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STATISTICAL THEORY OF NORMAL GRAINGROWTH REVISITED�A. GadomskiInstitute of Mathematis and Physis, University of Tehnology and AgriultureAl. Kaliskiego 7, 85-796 Bydgoszz, Polandand J. �uzkaInstitute of Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, Poland(Reeived Deember 12, 2001)In this paper, we disuss three physially relevant problems onerningthe normal grain growth proess.These are: In�nite vs �nite size of thesystem under study (a step towards more realisti modeling); onditionsof �ne-grained struture formation, with possible appliations to thin �lmsand biomembranes, and interesting relations to superplastiity of materials;approah to log-normality, an ubiquitous natural phenomenon, frequentlyreported in literature. It turns out that all three important points men-tioned are possible to be inluded in a Mulheran�Harding type behavior ofevolving grains-ontaining systems that we have studied previously.PACS numbers: 05.40.�a, 64.60.�i, 81.10.Jt1. IntrodutionNormal grain growth (NGG) is often onsidered as a �nal stage of the re-rystallization proess [1℄, and both the proesses belong, aording to somephysial metallurgy lassi�ation sheme due to Christian, to the so-allednuleation-and-growth phase transformations. Speaking more spei�ally,they represent a lass of the heterogeneous phase transformations, i.e. theyare thermally ativated, in ontrast with some other ones whih are not,e.g. the spinodal deomposition; they are termed, in turn, the homogeneousphase transformations [2, 3℄.� Presented at the XIV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 9�14, 2001.(1131)



1132 A. Gadomski, J. �uzkaBy performing this study we wish to embark upon three partiular tasksthat arose while modeling the grain growth mostly of a normal type. Beforerevealing, however, what we have in mind, let us state expliitly what dowe mean by the normal grain growth. For this purpose we may rewriteaordingly a de�nition proposed by Weaire and MMurry in a review paper[4℄. That somewhat verbal de�nition looks now like [4℄:� the NGG is said to be a steady state of the rerystallization proess [5℄in whih a ellular system emerges;� grain boundaries (GBs) do aumulate a positive surfae energy;� GBs perform a kind of motion towards lowering their energy;� the overall grain struture evolves self-similarly with time as to aug-ment grain size.Notie by the way that from the above de�nition it immediately followsthat grain growth as well as other related proesses, like soap froth forma-tion or evolution of bubbles-ontaining systems (foams), an by modeledby the same means. (There exists, in fat, a long-living analogy betweenpolyrystals and soap froths, whih has been invoked in various ontexts, f.[3℄.)Inspeting more losely the mehanism of normal grain growth one no-ties its basi signatures. They an be summarized as follows: The GBs tryto perform a deterministi motion towards their enters of urvature, ausedby a pressure di�erene (apillarity), but the motion is somehow perturbedby presene of internal topologial onstraints imposed on the material as agrains-ontaining system. Thus it is also assumed to be of stohasti har-ater, i.e. it is subjeted to internal noise. This is at least a ertain pitureemerging from pretty omplex but, no doubts, readily experimentally sup-ported senarios of the grain growth, in partiular of a normal type [6℄. Suha stohasti piture is strongly advoated by several authors [7,8℄. Anotheralmost equally popular piture an be named a statistial piture of theproess. It uses (sometimes overuses) a well-established onept alled log-normality, whih appears to be a quite ubiquitous feature of a good numberof stohasti proesses met in nature [9, 10℄. It takes into aount a lawof proportionate e�ets whih tells us that any relative hange of physialquantities, as for example in the grain diameter, is proportional to a randomfration (number), f. [11℄ and referenes therein, or an be readily thoughtof as a stohasti (Wiener) memoryless proess [12℄.As it was already mentioned, in this paper we are going to refer to threequite partiular subjets, being in our opinion, of prior importane whilestudying the NGG phenomenon. The �rst topi we would like to onsider is



