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STATISTICAL THEORY OF NORMAL GRAINGROWTH REVISITED�A. GadomskiInstitute of Mathemati
s and Physi
s, University of Te
hnology and Agri
ultureAl. Kaliskiego 7, 85-796 Bydgosz
z, Polandand J. �u
zkaInstitute of Physi
s, University of SilesiaUniwersyte
ka 4, 40-007 Katowi
e, Poland(Re
eived De
ember 12, 2001)In this paper, we dis
uss three physi
ally relevant problems 
on
erningthe normal grain growth pro
ess.These are: In�nite vs �nite size of thesystem under study (a step towards more realisti
 modeling); 
onditionsof �ne-grained stru
ture formation, with possible appli
ations to thin �lmsand biomembranes, and interesting relations to superplasti
ity of materials;approa
h to log-normality, an ubiquitous natural phenomenon, frequentlyreported in literature. It turns out that all three important points men-tioned are possible to be in
luded in a Mulheran�Harding type behavior ofevolving grains-
ontaining systems that we have studied previously.PACS numbers: 05.40.�a, 64.60.�i, 81.10.Jt1. Introdu
tionNormal grain growth (NGG) is often 
onsidered as a �nal stage of the re-
rystallization pro
ess [1℄, and both the pro
esses belong, a

ording to somephysi
al metallurgy 
lassi�
ation s
heme due to Christian, to the so-
allednu
leation-and-growth phase transformations. Speaking more spe
i�
ally,they represent a 
lass of the heterogeneous phase transformations, i.e. theyare thermally a
tivated, in 
ontrast with some other ones whi
h are not,e.g. the spinodal de
omposition; they are termed, in turn, the homogeneousphase transformations [2, 3℄.� Presented at the XIV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 9�14, 2001.(1131)
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zkaBy performing this study we wish to embark upon three parti
ular tasksthat arose while modeling the grain growth mostly of a normal type. Beforerevealing, however, what we have in mind, let us state expli
itly what dowe mean by the normal grain growth. For this purpose we may rewritea

ordingly a de�nition proposed by Weaire and M
Murry in a review paper[4℄. That somewhat verbal de�nition looks now like [4℄:� the NGG is said to be a steady state of the re
rystallization pro
ess [5℄in whi
h a 
ellular system emerges;� grain boundaries (GBs) do a

umulate a positive surfa
e energy;� GBs perform a kind of motion towards lowering their energy;� the overall grain stru
ture evolves self-similarly with time as to aug-ment grain size.Noti
e by the way that from the above de�nition it immediately followsthat grain growth as well as other related pro
esses, like soap froth forma-tion or evolution of bubbles-
ontaining systems (foams), 
an by modeledby the same means. (There exists, in fa
t, a long-living analogy betweenpoly
rystals and soap froths, whi
h has been invoked in various 
ontexts, 
f.[3℄.)Inspe
ting more 
losely the me
hanism of normal grain growth one no-ti
es its basi
 signatures. They 
an be summarized as follows: The GBs tryto perform a deterministi
 motion towards their 
enters of 
urvature, 
ausedby a pressure di�eren
e (
apillarity), but the motion is somehow perturbedby presen
e of internal topologi
al 
onstraints imposed on the material as agrains-
ontaining system. Thus it is also assumed to be of sto
hasti
 
har-a
ter, i.e. it is subje
ted to internal noise. This is at least a 
ertain pi
tureemerging from pretty 
omplex but, no doubts, readily experimentally sup-ported s
enarios of the grain growth, in parti
ular of a normal type [6℄. Su
ha sto
hasti
 pi
ture is strongly advo
ated by several authors [7,8℄. Anotheralmost equally popular pi
ture 
an be named a statisti
al pi
ture of thepro
ess. It uses (sometimes overuses) a well-established 
on
ept 
alled log-normality, whi
h appears to be a quite ubiquitous feature of a good numberof sto
hasti
 pro
esses met in nature [9, 10℄. It takes into a

ount a lawof proportionate e�e
ts whi
h tells us that any relative 
hange of physi
alquantities, as for example in the grain diameter, is proportional to a randomfra
tion (number), 
f. [11℄ and referen
es therein, or 
an be readily thoughtof as a sto
hasti
 (Wiener) memoryless pro
ess [12℄.As it was already mentioned, in this paper we are going to refer to threequite parti
ular subje
ts, being in our opinion, of prior importan
e whilestudying the NGG phenomenon. The �rst topi
 we would like to 
onsider is



