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1. Introduction

We distinguish three types of situations to which methods of analytical
mechanics can be applied. A mechanical system can be studied as an isolated
system not subject to external interference. The study of planetary motion
is an example. The motion of a mechanical system in a finite time interval
can be studied. The external interaction with the system is limited to setting
up or observing the initial and final conditions without interfering with the
system during its motion. Such situations are studied in old-time ballistics.
The motion of system in a finite time interval can be considered with both
the boundary conditions and the motion itself during the time interval are
subject to control. Such situations are studied in modern ballistics of guided
missiles. The flight of an airplane or the motion of a car are also examples of
such situations. Early formulations of analytical mechanics were applicable
to all three types of situations. Recent geometrical formulations left out the
possibility of analyzing the external interaction with a mechanical system
during its motion. The external interaction can take different forms. One
possibility is to influence the motion of a mechanical object by subjecting
the object to constraints varying in time. Driving a car is an example of
this type of control. A geometric study of this type of control was initiated
by Marle [1-3]. Another possibility is to control a mechanical system by
applying external forces. This happens when trajectory of a space vehicle
or the orbit of a satellite are corrected by remotely activating jet engines
mounted on the vehicle.

A geometric framework for analytical mechanics with external forces is
the subject of the present paper. Four versions of this framework are con-
sidered. The first version is a variational formulation. Variational principles
found in current literature are almost exclusively versions of the Hamilton
principle. A recent paper by Gracia, Marin-Solano and Munoz-Lecanda [4]
gives a clear geometric description of the Hamilton principle in presence of
constraints. Hamilton’s principle does not take into account momenta at
the boundary or external forces. A variational principle with boundary mo-
menta was used by Schwinger [5]. The variational principle with boundary
terms appearing in [6] is not related to Schwinger’s principle. We use a
variational principle with boundary terms and external forces. The second
version of the framework is the Lagrangian formulation of mechanics and
the third is the Hamiltonian formulation. The Lagrangian formulation usu-
ally presented is completely equivalent to the Hamilton principle and does
not include momenta or external forces. Momenta but not external forces
are present in the usual Hamiltonian formulation. In our interpretation a
Lagrangian system and the corresponding Hamiltonian system are the same
object described in terms of two different generating functions — the La-
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grangian and the Hamiltonian. The last version is the Poisson formulation
different from the Hamiltonian formulation only in the use of the Poisson
structure of the phase space in place of the equivalent symplectic structure.

Our formulations are based on some well known and some little known
geometric constructions. These are presented in an extensive introductory
section. Work related to our formulations can be found in the references
[7-11].

2. Geometric constructions

2.1. Tangent functors

Let M be a differential manifold. A local chart (%) : M — R™ of M
with coordinates " : M — R will be treated as defined on all of M. Simple
modifications have to be applied to constructions involving charts if truly
local charts are used.

In the set C°(M|R) of differentiable mappings from R to M we in-
troduce an equivalence relation. Two mappings v and 7' are equivalent if
v'(0) = (0) and D(f o+")(0) = D(f o ~)(0) for each differentiable function
f:M—=R.

The set of equivalence classes will be denoted by TM. The equivalence
class of a curve v : R — M will be denoted by ty(0). The set TM is the
set of tangent vectors in M or the tangent bundle of M.

We have the surjective mapping

v 2 TM — M : ty(0) — «(0). (1)
From a function f: M — R we construct functions
fr0: TM — R : t(0) = (f 0 7)(0) (2)

and
fr1: TM = R : ty(0) = D(f o7)(0). (3)

These constructions can be applied to functions defined on open subsets of
M. The functions fi,0 and fi,1 constructed from a function f on U C M
are defined on 737 ~!(U). The function f1;0 is the composition f o 7y/.
The set TM is a differential manifold. A local chart (z*) : M — R™
induces a local chart
(zF,4*) : TM — R*™ (4)

of TM. The local coordinates " and 4* are the functions z"1,0 and 5’7)‘1;1
constructed from the coordinates of M. Note that we are using the symbol
z" to denote local coordinates of M and also of TM. The diagram
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™™ (5)

&l

M

is a differential fibration.
Each curve v : R — M has a tangent prolongation

ty: R — TM : t— ty(t +-)(0). (6)

The value ty(t) of the prolongation ty depends only on the definition of
the curve < in the immediate neighbourhood of ¢ € R. It follows that
a local curve v : I — M defined on an open subset I C R has a well
defined prolongation ty: I — TM. The curve + is obtained from t+ as the
projection Tps o try.