Statistial Theory of Normal Grain Growth Revisited 1133going to be a step towards reality in our modeling whih is simply a disus-sion on possibility of treating our system as omposed exlusively of grainsof �nite volume. In this way we hope to remove a ertain dihotomy thatappeared while studying the normal grain growth based on the Mulheran�Harding model (M�H) [13℄, see Setion 4. This model will be outlined in thenext setion (Setion 2), and its extension will also be presented (Setion 3).Next, we will try to onvine the reader that some other extension of themodeling of M�H type is worth doing. It is based on the assumption, thatfor ertain obvious reasons (robustness) and/or beause of some physiallyjusti�ed irumstanes expeted (stresses, rystallographi mis�ts betweenontiguous grains, impurities, defets) there ould �rmly appear a situationduring the material growth in whih a �ne-grained struture formed will notdisappear, but rather will attain a long period of living irumstanes. (Ina tehnologial proess it an in priniple also be kept in suh a stage oflong duration, just for obtaining a re�ned material struture.) Therefore,we have to solve �rst a simple deterministi model with a orretion dueto urvature towards inorporating the so-alled Tolman length [14, 15℄. Itseems reasonable beause, as was said above, the NGG proess is a kindof steady state, so that appearane of the thermodynamial quantity takenfrom the equilibrium thermodynamis rather annot make someone disap-pointed. This is thus our address to the seond topi mentioned above, witha hope on possible future appliations to biomembranes, interfaes and thin�lms whih are usually exposed to various strain-stress �elds as well as otherinternal perturbations (for instane, pinning) ausing enhaned urvature ef-fets. The above will onstitute the body of Setion 5. Further, we wouldlike to address our third task. Namely, we wish to make a onstrutive om-parison between the M�H type of modeling that we have presented quitereently [16℄, and the statistial models by Kurtz�Carpay and Pandè lead-ing to log-normal behavior [9, 10℄, f. Setion 6. In this setion we will alsoundersore the fat that the log-normal solutions are solutions harateristifor the geometri Brownian motion [12℄. A onluding address (Setion 7)will be the last main setion of the present paper.2. Mulheran�Harding model: A short overviewThe M�H model [13℄ is a sort of a Random Walk (RW)-like model wherethe RW is to be realized with a random �jump� that is not done in a positionspae but rather in the spae of grain sizes [16℄. Thus, it desribes the size-and time-dependent rearrangement of a polyrystalline system by means ofthe following evolution equation [16℄



1134 A. Gadomski, J. �uzka��tf(v; t) = D �2�v2 v�f(v; t) = � ��v j(v; t); v 2 [0;1); (1)where v is the volume of a grain, D is a onstant re�eting a RW behavior ingrain growth, to be named a di�usion-migration referene onstant, f(v; t)is the distribution funtion of grains at time t (having the meaning of thenumber density), i.e., f(v; t)dv is a relative number of grains of size in thevolume range [v; v + dv℄ and the parameter � depends on dimension of thesystem, and reads [16℄ � = 1� 1d (2)for systems of dimension d; notie that for d = 1 one provides � = 0, so thatit is hoped that the approximation invented does work e�etively for d > 1,and in this work is on�ned to d-s being of integer value. The parameter �re�ets the fat that the net �ux of the partiles wandering aross the grainboundaries is proportional to the area of the surfae s / v2=3 of grains ofvolume v (for three-dimensional systems), and to the length l / s1=2 of theirumferene of rystallites of area s [13, 16℄ for two-dimensional systems.Moreover, note that for f(v; t) no normalization ondition holds, so thatit is not a probability density funtion whih is in turn the ase of theonventional RW realized in a position spae. The �ux j(v; t) in Eq. (1), f.(1), is rewritten as [16℄j(v; t) = �D�v��1f(v; t)�Dv� ��v f(v; t); (3)whih means that it is deomposed into two parts. These are respetively:The drift and the di�usion terms. Let us realize that the deterministidrift term is proportional to urvature 1=R of the grains, where R is thegrain radius. It is so indeed beause it is proportional to v�1=d, but learlyv is proportional to Rd. Certainly, after Kelvin, Young and Laplae theurvature-driven part is proportional to the surfae tension assoiated with aGB [3℄. The di�usional term, in turn, takes the form of the phenomenologial1st Fik's law, with an appropriate modi�ation, however, namely that the�ux is proportional to the area of a grain. In other words, grains hangetheir volume by gaining or losing atoms (moleules; simply, entities) andthe rate of attahment/detahment is losely related to the grain surfaemagnitude and to the gradient of the density funtion f(v; t).As to solve Eq.(1) we have to omplete (1) by suitable initial and bound-ary onditions (IBCs). These are [13, 16℄:



Statistial Theory of Normal Grain Growth Revisited 1135(A) The initial ondition (IC),f(v; t = 0) = f0(v); (4)where f0(v) is a given initial distribution of grains.(B) The boundary onditions (BCs),f(v = 0; t) = 0 f(v =1; t) = 0: (5)The physial interpretation of the boundary onditions makes no furtherhesitation: The number of grains of zero volume v = 0 as well as of in�nitevolume v = 1 equal zero at any time. The latter is often antiipated tobe a landmark of the NGG phenomenon [5℄. Some violation of the BCs inturn auses to lassify a proess under onsideration to be anomalous orabnormal, so that for suh a reason we may also speak of an anomalousgrain growth (AGG), just in ontrast with the NGG.The goal of this setion as well as of the subsequent setions is not toprovide the reader with both the method of solution as well as the mainresults obtained for the evaluated physial quantities of interest. They anbe found elsewhere [16, 17℄. We may summarize here the main �ndingsonerning (1)�(5):(i) In the long-time limit, kinetis of the proess under onsideration de-pend very weakly on the IC applied.(ii) The prinipal physial quantities (inferred from the entral statistialmoments of the proess): The number of grains, n(t), as well as themean grain radius, rmn � rmn(t), follow a power-like time asymptotis,inverse and diret, respetively; this is also the ase of the �utuations,�mn2 � �mn2(t), around the mean grain size (diret power law timeasymptotis).(iii) The total hypervolume V (t) of the system, evaluated from the �rstentral moment of the statistial proess under study is onserved;note that it automatially imposes a question about possibility of at-taining an arbitrary large value of the volume v of the individual grainwhereas the total volume of the material, being just at a time instantt hosen the sum of n(t) single volumes, is the same as at time t = 0.(iv) The formal solution to the problem an be reast by using the operatormethod, utilizing a separation ansatz as well as solving an ordinarydi�erential equation of Bessel type, f. [17℄ and refs. therein.



1136 A. Gadomski, J. �uzka3. Extensions of the Mulheran�Harding modelLet us now think of a lear and physially reasonable di�erentiation ofthe terms involved in the �ux j(v; t). Thus, let us postulate an extension ofEq. (3), namely, j(v; t) = �F (v)f(v; t)�Dv� ��v f(v; t); (6)where F (v) is a deterministi part whih takes into aount various meha-nisms of the growth proess. The simplest extension isj(v; t) = ��v��1f(v; t)�Dv� ��v f(v; t); (7)where now � and D an be independent parameters. It means that thesurfae tension mehanism of growth is independent of the mehanism ofthe migration of partiles through boundaries of grains.One an take into aount the urvature e�et on the surfae tension[18�20℄. Then the next extension readsj(v; t) = �[�v��1 + v2(��1)℄f(v; t)�Dv� ��v f(v; t); (8)where the term with the parameter  desribes the Tolman urvature or-retion 1=R2 [14℄.Clearly, by doing so we want to tell the reader that the two above inpriniple onurrent proesses (onvetional and di�usional) ought to berealized with di�erent dynamis. A re�etion of this fat we see is justto introdue the above independene among various parameters. We areof the opinion that suh an extension given by assuming expliitly thatF (v) = �v��1+v2(��1) an also be antiipated as a reasonable step towardsproposing a omprehensive statistial theory of the formation of superplastimaterials, see Setion 7. As is known, superplastiity is a physiohemialphenomenon readily promoted by a mirorystalline struture, i.e. up toa ertain rather small grain size, and manifested truly in high temperaturelimit, but these are by the way basi assumptions of our modeling.A ertain quite important underlying physis whih stays behind thequadrati orretion in urvature due to Tolman, in spite of being valid forrystals of su�iently small size rather, is inevitably and above all onnetedwith sign of the parameter , f. Eq. (8). As an be learned from [20℄ when > 0 one may solely expet some additional enhanement of the growthrate, form the one hand, but also a symmetry breaking between the interiorsand exteriors of the grains enters, on the other, what an be a meaningful