Statisti
al Theory of Normal Grain Growth Revisited 1133going to be a step towards reality in our modeling whi
h is simply a dis
us-sion on possibility of treating our system as 
omposed ex
lusively of grainsof �nite volume. In this way we hope to remove a 
ertain di
hotomy thatappeared while studying the normal grain growth based on the Mulheran�Harding model (M�H) [13℄, see Se
tion 4. This model will be outlined in thenext se
tion (Se
tion 2), and its extension will also be presented (Se
tion 3).Next, we will try to 
onvin
e the reader that some other extension of themodeling of M�H type is worth doing. It is based on the assumption, thatfor 
ertain obvious reasons (robustness) and/or be
ause of some physi
allyjusti�ed 
ir
umstan
es expe
ted (stresses, 
rystallographi
 mis�ts between
ontiguous grains, impurities, defe
ts) there 
ould �rmly appear a situationduring the material growth in whi
h a �ne-grained stru
ture formed will notdisappear, but rather will attain a long period of living 
ir
umstan
es. (Ina te
hnologi
al pro
ess it 
an in prin
iple also be kept in su
h a stage oflong duration, just for obtaining a re�ned material stru
ture.) Therefore,we have to solve �rst a simple deterministi
 model with a 
orre
tion dueto 
urvature towards in
orporating the so-
alled Tolman length [14, 15℄. Itseems reasonable be
ause, as was said above, the NGG pro
ess is a kindof steady state, so that appearan
e of the thermodynami
al quantity takenfrom the equilibrium thermodynami
s rather 
annot make someone disap-pointed. This is thus our address to the se
ond topi
 mentioned above, witha hope on possible future appli
ations to biomembranes, interfa
es and thin�lms whi
h are usually exposed to various strain-stress �elds as well as otherinternal perturbations (for instan
e, pinning) 
ausing enhan
ed 
urvature ef-fe
ts. The above will 
onstitute the body of Se
tion 5. Further, we wouldlike to address our third task. Namely, we wish to make a 
onstru
tive 
om-parison between the M�H type of modeling that we have presented quitere
ently [16℄, and the statisti
al models by Kurtz�Carpay and Pandè lead-ing to log-normal behavior [9, 10℄, 
f. Se
tion 6. In this se
tion we will alsounders
ore the fa
t that the log-normal solutions are solutions 
hara
teristi
for the geometri
 Brownian motion [12℄. A 
on
luding address (Se
tion 7)will be the last main se
tion of the present paper.2. Mulheran�Harding model: A short overviewThe M�H model [13℄ is a sort of a Random Walk (RW)-like model wherethe RW is to be realized with a random �jump� that is not done in a positionspa
e but rather in the spa
e of grain sizes [16℄. Thus, it des
ribes the size-and time-dependent rearrangement of a poly
rystalline system by means ofthe following evolution equation [16℄
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zka��tf(v; t) = D �2�v2 v�f(v; t) = � ��v j(v; t); v 2 [0;1); (1)where v is the volume of a grain, D is a 
onstant re�e
ting a RW behavior ingrain growth, to be named a di�usion-migration referen
e 
onstant, f(v; t)is the distribution fun
tion of grains at time t (having the meaning of thenumber density), i.e., f(v; t)dv is a relative number of grains of size in thevolume range [v; v + dv℄ and the parameter � depends on dimension of thesystem, and reads [16℄ � = 1� 1d (2)for systems of dimension d; noti
e that for d = 1 one provides � = 0, so thatit is hoped that the approximation invented does work e�e
tively for d > 1,and in this work is 
on�ned to d-s being of integer value. The parameter �re�e
ts the fa
t that the net �ux of the parti
les wandering a
ross the grainboundaries is proportional to the area of the surfa
e s / v2=3 of grains ofvolume v (for three-dimensional systems), and to the length l / s1=2 of the
ir
umferen
e of 
rystallites of area s [13, 16℄ for two-dimensional systems.Moreover, note that for f(v; t) no normalization 
ondition holds, so thatit is not a probability density fun
tion whi
h is in turn the 
ase of the
onventional RW realized in a position spa
e. The �ux j(v; t) in Eq. (1), 
f.(1), is rewritten as [16℄j(v; t) = �D�v��1f(v; t)�Dv� ��v f(v; t); (3)whi
h means that it is de
omposed into two parts. These are respe
tively:The drift and the di�usion terms. Let us realize that the deterministi
drift term is proportional to 
urvature 1=R of the grains, where R is thegrain radius. It is so indeed be
ause it is proportional to v�1=d, but 
learlyv is proportional to Rd. Certainly, after Kelvin, Young and Lapla
e the
urvature-driven part is proportional to the surfa
e tension asso
iated with aGB [3℄. The di�usional term, in turn, takes the form of the phenomenologi
al1st Fi
k's law, with an appropriate modi�
ation, however, namely that the�ux is proportional to the area of a grain. In other words, grains 
hangetheir volume by gaining or losing atoms (mole
ules; simply, entities) andthe rate of atta
hment/deta
hment is 
losely related to the grain surfa
emagnitude and to the gradient of the density fun
tion f(v; t).As to solve Eq.(1) we have to 
omplete (1) by suitable initial and bound-ary 
onditions (IBCs). These are [13, 16℄:



Statisti
al Theory of Normal Grain Growth Revisited 1135(A) The initial 
ondition (IC),f(v; t = 0) = f0(v); (4)where f0(v) is a given initial distribution of grains.(B) The boundary 
onditions (BCs),f(v = 0; t) = 0 f(v =1; t) = 0: (5)The physi
al interpretation of the boundary 
onditions makes no furtherhesitation: The number of grains of zero volume v = 0 as well as of in�nitevolume v = 1 equal zero at any time. The latter is often anti
ipated tobe a landmark of the NGG phenomenon [5℄. Some violation of the BCs inturn 
auses to 
lassify a pro
ess under 
onsideration to be anomalous orabnormal, so that for su
h a reason we may also speak of an anomalousgrain growth (AGG), just in 
ontrast with the NGG.The goal of this se
tion as well as of the subsequent se
tions is not toprovide the reader with both the method of solution as well as the mainresults obtained for the evaluated physi
al quantities of interest. They 
anbe found elsewhere [16, 17℄. We may summarize here the main �ndings
on
erning (1)�(5):(i) In the long-time limit, kineti
s of the pro
ess under 
onsideration de-pend very weakly on the IC applied.(ii) The prin
ipal physi
al quantities (inferred from the 
entral statisti
almoments of the pro
ess): The number of grains, n(t), as well as themean grain radius, rmn � rmn(t), follow a power-like time asymptoti
s,inverse and dire
t, respe
tively; this is also the 
ase of the �u
tuations,�mn2 � �mn2(t), around the mean grain size (dire
t power law timeasymptoti
s).(iii) The total hypervolume V (t) of the system, evaluated from the �rst
entral moment of the statisti
al pro
ess under study is 
onserved;note that it automati
ally imposes a question about possibility of at-taining an arbitrary large value of the volume v of the individual grainwhereas the total volume of the material, being just at a time instantt 
hosen the sum of n(t) single volumes, is the same as at time t = 0.(iv) The formal solution to the problem 
an be re
ast by using the operatormethod, utilizing a separation ansatz as well as solving an ordinarydi�erential equation of Bessel type, 
f. [17℄ and refs. therein.
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zka3. Extensions of the Mulheran�Harding modelLet us now think of a 
lear and physi
ally reasonable di�erentiation ofthe terms involved in the �ux j(v; t). Thus, let us postulate an extension ofEq. (3), namely, j(v; t) = �F (v)f(v; t)�Dv� ��v f(v; t); (6)where F (v) is a deterministi
 part whi
h takes into a

ount various me
ha-nisms of the growth pro
ess. The simplest extension isj(v; t) = ��v��1f(v; t)�Dv� ��v f(v; t); (7)where now � and D 
an be independent parameters. It means that thesurfa
e tension me
hanism of growth is independent of the me
hanism ofthe migration of parti
les through boundaries of grains.One 
an take into a

ount the 
urvature e�e
t on the surfa
e tension[18�20℄. Then the next extension readsj(v; t) = �[�v��1 + 
v2(��1)℄f(v; t)�Dv� ��v f(v; t); (8)where the term with the parameter 
 des
ribes the Tolman 
urvature 
or-re
tion 1=R2 [14℄.Clearly, by doing so we want to tell the reader that the two above inprin
iple 
on
urrent pro
esses (
onve
tional and di�usional) ought to berealized with di�erent dynami
s. A re�e
tion of this fa
t we see is justto introdu
e the above independen
e among various parameters. We areof the opinion that su
h an extension given by assuming expli
itly thatF (v) = �v��1+
v2(��1) 
an also be anti
ipated as a reasonable step towardsproposing a 
omprehensive statisti
al theory of the formation of superplasti
materials, see Se
tion 7. As is known, superplasti
ity is a physi
o
hemi
alphenomenon readily promoted by a mi
ro
rystalline stru
ture, i.e. up toa 
ertain rather small grain size, and manifested truly in high temperaturelimit, but these are by the way basi
 assumptions of our modeling.A 
ertain quite important underlying physi
s whi
h stays behind thequadrati
 
orre
tion in 
urvature due to Tolman, in spite of being valid for
rystals of su�
iently small size rather, is inevitably and above all 
onne
tedwith sign of the parameter 
, 
f. Eq. (8). As 
an be learned from [20℄ when
 > 0 one may solely expe
t some additional enhan
ement of the growthrate, form the one hand, but also a symmetry breaking between the interiorsand exteriors of the grains enters, on the other, what 
an be a meaningful



