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Two models of quantum stochastic jump type processes are analyzed
with special emphasis on the time evolution of quantum correlations. It is
shown that the generalized conditional expectation defining the time evolu-
tion of X X Z model contains the proper (i.e. genuine quantum) interactions
between subsystem and its environment while this is not the case for the
stochastic counterpart of the Ising model.
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1. Introduction

In the classical theory of particle systems one of the objectives is to
produce, describe and analyze dynamical systems with evolution originated
from stochastic processes in such a way that their equilibrium states are
Gibbs states (cf. [2]). A well known illustration is a number of papers de-
scribing the so called Glauber dynamics [1|. To perform a detailed analysis of
dynamical system of that type, it is convenient to use the theory of Markov
processes in the context of Ly-spaces. Recently, this program was carried out
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in the setting of quantum mechanics [4-7]. In particular, guided by the clas-
sical theory and applying generalized conditional expectations (in the sense
of Accardi-Cechnini), it was possible to define the corresponding Markov
generators of the underlying quantum Markov—Feller dynamics. Further-
more, such an analysis led to a general scheme for constructing quantum
jump processes on a lattice (c¢f. [4]). We emphasize that interpretation of
such quantum processes is the same as in the classical case. Namely, having
a transition rate (dependent on the state p), one can describe a Markov
semigroup corresponding to quantum Markov process (defined by transition
rates). Clearly, while describing a physical process in such a way, we do not
know (explicitly) the interactions which are responsible for the underlying
transition rates. Therefore, it is natural to pose the following question: Are
the interactions proper (i.e. genuine quantum ones) or not? To answer this
question we proceed with a detailed analysis of properly chosen correlation
functions. To be more specific let us consider two-point correlation function
(Ti(A)B), = Tr(pTi(A)B), where p is a separable state, T; is a Markov
semigroup, A and B are observables. Obviously, the following function

Cr,p(4, B) = (T,(A)B),, — (T:(A)) , (B),

can be taken as a measure of correlation between T;(A) and B. However,
only quantum correlation can be considered as an indication of existence of
proper interactions in the studied evolution. In other words, we should take
away the classical correlations from Cr,(A, B). We recall that separable
states display classical correlation only. We write

Crp(A,B) = (Ti(A)B), — (Ti(A))s(B), = (Ti(A)B), — (A),(B),
= ((Tt(A)B>p - <AB>p) + ( AB)p - <A>/J<B>p) .

As the second component measures classical correlations, one can con-
sider the first one as a measure of quantum correlations. Consequently, in
order to find an indication of proper interaction in the time evolution T}, we
will study

Cf (A, B) = (Ti(A)B), — (AB), (1)

for a separable state. In our recent paper [8|, a detailed analysis of CjQ p

for spin flip type dynamics has been done. Here, we will study C’? for
quantum stochastic dynamics, determined by the Gibbs state of the fsing
and X X Z model. Throughout the paper we shall use the normalized trace.
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2. Jump-type dynamics — construction sketch

Consider a composite system I+11 associated with a region A = A;UA 7,
where Ay, Aj; C Z%. The system A is described by H1 ® Ha, S1 ® So and
B(H1) ® B(H2) =2 B(H1 ® Hz), where Hq (Hz) are the finite dimensional
Hilbert spaces associated with Ay (Arr), S1 (S2), respective sets of density
matrices, are the spaces of mixed states, B(#H1) (B(H2)), the sets of all
bounded linear operators, are the algebras of observables. Systems with
interactions are described by interaction potentials associated with region A
(A, Apg, respectively). This leads to the corresponding Hamiltonians Hx
(Hya,, Hy,,;) and to Gibbs state

efﬂHA
pPA = m =0,
(p is an invertible operator, i.e. p~ ! exists). In this work we study a concrete
kind of the jump process, i.e. exchange type dynamics. This kind of dynam-
ics is induced by a local symmetry. Consider a symmetry transformation
(local automorphism) % on B(H; ® Hz) such that

P(A)=A for  A€BHi), $*=1.

Note that if dim(H;),dim(Hz) < oo, the above properties imply
Tr((-)) = Tr(-). We shall consider a particular type of symmetries, which
are implemented by exchanges of observables between sites of the spin chain.
Using transformation 1) one can define a projection 7 on B(H; ® Hs) as fol-
lows

1

() = 5

(T+9)().