Statistial Theory of Normal Grain Growth Revisited 1137eluidation of the rystallographi mis�ts, or di�erent rystallographi mis-orientations between a grain and its very surroundings [3,5,7℄. When  < 0,in turn, one may expet that a very small solid rystal will be going to meltbak, so that a problem of unstable bubble-like nuleus appears [20℄. Thissituation will, however, disourage a formation of tough �ne-grained (su-perplasti) polyrystals in the modeling proposed, so that will be of minorimportane from pratial viewpoint. From [20℄ it follows as well that somehigher order terms, like K3 and/or the Laplaian of K (smoothening outthe surfae tension e�ets), an be omitted sine they spei�ally desribe�ngered or dendriti growth, whih are by the way not the growing proessesunder study. 4. Volume aspetsAs is seen from point (iii) of Setion 2, it would be useful to onsiderthe model of NGG in whih presene of an arbitrary large volume v of theindividual grain is forbidden, ontrary to what we may �nd in [13℄ or in ourformer studies [16,17℄. It is worth inventing sine it ould have been a quitelarge step towards a more realisti NGG-modeling, a type of modeling whihis still of very pratial importane in many tehnologial proesses [3,5�7℄.It is obvious that the volume v of the individual grain annot be larger thanthe total volume of the material. It means that the phase spae in (1) isnot the unbounded spae 
1 = fv : v 2 [0;1)g but should be replaedby the bounded spae 
V0 = fv : v 2 [0; V0℄g, where V0 < 1 is a maximalvolume of the individual grain. In other words, we will be willing to replaethe seond BC from (5) by the following onef(v = V0; t) = 0; (9)where V0 annot exeed the value of the total volume of the material V �V (t) [16℄, 0 < V0 � V (t) < 1. It an be inferred from the relation for thetotal volume of all grains, namely,V (t) = V0Z0 vf(v; t) dv: (10)and not from the very analogous but improper integral of the same kind [17℄.There is a serious di�erene between unbounded 
1 and bounded 
V0phase spaes of the system. As was shown in our previous studies [16℄,in the former ase the spetrum of the orresponding eigenvalue-problem isontinuous and takes positive values. In the ase of the bounded phase spae,the spetrum is disrete and also positive [21℄. For the model (1) with (7),



1138 A. Gadomski, J. �uzkathe spetrum an be found expliitly and the eigenvalues are proportionalto the square of the positive zeros of the Bessel funtion J�(x) [21℄.In the M�H model, the total volume V (t) is onserved. It an easily beshown by use of the evolution equation (1). Let us onsider this problem inthe ase (8) alulating the time-derivativedV (t)dt = V0Z0 v ��tf(v; t) dv: (11)We substitute the right-hand side of (1) with the �ux (8), integrate by partsand obtaindV (t)dt = Dv�+1 �f(v; t)�v ���V00 + (�D � �)F1(t)� F2(t); (12)where F1(t) = hv��1it = V0Z0 v��1f(v; t) dv (13)and F2(t) = hv2(��1)it = V0Z0 v2(��1)f(v; t) dv (14)are �negative frational statistial moments� in the volume spae. If thephase spae is unbounded then the �rst term on the right-hand side of for-mula (12) is equal to zero. For the bounded phase spae, it need not bezero.We an hange the integration variable v ! R using the relation v =BRd, where the onstant B > 0 is a geometrial fator whih takes intoaount the shape of grains. ThenF1(t) / R0Z0 Rd�2�(R; t) dR (15)and F2(t) / R0Z0 Rd�3�(R; t) dR; (16)



Statistial Theory of Normal Grain Growth Revisited 1139where �(R; t) = f(v = BRd; t) and R0 is determined by the relation V0 =BRd0. It is obvious that these two integrals exist for the ase d = 3. For thease d = 2, the �rst integral exists as well. The only problem an onernthe seond integral for d = 2 beause then Rd�3 = R�1 and the integral andiverge. However, beause of the �rst boundary ondition in (5), for smallv the distribution funtion f(v; t) � v" and " > 0. Hene, �(R; t) � R2"for small R and R�1�(R; t) � R�1+2". Suh a funtion is integrable inthe neighborhood of zero and in onsequene the integral onverges. More-over, the funtions F1(t) > 0 and F2(t) > 0 sine these are integrals ofnon-negative funtions. For the unbounded phase spae and for  = 0, thetotal volume of the speimen inreases in time if �D > � and dereases if�D < �. For the M�H model, �D = � and this is why the total volume isonserved, V (t) = V (0). If we add the urvature-orreted term, i.e.  6= 0,the total volume an be non-monotoni funtion of time. For the boundedphase spae, 
V0 , the volume onservation problem is muh more ompli-ated beause �f(v; t)=�v jv=V0 an be di�erent from zero (an be negative).Nevertheless, also in this ase V (t) an be a non-monotoni funtion of time.Physially, it means that the just reognized features an be antiipated assome �rst signatures of a plasti (nononservative) behavior of the modelmaterial under study.5. Curvature orretions as a step towardssuperplasti behavior of materialVolumetri aspets onsidered thoroughly in Setion 4 led to the on-lusion that for the phase spae 
V0 (i) the overall volume of the systemannot be onserved (in general); (ii) the total volume an also hange inourse of time, whih means that the material an expand or shrink duringthe formation of a polyrystal (or a foam, see remarks in Setion 1, and adisussion after Eqs (8) and (11) in Setions 3 and 4, respetively). Suh abehavior an be reognized as a signature of plasti deformation of a body,too. To guarantee somehow, in the framework of our modeling, however, asuperplasti end produt, we have to assure a bit more: We should �nd apossibility for evolution of the �ne-grained struture just mentioned in thepreeding setions. Let us then develop our argumentation beneath in asystemati way.A key point of our onsiderations here will be some exploration of theGB motion towards its enter of urvature with a speed proportional tothe urvature what is inherently involved in the modeling of M�H type[22, 24℄. Let us then start from Eq. (7) but drop for a while the seonddi�usive term by requiring D = 0. Applying the reasoning oming afterEq. (3) (aepting formally for the moment that � = �D), and utilizing an