Statisti
al Theory of Normal Grain Growth Revisited 1137elu
idation of the 
rystallographi
 mis�ts, or di�erent 
rystallographi
 mis-orientations between a grain and its very surroundings [3,5,7℄. When 
 < 0,in turn, one may expe
t that a very small solid 
rystal will be going to meltba
k, so that a problem of unstable bubble-like nu
leus appears [20℄. Thissituation will, however, dis
ourage a formation of tough �ne-grained (su-perplasti
) poly
rystals in the modeling proposed, so that will be of minorimportan
e from pra
ti
al viewpoint. From [20℄ it follows as well that somehigher order terms, like K3 and/or the Lapla
ian of K (smoothening outthe surfa
e tension e�e
ts), 
an be omitted sin
e they spe
i�
ally des
ribe�ngered or dendriti
 growth, whi
h are by the way not the growing pro
essesunder study. 4. Volume aspe
tsAs is seen from point (iii) of Se
tion 2, it would be useful to 
onsiderthe model of NGG in whi
h presen
e of an arbitrary large volume v of theindividual grain is forbidden, 
ontrary to what we may �nd in [13℄ or in ourformer studies [16,17℄. It is worth inventing sin
e it 
ould have been a quitelarge step towards a more realisti
 NGG-modeling, a type of modeling whi
his still of very pra
ti
al importan
e in many te
hnologi
al pro
esses [3,5�7℄.It is obvious that the volume v of the individual grain 
annot be larger thanthe total volume of the material. It means that the phase spa
e in (1) isnot the unbounded spa
e 
1 = fv : v 2 [0;1)g but should be repla
edby the bounded spa
e 
V0 = fv : v 2 [0; V0℄g, where V0 < 1 is a maximalvolume of the individual grain. In other words, we will be willing to repla
ethe se
ond BC from (5) by the following onef(v = V0; t) = 0; (9)where V0 
annot ex
eed the value of the total volume of the material V �V (t) [16℄, 0 < V0 � V (t) < 1. It 
an be inferred from the relation for thetotal volume of all grains, namely,V (t) = V0Z0 vf(v; t) dv: (10)and not from the very analogous but improper integral of the same kind [17℄.There is a serious di�eren
e between unbounded 
1 and bounded 
V0phase spa
es of the system. As was shown in our previous studies [16℄,in the former 
ase the spe
trum of the 
orresponding eigenvalue-problem is
ontinuous and takes positive values. In the 
ase of the bounded phase spa
e,the spe
trum is dis
rete and also positive [21℄. For the model (1) with (7),
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zkathe spe
trum 
an be found expli
itly and the eigenvalues are proportionalto the square of the positive zeros of the Bessel fun
tion J�(x) [21℄.In the M�H model, the total volume V (t) is 
onserved. It 
an easily beshown by use of the evolution equation (1). Let us 
onsider this problem inthe 
ase (8) 
al
ulating the time-derivativedV (t)dt = V0Z0 v ��tf(v; t) dv: (11)We substitute the right-hand side of (1) with the �ux (8), integrate by partsand obtaindV (t)dt = Dv�+1 �f(v; t)�v ���V00 + (�D � �)F1(t)� 
F2(t); (12)where F1(t) = hv��1it = V0Z0 v��1f(v; t) dv (13)and F2(t) = hv2(��1)it = V0Z0 v2(��1)f(v; t) dv (14)are �negative fra
tional statisti
al moments� in the volume spa
e. If thephase spa
e is unbounded then the �rst term on the right-hand side of for-mula (12) is equal to zero. For the bounded phase spa
e, it need not bezero.We 
an 
hange the integration variable v ! R using the relation v =BRd, where the 
onstant B > 0 is a geometri
al fa
tor whi
h takes intoa

ount the shape of grains. ThenF1(t) / R0Z0 Rd�2�(R; t) dR (15)and F2(t) / R0Z0 Rd�3�(R; t) dR; (16)



Statisti
al Theory of Normal Grain Growth Revisited 1139where �(R; t) = f(v = BRd; t) and R0 is determined by the relation V0 =BRd0. It is obvious that these two integrals exist for the 
ase d = 3. For the
ase d = 2, the �rst integral exists as well. The only problem 
an 
on
ernthe se
ond integral for d = 2 be
ause then Rd�3 = R�1 and the integral 
andiverge. However, be
ause of the �rst boundary 
ondition in (5), for smallv the distribution fun
tion f(v; t) � v" and " > 0. Hen
e, �(R; t) � R2"for small R and R�1�(R; t) � R�1+2". Su
h a fun
tion is integrable inthe neighborhood of zero and in 
onsequen
e the integral 
onverges. More-over, the fun
tions F1(t) > 0 and F2(t) > 0 sin
e these are integrals ofnon-negative fun
tions. For the unbounded phase spa
e and for 
 = 0, thetotal volume of the spe
imen in
reases in time if �D > � and de
reases if�D < �. For the M�H model, �D = � and this is why the total volume is
onserved, V (t) = V (0). If we add the 
urvature-
orre
ted term, i.e. 
 6= 0,the total volume 
an be non-monotoni
 fun
tion of time. For the boundedphase spa
e, 
V0 , the volume 
onservation problem is mu
h more 
ompli-
ated be
ause �f(v; t)=�v jv=V0 
an be di�erent from zero (
an be negative).Nevertheless, also in this 
ase V (t) 
an be a non-monotoni
 fun
tion of time.Physi
ally, it means that the just re
ognized features 
an be anti
ipated assome �rst signatures of a plasti
 (non
onservative) behavior of the modelmaterial under study.5. Curvature 
orre
tions as a step towardssuperplasti
 behavior of materialVolumetri
 aspe
ts 
onsidered thoroughly in Se
tion 4 led to the 
on-
lusion that for the phase spa
e 
V0 (i) the overall volume of the system
annot be 
onserved (in general); (ii) the total volume 
an also 
hange in
ourse of time, whi
h means that the material 
an expand or shrink duringthe formation of a poly
rystal (or a foam, see remarks in Se
tion 1, and adis
ussion after Eqs (8) and (11) in Se
tions 3 and 4, respe
tively). Su
h abehavior 
an be re
ognized as a signature of plasti
 deformation of a body,too. To guarantee somehow, in the framework of our modeling, however, asuperplasti
 end produ
t, we have to assure a bit more: We should �nd apossibility for evolution of the �ne-grained stru
ture just mentioned in thepre
eding se
tions. Let us then develop our argumentation beneath in asystemati
 way.A key point of our 
onsiderations here will be some exploration of theGB motion towards its 
enter of 
urvature with a speed proportional tothe 
urvature what is inherently involved in the modeling of M�H type[22, 24℄. Let us then start from Eq. (7) but drop for a while the se
onddi�usive term by requiring D = 0. Applying the reasoning 
oming afterEq. (3) (a