Let M and N be differential manifolds and let o : M — N be a differ-
entiable mapping. We have the mapping

Ta: TM — TN : ty(0) — t(c 0 v)(0). (7)
The diagram
™ —% TN (8)
’TM\L TN\L
M—%—=N

is a differential fibration morphism. If M, N, and O are differential manifolds
and @« : M — N and B : N — O are differentiable mappings, then

T(Boa)=TpRoTa. 9)

We have introduced a covariant functor T in the category of differential
manifolds and differentiable mappings.

We introduce a second equivalence relation in the set C*°(M|R) of dif-
ferentiable mappings from R to M. Two mappings v and ' are equivalent
if 4'(0) = 7(0), D(f ©+)(0) = D(f ©7)(0), and D?(f 04')(0) = D*(f ©)(0)
for each differentiable function f : M — R. The set of equivalence classes
will be denoted by T?M and the equivalence class of a curve v : R — M
will be denoted by t27(0). The set T?M is the set of second tangent vectors
in M or the second tangent bundle of M.

We have surjective mappings

Toa 2 T2M — M : 624(0) — 4(0) (10)
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and
mlon : T2M — TM : t%4(0) — ty(0) (11)

satisfying 7a7 o o = Tour.
From a function f : M — R we construct functions

a0 : T?M —= R : £29(0) = (f 0 7)(0), (12)
foa : T°M — R : t*y(0) = D(f 0 7)(0), (13)

and
fo2 ¢ T°M 5 R: 1t2'y(0) — Dg(f 0 v)(0). (14)

These constructions can be applied to functions defined on open subsets
of M.

The set T?M is a differential manifold. A local chart (z*) : M — R™
induces a local chart

(zF, i, ") T2M — R3™ (15)

of TM. The local coordinates z*, #*, and #* are the functions %90, .’L‘)‘Q;l,
and x#9.9 constructed from the coordinates of M. Note that 2" denote local
coordinates of M and also of T? M. Diagrams

T2M T2M (16)
oM 712M|
TM™

are differential fibrations.
Fach curve v : R — M has a second tangent prolongation

t?y : R — T2M : t — t>y(t +-)(0). (17)

Second tangent prolongations of local curves can be constructed. Relations
Ton 0 t2y = v and 7197 0 t?y = ty hold.

Let M and N be differential manifolds and let « : M — N be a differ-
entiable mapping. We have the mapping

T2 : T2M — T2N : t24(0) — t%(a 0 7)(0). (18)
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Diagrams
2C¥
T2M T2N (19)
TQMj 7'2N\
M @ N
and
T2q
T2M T2N (20)
Tl?M\ TlQNj
™ —L2 TN

are morphisms of differential fibrations. If M, N, and O are differential
manifolds and a: M — N and 8 : N — O are differentiable mappings, then

T?(B o a) = T?f o T?a. (21)

We have introduced a covariant functor T? in the category of differential
manifolds and differentiable mappings.