We observe that 7 is not a morphism. According to the general theory of
semigroups [3]| the dynamic T} induced by the local transformation %) is of
the form

Ti(-) = exp(tL()), (2)
with
L=FEF-1,

where E: B(H1 ® H2) — B(H1 ® Ha) is a generalized conditional expecta-
tion in the Accardi—Cechini sense. Performing calculations similar as in the
appendix of [7] one can show that for the considered dynamics operator F
takes the following form
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E(A) = (y"Ay), (3)

where

1 1
v =p2(1p)" 2. (4)
The presented construction has a straightforward generalization to the
infinite dimensional case, thus, thermodynamic limit can be performed [4,6].
Again, as a result we get uniformly continuous semigroup 7.
Using (2) and a Taylor expansion of T} we can write Cj(‘?p(A, B) as

ng,p(A7B) = <Tt(A)B>p - <AB>p
= ((AB),+t(L(A)B),+...) — (AB),
= t((E(A)B), — (AB),) +...,
in which the remaining terms are of higher order in time. Thus,
CF,(A, B) = (E(A)B), - (AB), (5)

describes dominating changes of the chosen dynamics for short times. In this
work we will examine function C’Q rather than CjQ ,» since it is much more
computationally tractable and also enables us to answer the main question
posed in the introduction.

In order to study concrete physical models we have to deal with con-
crete Gibbs states. In this work we analyze two models that stem from
one dimensional quantum Ising model and one dimensional quantum X X Z
model. In particular we will consider a one-dimensional finite !/-spin chain
with N + 1 sites indexed from 0 to N and the corresponding algebra of
observables generated by

Qo ®...Q0",
where iy, € {0,1,2,3}, k=0,...N, and o7, j = 0,1,2,3 are Pauli matrices.

3. Ising model

Consider the Ising model as described in the previous section. The
Hamiltonian of the system has the form:

N
H = E Aol o
n=1

=) M1®..010°0s°®1®...01, (6)
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where 02 denotes 3™ Pauli matrix (i.e. 03, = 1, 03y = —1, 03y = 03, = 0)
and o3 are localized at sites n — 1 and n. We also assume that the model
is translationally invariant, which implies that A, = A, n = 1,...,N. The
corresponding Gibbs state w is represented by the density matrix

p=7 "exp(-BH), (7)

where Z =Tr(e ) and f is the inverse temperature. Here, Z=cosh’¥ (—)).
Thus, we have

w(A) = Z7 ' Tr(e P A).
We will need the explicit form of the matrix p. Note that
€7’ = cosh(¢) + o - sinh(¢) .
Using the above and the fact that all constituents in (6) commute, we obtain
p=p1p2, (8)
where
pr=1®14+t-00®0})®...0 11+t -on_ | @oN), (9)
pr = 10(1R1+t-02R03)®...0 (1@ 1+t 0% _sR@0%_1) @1, (10)
with ¢t = tanh(—/f), if N is an odd number, and
= 1®1+t-0i@0})®@..0(1R@1+t oy @0y 1)®1, (11)
pr=101R1+t-0iR03)®..0 (1@1+t-ox_ o), (12)

if N is an even number. The subscripts index sites for which Pauli matrices
o? are assigned to.

Having specified regions Ay and A;r and a local symmetry operator 1
as discussed in Section 2, one can calculate an explicit form of generator £
of the dynamics. As an example, let us consider a local transformation 1y,

defined as follows

'Iﬁkl(A1®®Ak®®Al®®AN)
=AI®..AR®R..QA,R...Q AN, (13)
which describes the exchange between the sites. Respective projection 7, is

defined by 74(-) =2 (1+4)(-). In particular, one can choose [ =k-+1 which
is related to a possible description of transport properties in the considered
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model. According to the notation introduced in Section 2, we have that
A={0,1,...,N}, Ay = A\{k,l}, Ar; = {k,l}, while B(H1) and B(H2) are
2N=1_ and 22-dimensional Hilbert spaces, respectively. First, we calculate
an explicit form of the operator y. Without loss of generality we can assume
that k£ is an even number. Then, we note that p; is invariant under ;.
Using this and (4) we get

(Ml

¥ = (202)% (p2 + huap2) 2. (14)

It is an easy observation that v is nontrivial only in sites {k—1, k, k+1, k+2},
i.e. we have