epting formally for the moment that � = �D), and utilizing an
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ient approximation that j(v; t) = vgr � f(v; t), for the velo
ity of thegrain boundary, one gets immediatelyvgr = dRdt / 1R (17)for an arbitrary grain radius R. Noti
e that the formula (17) is also pre-sented by Mullins in his paper on two-dimensional motion of idealized GBsas well as in a sto
hasti
 modeling of grain growth by Pandè, where theso-
alled internal noise, designated there by T is equal to zero, that meansin deterministi
 
ase (though unfortunately taken from Hillert with negativeprefa
tor pre
eding the term proportional to 1=R) [8℄. If we go further andwish to 
ompare the model by Pandè with ours we have to a

ept that theyare well 
omparable in the sense that the role of Pandè's internal topologi
alnoise, T , is played in our model by the Fi
kian di�usive term, denoted byjD(v; t) jD(v; t) = �Dv� ��v f(v; t); (18)whi
h su�ers also a kind of topologi
al 
onstraints by having in
orporatedthe prefa
torDv� whi
h is proportional to Rd�1, and whi
h re�e
ts somehowa surfa
e e�e
t, see Se
tion 2.Let us 
ontinue along this line and ask a question 
on
erning the 
urvature-driven motion of an arbitrary GB: Is there really so that under all possiblephysi
al 
ir
umstan
es met (or, expe
ted) a GB is only driven by the mag-nitude of its 
urvature, K? In other words: Must the pressure di�eren
e,expanded in K, be wren
hed o� on the �rst linear term, presumed thatthe pressure di�eren
e �P is the main driving for
e for the material ex-
hange between two 
ontiguous 
rystallites (obje
ts)? Certainly, it doesnot [18, 20℄. We 
laim, for instan
e, that under 
ertain more subtle 
ir
um-stan
es (a

ount of �uidity; softness; strain-stress suitable 
ontext; surfa
etension mole
ular weight dependen
e of GBs in ma
romole
ular poly
rys-tals [23℄; pinning; spe
i�
 intera
tions due to existen
e of 
rystallographi
mis�ts between 
ontiguous grains, and so on) one has to expand �P likethat [15℄ �P = �R � 
R2 + :::�; (19)where � = 2�0, and 
 = 2�0Æ0, 
f. Eq. (8), and where �0 and Æ0 stand forthe surfa
e tension of the planar GB surfa
e (pra
ti
ally, for a very largegrain) and for the Tolman length [15℄ (see below), respe
tively. We thuspostulate the me
hanism likevgr = dRdt = q�1�P; (20)