2.1.1. Tangent and cotangent vectors

The fibration
™ (22)
™
M

is a vector fibration. It is called the tangent fibration. Since representatives of
vectors (curves in M) can not be added the construction of linear operations
in fibres of 7); is somewhat indirect. Let v, vy, and v9 be elements of the
same fibre T, M = 13, '(2). We write

v = V1 + V2 (23)

if
fia(v) = fii(v1) + fi1(v2) (24)
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for each function f on M. Note that

fra(v) = (df,v). (25)

We have defined a relation between three elements of a fibre T,M. This
relation will turn into a binary operation if we show that for each pair
(v1,v9) € ToM x T, M there is an unique vector v € T, M such that v =
v1 + v9. The coordinate construction

(2" 0 y)(t) = " (v1) + (& (v1) + &7 (v2))2 (26)

of a representative v of v proves existence. Let v and v’ be in relations
v = v + vy and v = vy + v9 with v; and v9. Then

fia(@) = fra(vr) + fra(ve) = fia(v) (27)

for each function f. It follows that v’ = v. This proves uniqueness.
Let v and u be elements of T, M and let k¥ be a number. We write

v =ku (28)
if
fr1(v) = kf1a(u) (29)
for each function f on M. The coordinate construction
(" 0)(t) = z"(u) + ki"(u)t (30)

shows that for each k¥ € R and u € T, M there is a vector v € T, M such
that v = ku. If v and v’ are two such vectors, then

fra(@) =kfii(u) = fri(v). (31)

It follows that the vector v is unique.
We have defined operations

+:TM x TM —>TM (32)
(TM7TM)
and
-:RxTM — TM. (33)
The symbol TM x TM denotes the fibre product
(M7 )

{(01,1)2) € TM x TM,; TM(Ul) = TM(UQ)}. (34)
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A section X : M — TM of the tangent fibration 77 is a wector field.
The zero section will be denoted by O, .

Let C*°(R|M) denote the algebra of differentiable functions on a differ-
ential manifold M. In the set C*°(R|M) x M we introduce an equivalence
relation. Two pairs (f,z) and (f’,z') are equivalent if ' = z and

D(f"©7)(0) = D(f o 7)(0) (35)

for each differentiable curve v : R — M such that v(0) = z. The set of
equivalence classes denoted by T*M is called the cotangent bundle of M.
Elements of T*M are called cotangent vectors. The equivalence class of
(f,z) denoted by df(z) is called the differential of f at . The mapping

v "M — M :df(z) — x (36)

is called the cotangent bundle projection.

The cotangent bundle T*M is a differential manifold. A local chart
(%) : M — R™ induces a local chart (z%,py) : T*M — R?*™. The local
coordinates £ and p) are the functions

o TM — R df(z) = 2"(z) (37)

and
pa: T"M — R:df(z) = D(f o y2)(0), (38)

where ) , are curves in M characterized by
(e (t) = 2%(z) + 0" 5t (39)

for t sufficiently close to 0 € R. Note that 2" is used to denote local
coordinates in M and also in T*M.
The diagram

T*M (40)
TN
M

is a differential vector fibration. It is called the cotangent fibration. The
linear operations in fibres of the cotangent fibration have natural definitions

FITM x T'M — T*M : (dfi(2), dfa(2)) v d(fi + fo2)(z)  (41)

(ﬂ—M ,71'M)
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and
R XT'M — T*M : (k,df(z)) — d(kf)(x). (42)

The mapping

(,):T"M x TM — R:(df(a),ty(0)) — D(f ov)(0) (43)

(7TM7TM)
is a differentiable, bilinear, and nondegenerate pairing. The symbol
T™*M x TM is again the fibre product defined as the equalizer

(mmsTM)

T*M  x TM ={(p,v) € T"M x TM; mp1(p) = ar(v)}  (44)

(mar,7ar)
of the projections mys and 7as. The tangent fibration and the cotangent

fibration are a dual pair of vector fibrations.
The Liouwille form is a 1-form 93, on T*M defined as

Onr : T(T*M) — R :w v {rpens(w), T (w)). (45)

A 1-form on M can interpreted as a section of the cotangent projection
wyr. s M — T*M, then

(W Irr,v) =

Il
/\E/\/\

\]
g
=
=
S
g
(o)
=
S

;) (46)

for each v € TM. Hence, p*dpr = p. The zero section of the cotangent
fibration will be denoted by Ox,,.