1140 A. Gadomski, J. �uzkae�ient approximation that j(v; t) = vgr � f(v; t), for the veloity of thegrain boundary, one gets immediatelyvgr = dRdt / 1R (17)for an arbitrary grain radius R. Notie that the formula (17) is also pre-sented by Mullins in his paper on two-dimensional motion of idealized GBsas well as in a stohasti modeling of grain growth by Pandè, where theso-alled internal noise, designated there by T is equal to zero, that meansin deterministi ase (though unfortunately taken from Hillert with negativeprefator preeding the term proportional to 1=R) [8℄. If we go further andwish to ompare the model by Pandè with ours we have to aept that theyare well omparable in the sense that the role of Pandè's internal topologialnoise, T , is played in our model by the Fikian di�usive term, denoted byjD(v; t) jD(v; t) = �Dv� ��v f(v; t); (18)whih su�ers also a kind of topologial onstraints by having inorporatedthe prefatorDv� whih is proportional to Rd�1, and whih re�ets somehowa surfae e�et, see Setion 2.Let us ontinue along this line and ask a question onerning the urvature-driven motion of an arbitrary GB: Is there really so that under all possiblephysial irumstanes met (or, expeted) a GB is only driven by the mag-nitude of its urvature, K? In other words: Must the pressure di�erene,expanded in K, be wrenhed o� on the �rst linear term, presumed thatthe pressure di�erene �P is the main driving fore for the material ex-hange between two ontiguous rystallites (objets)? Certainly, it doesnot [18, 20℄. We laim, for instane, that under ertain more subtle irum-stanes (aount of �uidity; softness; strain-stress suitable ontext; surfaetension moleular weight dependene of GBs in maromoleular polyrys-tals [23℄; pinning; spei� interations due to existene of rystallographimis�ts between ontiguous grains, and so on) one has to expand �P likethat [15℄ �P = �R � R2 + :::�; (19)where � = 2�0, and  = 2�0Æ0, f. Eq. (8), and where �0 and Æ0 stand forthe surfae tension of the planar GB surfae (pratially, for a very largegrain) and for the Tolman length [15℄ (see below), respetively. We thuspostulate the mehanism likevgr = dRdt = q�1�P; (20)