Statisti
al Theory of Normal Grain Growth Revisited 1141where q serves for adjustment of the physi
al units in the above equation,having, however, the meaning of the �ux passing through a GB unit surfa
e.The solution to Eq. (20) is given in an impli
it form12hR2(t)�R2(0)i+ Æ0hR(t)�R(0)i+ Æ02 ln R(t)R(0) = 2�0q t: (21)Somebody would like to pose another question: Why do we insist onsolving this parti
ularly simple deterministi
 model with the �rst 
orre
tionto 
urvature K � 1=R? We do answer this question by saying that wehave solved su
h an auxiliary model just to get an intuition whether isthis reasonable to in
lude su
h a 
orre
tion of K2 in our main statisti
al-physi
al model of M�H type. So, we may now response that by looking atthe Eq. (21) we see some 
han
es mostly for the se
ond term of the left-handside of it just to survive, see our dis
ussion on superplasti
ity above and inSe
tion 7. Therefore, it 
ould be worth doing, but the expli
it integrationof the problem meets serious te
hni
al di�
ulties and up to now remainsunsolved.Let us, however, 
omment a bit more on Eq. (21) and its relations toknown models [3, 8, 9℄.First, let us state expli
itly that the 
orre
tion of K2 
auses appearan
eof two additional terms in the solution, whi
h in absen
e of su
h a 
orre
tionreads R2(t)�R2(0) / t: (22)The two additional terms are: The term expressed by Æ0[R(t)�R(0)℄ and thelogarithmi
 term. Starting from the latter we wish to say only that the loga-rithmi
 term often appears to be relevant either in an early stage of growingpro
ess or in low-temperature regime. (We may 
onsider both the regimesto be of a 
ertain relevan
e for us [25℄, though the low-temperature behavioris of no spe
ial interest when embarking readily on superplasti
ity.) Se
ond,the Tolman length Æ0 whi
h is involved in Æ0[R(t) � R(0)℄, and also in thelogarithmi
 term mentioned, is an interesting statisti
al-thermodynami
alparameter per se. It reads [14, 15℄Æ0 = �kC0�0 ; (23)where �0, to be expe
ted quite small for superplasti
 poly
rystals, is de�nedabove and k is the rigidity 
onstant for bending (being generally of moder-ate value), proportional to the so-
alled Gaussian 
urvature [26℄, while C0,being either of positive or negative sign [18℄, and to be expe
ted quite largefor superplasti
 poly
rystals, stands for the spontaneous 
urvature, respe
-tively. Now, it is 
lear why we enjoy the presen
e of the middle term in
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zkathe left-hand side of Eq. (21). It should be also visible why we assign the
ontext to biomembranes, interfa
es as well as thin layers intera
ting withtheir solid supports [3,7,26℄. (By the way, noti
e here that our treatment ofpoly
rystals by su
h means is not in a very distin
tion with treating drop-wise 
ondensation, for example [15, 28℄. This makes thus another possible
omparison: We 
annot ex
lusively 
ompare poly
rystals and bubbles [4℄but also there should appear a 
omparison between the poly
rystals and thedroplets.)Completing the material of this se
tion we wish to state only that in-
orporation of the se
ond term (K2) should 
ertainly 
hange the overallsystem behavior investigated in the framework of our statisti
al-physi
almodel proposed. Su
h a 
hange will probably be manifested both in theinitial stages of the evolution as well as for a low-temperature regime whi
halways gives a distin
t resistan
e to growth [3, 7, 17℄. Generally speaking,su
h a behavior 
an be possible to rationalize when poly
rystals manifestslow or very slow dynami
s, 
omparable to that 
hara
teristi
 for 
erami
s(relaxer materials) or glasses, the dynami
s of whi
h shows up a Gaussianlogarithmi
 behavior [29℄, 
f. the next se
tion. If we negle
t, however, thejust anti
ipated presen
e of possible low-temperature limit we 
ome ba
k tothe mentioned tenden
y towards superplasti
ity of poly
rystalline as well asbubbles-
ontaining model bodies.Finishing this se
tion in 
omparative manner let us try to foresee thatso as the internal noise term T introdu
ed in Pandè's model, together withan additional fa
tor standing on the left-hand side of kineti
 equation (pro-portional to R� , i.e. going to mimi
 the surfa
e area term) would and does
hange the overall kineti
 but asymptoti
 
hara
teristi
s, like rmn vs t in away [8℄ rmn � t1=(2+�) (24)with some �, where � � 0, so does our di�usive term whi
h appears in thematerial �ux (8). Moreover, noti
e that for � = 0 the di�usive solution(22) 
an be re
overed, but otherwise one gets non-di�usive solutions. Note,however, that in Se
tion 2 of [8℄ (
f. Eq. (17)) another misprint appearswhi
h is now 
orre
ted by (24) given above. Interestingly that the modelproposed by Pandè [8℄ 
onforms well to ours when in Eq. (24)� = d� 1; (25)i.e. � is d-dependent [27℄. For d = 1 one re
overs again a 
hara
teristi
di�usive behavior, or in other words, the M�H behavior in d = 1, �rstexplained by Louat [32℄. For d > 1 one provides other non-di�usive 
ases asfor example the so-
alled Ostwald ripening mentioned in [7,8℄ to be obtainedformally for d = 2 [28℄.
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al Theory of Normal Grain Growth Revisited 11436. Log-normalityAfter a very thorough study by Kurtz and Carpay [9℄ some doubts aboutappearan
e of a log-normal distribution of the grain sizes in a poly
rystallinematerial have probably been thrown away, but again some renewed doubtsappeared about eight years later [10℄, and 
on
erned with other very ex-a
t �ts to experimentally got distributions of 
rystallites. Before, however,looking more 
losely into the material just signalized above, let us de�ne thesubje
t in question, that means the log-normality.The origin of log-normality in grain growth, possibly of normal type,
an quantitatively be explained in the following. Namely, let us take a
ontinuous pi
ture and assume that a grain is lo
ated in su�
iently hightopologi
al 
lass, i.e. it is 
onsidered to be large enough, 
f. [9℄. This meansthat it is able to augment its volume and/or surfa
e area, designated by A(t),just at the expense of the 
ontents of its neighbors. (Note that, in general,there is nothing against dealing with A as the area of a (d� 1)-dimensionalhypersurfa
e of d-dimensional hypervolume.) A probably most natural wayof re�e
ting this fa
t is to write down a deterministi
 equation responsiblefor the growing pro
ess, with a 
hange dA(t) proportional to the magnitudeof A(t), namely dA(t) = �aA(t)dt; (26)whi
h shows an exponentially fast growth with a drift 
onstant equal to �a.In language of dis
rete pro
esses one has to see that a me
hanism stayingunavoidably behind the exponential (natural and perennially alive) growthmay readily look like A(t) = A(0)�1 + �atn �n (27)what for n!1 yields a solution in the formA(t) = A(0) exp(�at); (28)whi
h is formally a solution to Eq. (26). But life would be very simple ifthe above s
enario happened to a real pro
ess like for example formationof poly
rystals, whi
h su�ers a su�
ient a