The cotangent bundle T*M together with the 2-form wy; = d¥ys form
a symplectic manifold (T*M,wys). It follows from the local expressions

Iy = prda” (47)

and
wyr = dpi A dz” (48)

that the form wps is non degenerate.
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2.1.2. Special symplectic structures

Let (P,w) be a symplectic manifold. A special symplectic structure for
(P,w) is a diagram

(P,9) (49)

|
M
where m : P — () is a vector fibration and 4 is a vertical one-form on P

such that d¢ = w. An additional requirement is the existence of a vector
fibration morphism

P T* M (50)
™ WML
M ——— M

such that ¥ = a*9,,. This morphism is necessarily an isomorphism. For
each w € TP we have

<"97 w) =

, T(w)). (51)
It follows that the mapping a : P — T*M is completely characterized by

<Oz(p),1)> = <19aw>a (52)

where v € Ty ()M and w is any vector in T, P such that Tr(w) = v. We
conclude that if the morphism (50) associated with a special symplectic
structure exists, then it is unique. It can be shown that if the 1-form
interpreted as a mapping ¢ : TP — R is linear on fibres of the vector
fibration Tw : TP — TM, then the morphism (50) exists. We will usually
present a special symplectic structure together with the associated vector
fibration isomorphism.
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2.1.3. Generating functions and Legendre transformations

Let

(P,9) P @ M (53)
T s WM[
M M=—=M

be a special symplectic structure for a symplectic manifold (P,w) with its
associated vector fibre morphism. Let S C P be the image im(o) of a section
o: M — Pofn. If Sis a Lagrangian submanifold of (P, w), then the 1-form
o*9 is closed since do*®¥ = o*w = 0. Let this form be exact. A function
F : M — R such that o*9 = dF is called a generating function of S relative
to the special symplectic structure (53). From

o' =c"a"Iy = (aoo) Iy =aoc (54)
it follows that ¢ = a~! o dF. From
dF = (roo)*dF = o*n*dF = ¢*d(F o 7) (55)

it follows that o*9 = o*d(F o 7). Consequently p*¥ = p*d(F o «) for any
mapping p : R — P such that im(p) C S. This is in particular true for the
canonical injection tg : S — P. Since the forms 9 and d(F o «) are both
vertical we have ¥ o1g = d(F om)og or ¥|S = d(F omn)|S. The set S can
be obtained from its generating function F' as the equalizer

S={peP;Ip) =d(For)(p)} (56)

of the two forms. If S = im(o) is not Lagrangian we define its generating
form relative to the special symplectic structure (53) as the 1-form ¢ on M
such that o*¢ = ¢. Relations 0 = a~! 0 ¢ and

S={peP; J(p) = (v"¢)(p)} (57)

replace the corresponding relations of the Lagrangian case.
Let

T M’ (58)

e e Usvi
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be a second special symplectic structure for (P,w). The difference ¢ — ¢
is a closed form. Let it be exact and let G be a function on P such that
¥ —19 = dG. Let S be the image im(c’) of a section o’ : M' — P of n’. The
function

F'=(For+G)oo (59)

is a generating function of .S relative to the new special symplectic structure
since

dF' =0"*d(For+G)=0""d(Fon 40" (9'=9) =o' *d(F om)—o" 0" "9 ="’

(60)
The passage from F to F' is a version of the Legendre transformation. If
S =im(o) = im(o’) is generated by a generating form ¢ with respect to the
special symplectic structure (53), then the form

¢ =" (" p + dG) (61)

is the generating form of S relative to the special symplectic structure (58).