Statistial Theory of Normal Grain Growth Revisited 1141where q serves for adjustment of the physial units in the above equation,having, however, the meaning of the �ux passing through a GB unit surfae.The solution to Eq. (20) is given in an impliit form12hR2(t)�R2(0)i+ Æ0hR(t)�R(0)i+ Æ02 ln R(t)R(0) = 2�0q t: (21)Somebody would like to pose another question: Why do we insist onsolving this partiularly simple deterministi model with the �rst orretionto urvature K � 1=R? We do answer this question by saying that wehave solved suh an auxiliary model just to get an intuition whether isthis reasonable to inlude suh a orretion of K2 in our main statistial-physial model of M�H type. So, we may now response that by looking atthe Eq. (21) we see some hanes mostly for the seond term of the left-handside of it just to survive, see our disussion on superplastiity above and inSetion 7. Therefore, it ould be worth doing, but the expliit integrationof the problem meets serious tehnial di�ulties and up to now remainsunsolved.Let us, however, omment a bit more on Eq. (21) and its relations toknown models [3, 8, 9℄.First, let us state expliitly that the orretion of K2 auses appearaneof two additional terms in the solution, whih in absene of suh a orretionreads R2(t)�R2(0) / t: (22)The two additional terms are: The term expressed by Æ0[R(t)�R(0)℄ and thelogarithmi term. Starting from the latter we wish to say only that the loga-rithmi term often appears to be relevant either in an early stage of growingproess or in low-temperature regime. (We may onsider both the regimesto be of a ertain relevane for us [25℄, though the low-temperature behavioris of no speial interest when embarking readily on superplastiity.) Seond,the Tolman length Æ0 whih is involved in Æ0[R(t) � R(0)℄, and also in thelogarithmi term mentioned, is an interesting statistial-thermodynamialparameter per se. It reads [14, 15℄Æ0 = �kC0�0 ; (23)where �0, to be expeted quite small for superplasti polyrystals, is de�nedabove and k is the rigidity onstant for bending (being generally of moder-ate value), proportional to the so-alled Gaussian urvature [26℄, while C0,being either of positive or negative sign [18℄, and to be expeted quite largefor superplasti polyrystals, stands for the spontaneous urvature, respe-tively. Now, it is lear why we enjoy the presene of the middle term in



1142 A. Gadomski, J. �uzkathe left-hand side of Eq. (21). It should be also visible why we assign theontext to biomembranes, interfaes as well as thin layers interating withtheir solid supports [3,7,26℄. (By the way, notie here that our treatment ofpolyrystals by suh means is not in a very distintion with treating drop-wise ondensation, for example [15, 28℄. This makes thus another possibleomparison: We annot exlusively ompare polyrystals and bubbles [4℄but also there should appear a omparison between the polyrystals and thedroplets.)Completing the material of this setion we wish to state only that in-orporation of the seond term (K2) should ertainly hange the overallsystem behavior investigated in the framework of our statistial-physialmodel proposed. Suh a hange will probably be manifested both in theinitial stages of the evolution as well as for a low-temperature regime whihalways gives a distint resistane to growth [3, 7, 17℄. Generally speaking,suh a behavior an be possible to rationalize when polyrystals manifestslow or very slow dynamis, omparable to that harateristi for eramis(relaxer materials) or glasses, the dynamis of whih shows up a Gaussianlogarithmi behavior [29℄, f. the next setion. If we neglet, however, thejust antiipated presene of possible low-temperature limit we ome bak tothe mentioned tendeny towards superplastiity of polyrystalline as well asbubbles-ontaining model bodies.Finishing this setion in omparative manner let us try to foresee thatso as the internal noise term T introdued in Pandè's model, together withan additional fator standing on the left-hand side of kineti equation (pro-portional to R� , i.e. going to mimi the surfae area term) would and doeshange the overall kineti but asymptoti harateristis, like rmn vs t in away [8℄ rmn � t1=(2+�) (24)with some �, where � � 0, so does our di�usive term whih appears in thematerial �ux (8). Moreover, notie that for � = 0 the di�usive solution(22) an be reovered, but otherwise one gets non-di�usive solutions. Note,however, that in Setion 2 of [8℄ (f. Eq. (17)) another misprint appearswhih is now orreted by (24) given above. Interestingly that the modelproposed by Pandè [8℄ onforms well to ours when in Eq. (24)� = d� 1; (25)i.e. � is d-dependent [27℄. For d = 1 one reovers again a harateristidi�usive behavior, or in other words, the M�H behavior in d = 1, �rstexplained by Louat [32℄. For d > 1 one provides other non-di�usive ases asfor example the so-alled Ostwald ripening mentioned in [7,8℄ to be obtainedformally for d = 2 [28℄.