ount of the internal topologi
alnoise, T , 
f. [7, 8℄.As to a
hieve a formal des
ription mu
h 
loser to experimental reality[3, 5, 6℄, one has to 
omplete Eq. (26) by some additional term, possibly ofnoisy 
hara
ter [7℄. It is thoroughly proposed [12℄ to make it by addinga kind of memoryless Markov pro
ess 
alled the Wiener pro
ess W (t) [30℄
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zkawhi
h would a

ount for random 
hanges of the surfa
e area magnitude A(t).Now, the suitable equation looks likedA(t) = �aA(t)dt + �aA(t)dW (t); (29)where �a measures the surfa
e area �u
tuations. This is a sto
hasti
 equa-tion given in the Ito representation [12, 30℄, and it is equivalent to [12℄d ln[A(t)℄ = [�a � (�a2=2)℄dt+ �adW (t): (30)In the above equation a signature of logarithmi
 behavior appears for the�rst time, in spite of that trivial mathemati
al solution whi
h 
omes bysolving Eq. (26), see Eq. (28).Knowing the Fokker�Plan
k equation, 
orresponding to (29), it is alsopossible to 
al
ulate the transition probability from a state (A0; t0) to (A; t),denoted by p(A; t j A0; t0) whi
h reads [12℄p(A; t j A0; t0) = [2�(�aA)2(t�t0)℄�1=2�expn�ln(A=A0)�(�a�(�a2=2))(t � t0)�2 =2�a2(t� t0)o :(31)The 
orresponding mean value �A and the varian
e �a2 read [12℄�A = A0 exp[�a(t� t0)℄; �a2 = (A0)2 exp[2�a(t� t0)℄[exp[�a2(t� t0)℄� 1℄:(32)From Eq. (32) it follows that both �A and �a2 grow nonlinearly (exponen-tially) with time t. This is somehow 
omparable with another our model [31℄whi
h is based, however, on slightly di�erent physi
al foundations (no pro-noun
ed role of surfa
e tension was assumed) [16℄ and in whi
h for instan
ethe total hypervolume is not 
onserved, 
f. Eq. (32), and the quantity �Ade�ned in there. (Be
ause the model served to des
ribe a re
rystallization(Re) pro
ess [31℄, for the purpose of the present work we will 
all it theRe-model.) It looks also like our present 
ase, modeled in the �nite phasespa
e, sin
e, as is mentioned in Se
tion 4, the total volume (or, hypervolume)
annot be readily 
onserved.It 
ould then be argued that the just dis
ussed log-normality-based modeldi�ers from both the models before studied by us [17,31℄, though it remains
lose, and as expe
ted, 
an reprodu
e the main landmark of both the mod-els mentioned, but thoroughly studied in the in�nite phase spa
e, namelywhether the total hypervolume is 
onserved or not. Namely, for �a ! 0 oneprovides that A ! A(0) = 
onst (A � A(t)), what is very 
hara
teristi
 of
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al Theory of Normal Grain Growth Revisited 1145the NGG-model, whereas for �a � 1, one expands exp(�az) ' 1 + �az forsmall z, and then one 
an reprodu
e a linear-in-time growth of the hyper-volume for the Re-model but in the limit of d ! 1, i.e. more pronoun
edfor high-dimensional Eu
lidean spa
es [31℄. In su
h a limit �u
tuations �mn2involved in the NGG [16℄, 
f. Se
tion 2, 
oin
ide well with �a2 stated in(32), but still while taking another limit �a ! 0, as already performedabove. Summing up, let us re
all that there are both di�eren
es as wellas quite striking similarities between the log-normality-based grain growthmodel [3,10,33℄ and both the invoked models studied previously [17℄, so thatthere is pra
ti
ally no 
han
e to get the NGG-behavior (or, Re-behavior)outside the limits just mentioned. It may lead to a 
on
lusion that thelog-normal behavior is a typi
al non-steady state behavior [28℄, and wouldserve better to des
ribe an abnormal growth (see Se
tion 1), or perhaps areal re
rystallization pro
ess [1,2,5�7℄. Moreover, the un
onserved total vol-ume appearing in the modeling performed in the spa
e 
V0 suits better tolog-normal 
hara
teristi
s �A and �a2.7. Con
luding addressIn our previous studies [16,17℄ we have as
ertained more or less that (i)the in�uen
e of the initial 
ondition may sometimes be more pronoun
ed, 
f.the initial state in the form of a Weibull fun
tion of v [16℄, f0(v), whi
h favorssome possible appli
ation of the proposed modeling, mostly towards design-ing a �ne-grained material; (ii) if the total volume of the system does notremain 
onserved, one may expe
t abnormalities, and an AGG-phenomenoninstead of the NGG 
an o