JORNE RN ~ -1
YT=1®...1®(2p2)%(p2 + Yip2) 2 ®1...0 1. (15)

where ps is the restriction of po to the sub-algebra generated by observables
localized in sites {k — 1,k,k + 1,k + 2}. Obviously for £ = 0 we would have
v = (2p2)2 (P2 + Yup2) 2 ®1®...®1, while for k+ 1 = N we would have
7=1®...01® (2,52)%(,52 + ¢kl,52)7%- In the sequel we shall assume that
0<k<N-1. Ifk=0o0r k=N —1, all the subsequent considerations
can be repeated up to the changes pointed out while discussing the explicit
form of v. Moreover, we shall use the symbol 4 denoting the restriction of ~y
to{k—1,...,k+2}, i.e. we have y = 1®4®1. Using (14) and (10) (respe-
ctively (12)), one can obtain an explicit form of 4, which is the following

¥=11191+ P11 P +Peyne R, (16)
where
m=& RhoeP+{ PRk,
T2 = ReP+¢ -PRD,
and
O U C
VIt ’ V1422

Py and P; are the spectral projectors of the Pauli matrix o3, i.e.

(Po)i1 =1, (Po)i2 = (Po)21 = (Po)22 =0,
(P1)22 = ]-a (Pl)ll = (P1)12 = (P1)21 =0.

Now, we are ready to calculate the explicit form of the operator E. Observe
that ¥* =4, ¥ (v1) = y2 and g (y2) = 71. It follows that

Y =101R1Q1+ P 37%2Pi+P 1P, (17)
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Hence, for any A € B(H2),

E(A) = 71 (YA7)

1 1 1
=3 yAY + §¢kl(’$’)¢kl(14)¢kl('7) =3 (1 R (A+9PrA)® 1)
+ % Py® (71A+A71 +y1 Ay +y208(A) + 9 (A)y2 +721/1k1(x4)72> QP

1
+5P® (72A+A72 +y2 A+ 71 r(A) + P (A)m +71¢kz(A)71> ®P,. (18)

One can show using (18) that the quantum correlations coefficient C’? ,(4,B)
(with A € B(Hs), B € B(H;) arbitrary) equals zero for our particular ex-
ample of exchange transformation.

Now, we turn to the general case. We are interested in examining
C’j(‘?’p(A,B) for A € B(Hz2) and B € B(H1). We recall that its nonzero
value is an indication of proper interaction in the system as discussed in the
introduction. In particular, C’? p(A,B) # 0 means that quantum correla-
tions occur between the two parts of the system corresponding to regions
Ay and Aj;. We shall identify operators on B(#H;1) and B(Hs) with their
embeddings into B(H1 ® Hz). We will need the following

Fact 1 Suppose that A, B € B(H1 @ Ho). Let 1) be a symmetry transforma-
tion on B(H1 ® Ha) (i.e. a morphism such that ¥(G) = G for G € B(H;)
and % = 1). Suppose that (A) = —A and ¢(B) = B. Then, we have
Tr(AB) = 0.

Proof. Indeed, since 1) is a morphism and Tr(¢(-)) = Tr(:), one has
Tr(AB) = Tr(¢(AB)) = Te(y(A)¢$(B)) = Tr(=AB) = — Tr(AB).

Hence, Tr(AB) = 0.

Note that any operator A € B(H1 ® Ha) can be represented as a sum
A= A; + A_, where p(A;) = A4 and Y(A_) = —A_ (we have A, =
T(A+9(A)) and A_ = 1(4 —4(A))). Obviously, any operator B € B(H1)
is invariant under %, so By = B, B_ = 0. We will also use another de-
composition of operators from B(H; ® H2). For any A € B(H1 @ Ha) we
have A = A, + A,,, where A. commutes with p, while A,, does not com-
mute with p. This is because each A € B(H; ® Ha) can be written as a
linear combination of simple tensors of the form ¢ ® ... ® o'~ with o
being Pauli matrices, j = 0,1,...,N. Then, A, =3, &0°®...®0;" such
that 7; € {0,3}, 7 =0,1,...,N, and 4, = prpago ®...® op™ such that
p;j € {1,2} for at least one j € {0,1,...,N}.
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Now, we are ready to calculate C’? p(A, B) for the Ising model for any

