombination of simple tensors of the form �i0 
 : : : 
 �iN , with �ijbeing Pauli matri
es, j = 0; 1; : : : ; N . Then, A
 =Pi �i�i0i 
 : : :
 �iNi su
hthat ij 2 f0; 3g, j = 0; 1; : : : ; N , and An =Pp �p�p0p 
 : : : 
 �pNp su
h thatpj 2 f1; 2g for at least one j 2 f0; 1; : : : ; Ng.
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al
ulate ~CQT;�(A;B) for the Ising model for anyA 2 B(H2) and B 2 B(H1). Note that in 
ase of Ising model any ex-
hange transformation  su
h as des
ribed in Se
tion 2 satis�es [ �; �℄ = 0,whi
h also implies that 
� = 
. In parti
ular, operator  kl 
onsideredabove satis�es this 
ondition. Let A = A
 + An be a de
omposition of Asu
h that A
 
ommutes with � and An does not 
ommute with �. Ea
hsimple tensor in An 
ontains at least one Pauli matrix �1 or �2 lo
alizedat site belonging to �II . This implies that hAnBi� = Tr(�AnB) = 0.Moreover, all simple tensors in 
An
 must 
ontain at least one matrix withtra
e zero, lo
alized at site belonging to �II . It follows thathE(An)Bi� = Tr(��(
An
)B)= 12 Tr(�(
An
)B) + 12 Tr(�( (
An
))B)= 12 Tr(�(
An
)B) + 12 Tr( (�)(
An
)B) = 0 :This proves that An does not 
ontribute to ~CQT;�(A;B). By similar reasoningone 
an show that also Bn does not 
ontribute to ~CQT;�(A;B). We havearrived at the following assertionProposition 1 For any A 2 B(H2) and B 2 B(H1) the quantum 
orrela-tions 
oe�
ient for Ising model is given by the following formula~CQT;�(A;B) = ~CQT;�(A
; B
) :where A
 (B
) is the part of A (B) that 
ommutes with � .By virtue of Proposition 1 we 
an assume that [A; �℄ = 0. Then we have
A
 = 
2A. Sin
e 
 = � 12 (��)� 12 = � 12 (12(� +  �))� 12 , we have 
A
 =�(12 (�+  �))�1A. This means thatE(A) = �(
A
)= 12���12(�+  �)��1A+ ( �)�12(�+  �)��1 ( A)�: (19)Consider a de
omposition of A into symmetri
 and antisymmetri
 partA = A+ +A�. For A+ we have (from (19))E(A+) = 12(�+  �)�12(�+  �)��1A+ = A+ :It follows that ~CQT;�(A+; B) = hE(A+)Bi� � hA+Bi� = 0 : (20)



Evolution of Quantum Correlations for Jump-Type . . . 1111For A� we haveE(A�) = 12(��  �)�12(�+  �)��1A� = ����1+ A� :where �+ � 12(�+  �) and �� � 12(��  �). It follows that~CQT;�(A�; B) = hE(A�)Bi� � hA�Bi� = h(E(A�)�A)Bi�= Tr��(����1+ � 1)A�B� = Tr�(�+ + ��)(����1+ � 1)A�B�= Tr��� � �+ + �2���1+ � ��)A�B� = Tr�A�B(�2���1+ � �+)� :Now, sin
e B and �2���1+ � �+ are invariant under  we have from Fa
t 1that ~CQT;�(A�; B) = hE(A�)Bi� � hA�Bi� = 0 : (21)Theorem 1 For any A 2 B(H2) and B 2 B(H1), the quantum 
orrelations
oe�
ient ~CQT;�(A;B) for Ising model equals 0.Proof. See (20) and (21).The above result shows the 
lassi
al 
hara
ter of evolution in the Isingmodel. 4. XXZ modelConsider the XXZ model as des
ribed in Se
tion 2. The Hamiltonianof the system has the form:H = � NXn=1(�1n�1�1n + �2n�1�2n +��3n�1�3n) (22)= � NXn=11
 : : :
 1
 (�1 
 �1 + �2 
 �2 +��3 
 �3)
 1
 : : :
 1 ;where �j, j = 1; 2; 3 are Pauli matri
es. We re
all that � 6= 1 is responsiblefor anisotropy of the model. The 
orresponding Gibbs state is representedby the density matrix � = Z�1 exp(��H); (23)where Z = Tr(e��H) and � is the inverse temperature. Sin
e this model ismu
h more 
ompli
ated than the Ising one, we shall use a high-temperature