ur. A propheti
 meaning of the latter has quiteexhaustively been proved in Se
tion 4, dealing with volume aspe
ts. The for-mer, in turn, has been explored in su�
ient detail in Se
tion 3 and mainlyin Se
tion 5, showing an interesting physi
al 
onsequen
e of our modeling,whi
h one may see as some 
onsideration on how to form a model �ne-grained(superplasti
) material [34℄, with a 
ertain attra
tive theoreti
al possibilityof modeling superplasti
 behavior of 
erami
 nano
rystals, intermetalli
s,metalli
 alloys and poly
rystals [34℄.It would be instru
tive to o�er a reader some thought experiment inter-
onne
ting the (kineti
) �nal result of our modeling, i.e. the mean grainradius [16,27℄, rmn, 
f. Eqs (24)�(25), taken 
ertainly for large enough timeinstants, t � 1, and the stress magnitude, designated by �HP, where somepresen
e of an internal �HP in the material seems unquestionable [35, 36℄.Namely, let us 
onsider a Hall�Pet
h (H�P) relation of both dire
t and in-verse types [34, 35℄ �HP / (2rmn)�; (33)where � 
an be a measurable exponent [34,35℄ of negative (dire
t H�P: low
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zkatemperature non-superplasti
 regime) or positive (inverse H�P: high tem-perature superplasti
 regime) values. We see then that for the superplasti
behavior to o

ur we need to have small enough grain radius and not toosmall temperature of the pro
ess (to assure respe
tive �uidity of the mate-rial), that means under, in some sense, extra-
onditions to be a
hieved. Forthe non-superplasti
ity, in turn, one 
annot go below a 
ertain quite largegrain radius value, not forgetting, however, that any variation in tempera-ture towards higher values is undesirable, 
f. Se
tion 5. Moreover, one hasto take really 
are about the possible variations in total volume (see, [27℄)of the material under study (Se
tion 4), and the boundary 
onditions as awhole [37℄, not avoiding if possible statisti
s based on 
ounting the frequen
yof appearan
e/disappearan
e of grains of a 
ertain size, and how they 
on-form to the model log-normal pattern, see Se
tion 6. By the way, someoneshould not feel embarrassed to think over the log-normal behavior as a kindof Brownian motion, 
alled the geometri
 Brownian motion [12℄, where thesurfa
e magnitude is the major geometri
 
onstraint and/or kineti
 obsta
le,see Se
tions 2�3, be
ause it is just in the spirit of the presented study.In a �nal word, let us go ba
k to relation (33), whi
h after 
ombining itwith Eqs (24) and (25) reads for a su�
iently large pro
essing time �p�HP / �p�=(2+�): (34)From the above it 
an be seen why the poly
rystalline material (or a foameven) is strengthening in very mature stages of the grain growth (� > 0,�HP grows with �p), whereas it is going to weaken when � < 0 be
ause�HP de
reases with �p, whi
h means that a brittle stru
ture emerges, see[35℄. This �nal 
on
lusion should justify internal robustness of the �ne-grained and non-brittle superplasti
 stru
ture under examination. Moreover,this robustness depends upon the geometri
al dimension d, in the sensethat Eq. (25) holds. Noti
e that relation (34) is often re
ognized to be amanifestation of anomalous relaxation behavior of the system, driven byfra
tional dynami
s, 
f. [35, 38℄, and referen
es therein, and re
all Eqs (13)and (14) in Se
tion 4. This kind of relaxation 
onforms also very mu
h toa relaxation me
hanism whi
h pro
eeds e�e
tively via the GBs as well astheir jun
tions, being important a

umulation spots for the stress �eld. It
an be seen as a thorough manifestation of dispersive kineti
s in 
ondensedmedia [39℄.The authors wish to dedi
ate this paper to the memory of ProfessorAndrzej Pªonka, whose invaluable insight into dispersive kineti
s in 
on-densed matter systems has stimulated enormously our studies on nu
leationand growth and related phenomena dis
ussed throughout the paper.
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