Statistial Theory of Normal Grain Growth Revisited 11436. Log-normalityAfter a very thorough study by Kurtz and Carpay [9℄ some doubts aboutappearane of a log-normal distribution of the grain sizes in a polyrystallinematerial have probably been thrown away, but again some renewed doubtsappeared about eight years later [10℄, and onerned with other very ex-at �ts to experimentally got distributions of rystallites. Before, however,looking more losely into the material just signalized above, let us de�ne thesubjet in question, that means the log-normality.The origin of log-normality in grain growth, possibly of normal type,an quantitatively be explained in the following. Namely, let us take aontinuous piture and assume that a grain is loated in su�iently hightopologial lass, i.e. it is onsidered to be large enough, f. [9℄. This meansthat it is able to augment its volume and/or surfae area, designated by A(t),just at the expense of the ontents of its neighbors. (Note that, in general,there is nothing against dealing with A as the area of a (d� 1)-dimensionalhypersurfae of d-dimensional hypervolume.) A probably most natural wayof re�eting this fat is to write down a deterministi equation responsiblefor the growing proess, with a hange dA(t) proportional to the magnitudeof A(t), namely dA(t) = �aA(t)dt; (26)whih shows an exponentially fast growth with a drift onstant equal to �a.In language of disrete proesses one has to see that a mehanism stayingunavoidably behind the exponential (natural and perennially alive) growthmay readily look like A(t) = A(0)�1 + �atn �n (27)what for n!1 yields a solution in the formA(t) = A(0) exp(�at); (28)whih is formally a solution to Eq. (26). But life would be very simple ifthe above senario happened to a real proess like for example formationof polyrystals, whih su�ers a su�ient aount of the internal topologialnoise, T , f. [7, 8℄.As to ahieve a formal desription muh loser to experimental reality[3, 5, 6℄, one has to omplete Eq. (26) by some additional term, possibly ofnoisy harater [7℄. It is thoroughly proposed [12℄ to make it by addinga kind of memoryless Markov proess alled the Wiener proess W (t) [30℄



1144 A. Gadomski, J. �uzkawhih would aount for random hanges of the surfae area magnitude A(t).Now, the suitable equation looks likedA(t) = �aA(t)dt + �aA(t)dW (t); (29)where �a measures the surfae area �utuations. This is a stohasti equa-tion given in the Ito representation [12, 30℄, and it is equivalent to [12℄d ln[A(t)℄ = [�a � (�a2=2)℄dt+ �adW (t): (30)In the above equation a signature of logarithmi behavior appears for the�rst time, in spite of that trivial mathematial solution whih omes bysolving Eq. (26), see Eq. (28).Knowing the Fokker�Plank equation, orresponding to (29), it is alsopossible to alulate the transition probability from a state (A0; t0) to (A; t),denoted by p(A; t j A0; t0) whih reads [12℄p(A; t j A0; t0) = [2�(�aA)2(t�t0)℄�1=2�expn�ln(A=A0)�(�a�(�a2=2))(t � t0)�2 =2�a2(t� t0)o :(31)The orresponding mean value �A and the variane �a2 read [12℄�A = A0 exp[�a(t� t0)℄; �a2 = (A0)2 exp[2�a(t� t0)℄[exp[�a2(t� t0)℄� 1℄:(32)From Eq. (32) it follows that both �A and �a2 grow nonlinearly (exponen-tially) with time t. This is somehow omparable with another our model [31℄whih is based, however, on slightly di�erent physial foundations (no pro-nouned role of surfae tension was assumed) [16℄ and in whih for instanethe total hypervolume is not onserved, f. Eq. (32), and the quantity �Ade�ned in there. (Beause the model served to desribe a rerystallization(Re) proess [31℄, for the purpose of the present work we will all it theRe-model.) It looks also like our present ase, modeled in the �nite phasespae, sine, as is mentioned in Setion 4, the total volume (or, hypervolume)annot be readily onserved.It ould then be argued that the just disussed log-normality-based modeldi�ers from both the models before studied by us [17,31℄, though it remainslose, and as expeted, an reprodue the main landmark of both the mod-els mentioned, but thoroughly studied in the in�nite phase spae, namelywhether the total hypervolume is onserved or not. Namely, for �a ! 0 oneprovides that A ! A(0) = onst (A � A(t)), what is very harateristi of