1112 S. Kozieª, W.A. Majewskiexpansion, i.e. we will use the approximation exp(��H) � 1 � �H, whi
his valid for small �. Performing ne
essary 
al
ulation, one 
an obtain theexpli
it form of operator 
 for XXZ model:
 = 1+ �4 ( H �H) � 1+ ~H:Observe that 
� = 
 and  ~H = � ~H. This allows us to get the expli
it formof the generator E of our dynami
. For A 2 B(H2) we haveE(A) = 12(1+ ~H)A(1 + ~H) + 12(1� ~H)( A)(1 � ~H); (24)where A in the above formula is identi�ed with its embedding into the al-gebra B(H1 
 H2). Leaving out the fa
tors of se
ond order in �, we 
anexpress E(A) as followsE(A) = 12h(A+  (A)) + ~H(A�  (A)) + (A�  (A)) ~Hi: (25)Assume that  A = A. Then, we have E(A) = A, whi
h implies ~CQT;�(A;B)= 0 for any B 2 B(H1). Now suppose that  A = �A. This impliesE(A) = ~HA + A ~H. Now, we are in position to 
al
ulate ~CQT;�(A;B) forA 2 B(H2),  A = �A and B 2 B(H1). We have~CQT;�(A;B) = hE(A)Bi� � hABi� = Tr(�(E(A) �A)B)= Tr((1� �H)( ~HA+A ~H �A)B)= Tr(( ~HA+A ~H+�HA)B)�Tr(AB)�Tr(�H( ~HA+A ~H)B):The se
ond term in the above equality equals zero by Fa
t 1. The �rst term
an be rewritten in the following formTr(( ~HA+A ~H + �HA)B)= �4 Tr((( H �H)A+A( H �H) + 4HA)B)= �4 Tr(( H +H)AB) + �4 Tr(A( H +H)B) + �2 Tr((HA�AH)B) :All these terms equal zero; the �rst and se
ond one by Fa
t 1 (sin
e  H+His invariant under  ) and the last one due to the fa
t that A 
ommuteswith B. Thus we have obtained~CQT;�(A;B) = �Tr(�H( ~HA+A ~H)B);
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h 
an be rewritten (using the properties of operator  and  A = �A)as ~CQT;�(A;B) = �24 Tr(( H +H)(HA+AH)B) :Using the de
omposition of A into symmetri
 and antisymmetri
 partA = A+ + A�, with  A+ = A+ and  A� = �A� we 
an summarize our
onsiderations as followsProposition 2 For any A 2 B(H2) and B 2 B(H1) the quantum 
orrela-tions 
oe�
ient for XXZ model is given by the following formula~CQT;�(A;B) = �24 Tr(( H +H)(HA� +A�H)B) ; (26)where A� is the antisymmetri
 part of A.We observe that ~CQT;�(A;B) is proportional to �2. It is easy to give examplesof observables for whi
h nonzero quantum 
orrelations o

ur inXXZ model.Consider the ex
hange transformation  kl given by (13) (
f. Se
tion 3) withl = k+1 (re
all that we have � = f0; 1; : : : ; Ng, �I = �nfk; lg, �II = fk; lgin this 
ase). Suppose that A 2 B(H2) is su
h that A = P1 
 P0 andB 2 B(H1), B = NNi=0On with Ok�1 = P0 and Oj = 1 for j 6= k � 1.This pair of observables has a very straightforward physi
al interpretationas ex
hanging of spin dire
ted downwards at kth site with the spin dire
tedupwards at (k+1)th site. Using Proposition 2 one 
an 
al
ulate ~CQT;�(A;B)for our spe
i�ed A and B. Of 
ourse, A� = 12(P1
P0�P0
P1). InsertingA� into (26) and using the expli
it form of H we get~CQT;�(A;B) = �2�28 ;whi
h means that nonzero quantum 
orrelations o

ur for any �nite tem-perature. 5. Con
lusionsWe studied two parti
ular models of quantum sto
hasti
 dynami
s, i.e.the dynami
s whi
h 
an be 
onsidered as examples of quantum general-izations of Glauber dynami
s. The �rst model is ex
hange type dynami
swhi
h is originated from one dimensional Ising model with nearest neighborintera
tions only while the se
ond model is also ex
hange type dynami
s butoriginated from XXZ type Hamiltonian. For both 
ases we took the initial



1114 S. Kozieª, W.A. Majewskistate to be a separable one. In other words, both models have only 
lassi
al
orrelations for time t = 0. In the �rst model (Se
tion 3) the Hamiltoniandevelopment has a multi-periodi
 nature for non �xed points (
f. [3℄). Inthat sense, su
h the Hamiltonian model exhibits a behavior typi
al for 
las-si
al intera
tions. Our analysis of sto
hasti
 quantum Ising dynami
s 
learlyshows that the transition from that Hamiltonian model to quantum sto
has-ti
 Ising model preserves the above mentioned property. On the other hand,it is well known that quantum Hamiltonian XXZ model has mu
h moreinteresting propagation than the Ising model. This feature is also re�e
tedin our analysis of its quantum sto
hasti
 generalization (
f. [3℄). This 
an betaken as a 
lear indi
ation that generalized 
onditional expe
tations, gen-erating time evolution for that model, 
ontain non-trivial intera
tions. Inother words, the transition rates de�ning the Markov evolution and deter-mined by the 
orresponding Hamiltonians are 
orre
tly designed for XXZmodel in the sense that they 
ontain the proper intera
tion between thesubsystem and its environment. It is worth pointing out that similar re-sults were obtained for another generalization of Glauber dynami
s whi
hwas 
onsidered in [8℄. Our results gain interest if we realize that the quan-tum 
orrelations are 
losely related to entangled states. In other words,we demonstrated a non-trivial evolution of entanglement for the 
onsideredmodels. As the analysis of relations between quantum 
orrelations and en-tanglement is a mathemati
al question and therefore ex
eeds the s
ope ofthis paper, it will be dis
ussed in the forth
oming publi
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