A € B(Hz) and B € B(Hi1). Note that in case of Ising model any ex-
change transformation 1 such as described in Section 2 satisfies [¢p, p] = 0,
which also implies that v* = «. In particular, operator vy considered
above satisfies this condition. Let A = A, 4+ A, be a decomposition of A
such that A. commutes with p and A, does not commute with p. Each
simple tensor in A, contains at least one Pauli matrix o' or o2 localized
at site belonging to Ar;. This implies that (A4,B), = Tr(p4,B) = 0.
Moreover, all simple tensors in yA,-y must contain at least one matrix with
trace zero, localized at site belonging to Ajy. It follows that

(E(An)B), = Tr(pr(vAnvy)B)
1

= 5 Tr(p(yAwy) B) + % Tr(p(4(vAn7))B)

= 5 Te(prA)B) + 3 Te((0)(vAw)B) = 0.

This proves that A, does not contribute to C’g p(A, B). By similar reasoning

one can show that also B, does not contribute to C’j@ ,(4,B). We have
arrived at the following assertion

Proposition 1 For any A € B(Hz2) and B € B(H1) the quantum correla-
tions coefficient for Ising model is given by the following formula

Cf (A, B) = CF (Ac,B.).
where A, (B.) is the part of A (B) that commutes with p .

By virtue of Proposition 1 we can assume that [A, p] = 0. Then we have

yAy = y*A. Since v = p3(rp)"7 = p3(L(p + ¥p))~7, we have yAy =
p(%(p +1pp)) ' A. This means that

E(A) = 7(vAy)

-1 (%@wm)_lM (4p) (%mwm)_l ). ()

Consider a decomposition of A into symmetric and antisymmetric part
A=A;+ A_. For A, we have (from (19))

-1
E(Ay) = %(p+¢p) (%(Md}p)) Ap=Ay.

It follows that
G2 (A, B) = (B(A;)B), — (A4 B), =0. (20)
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For A_ we have

-1
E(A-) = %(p —p) | 5(p+ wp)) A_=p pilA_.

7 N
N | =

where p = 1(p+4p) and p_ = 3(p — 9p). It follows that
CF (A-,B) = (E(A-)B), = (A_B), = ((E(A-) - A)B),
= THr(p(p—p;l - 1)A—B) = THr((p+ +p-)(p-p3' - 1)A—B)

= Tr(pf —py+ppy - pf)AfB) = Tr(z‘LB(pQ_pll - p+)) :

Now, since B and pQ_pjr1 — p4 are invariant under ¢ we have from Fact 1
that

Cf,(A_,B)=(E(A_)B), - (A_B), =0. (21)

Theorem 1 For any A € B(H2) and B € B(H1), the quantum correlations
coefficient é’jcgp(A, B) for Ising model equals 0.

Proof. See (20) and (21).
The above result shows the classical character of evolution in the Ising
model.

4. X X Z model

Consider the X X Z model as described in Section 2. The Hamiltonian
of the system has the form:

H = —Z(U}L—larlz+Ur21—107%+A073{—102) (22)
N

==Y 19...010 (' ®d' +o’0c’+ A’ ®0*)®1®...01,
n=1

where o7, j = 1,2,3 are Pauli matrices. We recall that A # 1 is responsible
for anisotropy of the model. The corresponding Gibbs state is represented
by the density matrix

p= 7" exp(—BH), (23)

where Z = Tr(e #f) and g is the inverse temperature. Since this model is
much more complicated than the Ising one, we shall use a high-temperature
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expansion, i.e. we will use the approximation exp(—fH) =~ 1 — SH, which
is valid for small 3. Performing necessary calculation, one can obtain the
explicit form of operator v for X X Z model:

p

7=1+Z(1/1H—H)El+f[.

Observe that v* = v and ¢ H = —H. This allows us to get the explicit form
of the generator E of our dynamic. For A € B(Hs) we have

B(A) = S(1+ H)AQL+ H) + 21~ B) (AL~ ), (24)

where A in the above formula is identified with its embedding into the al-
gebra B(H; ® Ha). Leaving out the factors of second order in /3, we can
express F(A) as follows

1

B(4) =3

(A+9(A) + H(A = 9(A) + (A - p(A)H|. (25)

Assume that 9»A = A. Then, we have E(A) = A, which implies (N}’j(‘?p(A, B)

= 0 for any B € B(#H;). Now suppose that $»A = —A. This implies
E(A) = HA + AH. Now, we are in position to calculate C’j(‘?’p(A,B) for
A€ B(Hs), pA=—A and B € B(H1). We have
C7 (4,B) = (E(A)B), — (AB), = Tx(p(E(4) — A)B)

= Tr((1 - BH)(HA+ AH — A)B)

= Tr(HA+AH+BHA)B)—Tr(AB)—Tr(3H(HA+AH)B).