Statistial Theory of Normal Grain Growth Revisited 1145the NGG-model, whereas for �a � 1, one expands exp(�az) ' 1 + �az forsmall z, and then one an reprodue a linear-in-time growth of the hyper-volume for the Re-model but in the limit of d ! 1, i.e. more pronounedfor high-dimensional Eulidean spaes [31℄. In suh a limit �utuations �mn2involved in the NGG [16℄, f. Setion 2, oinide well with �a2 stated in(32), but still while taking another limit �a ! 0, as already performedabove. Summing up, let us reall that there are both di�erenes as wellas quite striking similarities between the log-normality-based grain growthmodel [3,10,33℄ and both the invoked models studied previously [17℄, so thatthere is pratially no hane to get the NGG-behavior (or, Re-behavior)outside the limits just mentioned. It may lead to a onlusion that thelog-normal behavior is a typial non-steady state behavior [28℄, and wouldserve better to desribe an abnormal growth (see Setion 1), or perhaps areal rerystallization proess [1,2,5�7℄. Moreover, the unonserved total vol-ume appearing in the modeling performed in the spae 
V0 suits better tolog-normal harateristis �A and �a2.7. Conluding addressIn our previous studies [16,17℄ we have asertained more or less that (i)the in�uene of the initial ondition may sometimes be more pronouned, f.the initial state in the form of a Weibull funtion of v [16℄, f0(v), whih favorssome possible appliation of the proposed modeling, mostly towards design-ing a �ne-grained material; (ii) if the total volume of the system does notremain onserved, one may expet abnormalities, and an AGG-phenomenoninstead of the NGG an our. A propheti meaning of the latter has quiteexhaustively been proved in Setion 4, dealing with volume aspets. The for-mer, in turn, has been explored in su�ient detail in Setion 3 and mainlyin Setion 5, showing an interesting physial onsequene of our modeling,whih one may see as some onsideration on how to form a model �ne-grained(superplasti) material [34℄, with a ertain attrative theoretial possibilityof modeling superplasti behavior of erami nanorystals, intermetallis,metalli alloys and polyrystals [34℄.It would be instrutive to o�er a reader some thought experiment inter-onneting the (kineti) �nal result of our modeling, i.e. the mean grainradius [16,27℄, rmn, f. Eqs (24)�(25), taken ertainly for large enough timeinstants, t � 1, and the stress magnitude, designated by �HP, where somepresene of an internal �HP in the material seems unquestionable [35, 36℄.Namely, let us onsider a Hall�Peth (H�P) relation of both diret and in-verse types [34, 35℄ �HP / (2rmn)�; (33)where � an be a measurable exponent [34,35℄ of negative (diret H�P: low



1146 A. Gadomski, J. �uzkatemperature non-superplasti regime) or positive (inverse H�P: high tem-perature superplasti regime) values. We see then that for the superplastibehavior to our we need to have small enough grain radius and not toosmall temperature of the proess (to assure respetive �uidity of the mate-rial), that means under, in some sense, extra-onditions to be ahieved. Forthe non-superplastiity, in turn, one annot go below a ertain quite largegrain radius value, not forgetting, however, that any variation in tempera-ture towards higher values is undesirable, f. Setion 5. Moreover, one hasto take really are about the possible variations in total volume (see, [27℄)of the material under study (Setion 4), and the boundary onditions as awhole [37℄, not avoiding if possible statistis based on ounting the frequenyof appearane/disappearane of grains of a ertain size, and how they on-form to the model log-normal pattern, see Setion 6. By the way, someoneshould not feel embarrassed to think over the log-normal behavior as a kindof Brownian motion, alled the geometri Brownian motion [12℄, where thesurfae magnitude is the major geometri onstraint and/or kineti obstale,see Setions 2�3, beause it is just in the spirit of the presented study.In a �nal word, let us go bak to relation (33), whih after ombining itwith Eqs (24) and (25) reads for a su�iently large proessing time �p�HP / �p�=(2+�): (34)From the above it an be seen why the polyrystalline material (or a foameven) is strengthening in very mature stages of the grain growth (� > 0,�HP grows with �p), whereas it is going to weaken when � < 0 beause�HP dereases with �p, whih means that a brittle struture emerges, see[35℄. This �nal onlusion should justify internal robustness of the �ne-grained and non-brittle superplasti struture under examination. Moreover,this robustness depends upon the geometrial dimension d, in the sensethat Eq. (25) holds. Notie that relation (34) is often reognized to be amanifestation of anomalous relaxation behavior of the system, driven byfrational dynamis, f. [35, 38℄, and referenes therein, and reall Eqs (13)and (14) in Setion 4. This kind of relaxation onforms also very muh toa relaxation mehanism whih proeeds e�etively via the GBs as well astheir juntions, being important aumulation spots for the stress �eld. Itan be seen as a thorough manifestation of dispersive kinetis in ondensedmedia [39℄.The authors wish to dediate this paper to the memory of ProfessorAndrzej Pªonka, whose invaluable insight into dispersive kinetis in on-densed matter systems has stimulated enormously our studies on nuleationand growth and related phenomena disussed throughout the paper.
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