The second term in the above equality equals zero by Fact 1. The first term
can be rewritten in the following form

Tr((HA+ AH + BHA)B)
_ g’l‘r(((Q/JH — H)A+ A(H — H) + 4HA)B)
8 B b

= D T(($H + H)AB) + 5 Te(A(pH + H)B) + 5 Tx((HA — AH)B).

All these terms equal zero; the first and second one by Fact 1 (since ¢ H + H
is invariant under 1) and the last one due to the fact that A commutes
with B. Thus we have obtained

CF (A, B) = —Tx(BH(HA+ AH)B),
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which can be rewritten (using the properties of operator ¢ and A = —A)
as
,32
CP (A,B) =" o T(YH + H)(HA+ AH)B).
Using the decomposition of A into symmetric and antisymmetric part

A=A+ A_, with A, = Ay and YA = —A_ we can summarize our
considerations as follows

Proposition 2 For any A € B(Hz2) and B € B(H1) the quantum correla-
tions coefficient for X X Z model is given by the following formula

Cf (A, B) = 5—2 Tr((pH + H)(HA_ + A_H)B), (26)

where A_ is the antisymmetric part of A.

We observe that CQ (A B) is proportional to 82. Tt is easy to give examples
of observables for Wthh nonzero quantum correlations occur in X X Z model.
Consider the exchange transformation 1 given by (13) (¢f. Section 3) with
I = k+1 (recall that we have A = {0,1,...,N}, A; = A\{k,l}, Arr = {k,1}
in this case). Suppose that A € B(Hs) is such that A = P; ® Py and
B € B(H1), B=Q®N,0, with Op_1 = Py and O; = 1 for j # k — 1.
This pair of observables has a very straightforward physical interpretation
as exchanging of spin directed downwards at k' site with the spin directed
upwards at (k + 1)*" site. Using Proposition 2 one can calculate C’j(‘?’p(A, B)
for our specified A and B. Of course, A = %(Pl ® Py — Py ® Py). Inserting
A_ into (26) and using the explicit form of H we get

,32A2
8 3

CP (A, B) =

which means that nonzero quantum correlations occur for any finite tem-
perature.

5. Conclusions

We studied two particular models of quantum stochastic dynamics, i.e.
the dynamics which can be considered as examples of quantum general-
izations of Glauber dynamics. The first model is exchange type dynamics
which is originated from one dimensional Ising model with nearest neighbor
interactions only while the second model is also exchange type dynamics but
originated from X X Z type Hamiltonian. For both cases we took the initial
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state to be a separable one. In other words, both models have only classical
correlations for time ¢t = 0. In the first model (Section 3) the Hamiltonian
development has a multi-periodic nature for non fixed points (c¢f. [3]). In
that sense, such the Hamiltonian model exhibits a behavior typical for clas-
sical interactions. Our analysis of stochastic quantum Ising dynamics clearly
shows that the transition from that Hamiltonian model to quantum stochas-
tic Ising model preserves the above mentioned property. On the other hand,
it is well known that quantum Hamiltonian X X7 model has much more
interesting propagation than the Ising model. This feature is also reflected
in our analysis of its quantum stochastic generalization (cf. [3]). This can be
taken as a clear indication that generalized conditional expectations, gen-
erating time evolution for that model, contain non-trivial interactions. In
other words, the transition rates defining the Markov evolution and deter-
mined by the corresponding Hamiltonians are correctly designed for X X7
model in the sense that they contain the proper interaction between the
subsystem and its environment. It is worth pointing out that similar re-
sults were obtained for another generalization of Glauber dynamics which
was considered in [8]. Our results gain interest if we realize that the quan-
tum correlations are closely related to entangled states. In other words,
we demonstrated a non-trivial evolution of entanglement for the considered
models. As the analysis of relations between quantum correlations and en-
tanglement is a mathematical question and therefore exceeds the scope of
this paper, it will be discussed in the forthcoming publication.
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