2.1.4. Iterated tangent bundles TTM, TT2M, and T2TM

The sets TTM, TT?2M, and T?TM obtained by repeated application of
tangent functors are differential manifolds. From a function f: M — R we
construct sets of functions

{f1,0;1,05 fr0:,15 fr,051,05 frs0 ) (62)
on TTM,
{f1,0:2,00 [1,02,15 f1,02,2: f1,1,2,0, f1,152,15 f1,12,2} (63)
on TT?M, and
{f2,0:1,0, f2,0:1,1, f2,1:1,0, f2,1:1,1, f2,2:1,0, f2,2:1,1} (64)

on T?TM. The functions are obtained by repeated application of the con-
structions introduced in formulae (2) and (3). The general definition is

Te ki = (Frsj)wrsa (65)

with suitable values of the indices. These constructions apply to local func-
tions as well. By applying these constructions to the local coordinates for a
chart (z) : M — R™ we construct charts

K A v . 4m
(" 1,001,007 1,0:1,1, 21,1510, 71,11,1) : TTM — R™, (66)

K A v w . 2 6m
(2" 1,0:2,0, 2" 1,0;2,1, 2" 1,0,2,2, 7 1,1,2,0, 271,121, ¥ 1,1;2,2) : TT*M — R™,
(67)
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and

(%2,0:1,0, 22,0:1,15 T2,1:1,0, 27 2,1.1,1, T¥9,2:1 0, 2,2:1,1) : T°TM — ]RGm(- )
68
Coordinates in TTM are usually denoted by (2,4, dz#, ), coordinates
in TT2M are denoted by (z*, 2%, &, dz¥, 64, §4°), and coordinates in T2T M
could be denoted by (2%, &, z'#, &'V, 2", 3"°).
Each element of one of the spaces TTM, TT2M, and T?TM is conve-
niently represented by a mapping x : R?> — M. Mappings

n:R—TM:s— tx(s,-)(0) (69)

and

¢:R— T?M : s — t2x(s,-)(0) (70)
derived from the mapping x serve as representatives of elements tn(0) €
TTM, t¢(0) € TT?M, and t?n(0) € T2TM. We denote these elements by
t51%(0,0), t12x(0,0), and t>!x(0,0) respectively. The mapping x charac-
terized by

2%(x(s,t)) = 2"(z) + 2" (z) + s0z" () + stoz"(z) (71)

for (s,t) sufficiently close to (0,0) € R? is a representative of an element z of
TTM. This coordinate construction proves the existence of representatives.
The corresponding coordinate constructions of representatives of elements
y € TT2M and z € T?TM are provided by

" (x(s, 1)) = 2" (y) + tz"(y) + %tgfb“(y) + s0z"(x) + stoz"(y) + %sgtéa'c’z%))
and

2(x(8,1)) = 3%(2) + t3%(2) + s2'%(2) + sti™(2) + 3572”5 (2) + 357t3""(2)

(73)
respectively. Relations
7 i (85 5x(0,0)) = 5% x(0,0) (74)
and / 1 ! ! "
T 7 (87 F%(0,0)) = t¥F" x(0,0) (75)
are easily verified. The definition (65) is equivalent to
i ki (85 Fx(0,0)) = DED(f 0 )(0,0). (76)

The equalities
(dfzisw) = fr1,i(w) (77)
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fork=1or k=214 <k, and w € TTF follow from

(d s, t75x(0,0)) = D(fsi©¢)(0)

d
- E(fk;i(ﬁkX(Sa')(O)))\szo
2+1
= O (O DO om0
— D(15i)(f°X)(070)

= fl,k;l,i(tl’kX(Oa 0))

with
C:R— TFM : 51— thx(s,-)(0).

(78)

(79)

From a mapping x : R?> — M we derive the mapping ¥ : R> = M
by setting X(¢,8) = x(s,t). This construction is used in the definitions of

mappings
kbt TTM — TTM : t5'x(0,0) — t51%(0,0),
kb2 s TT2M — T?TM : t52x(0,0) — t21%(0,0),
and
k2L T2TM — TT?2M : t21%(0,0) — t12%(0,0).
Diagrams

k' k

K™ M
T+ Tk M TFTF M
11
TR jrok g TRk 1 0r
K,k” k
M
Tk Tk M TETF M

for k" < k' are commutative and relations

kK

k' k -1
K MORK M — Lk Tk pg

(80)
(81)

(82)

(83)

(84)

are satisfied for all applicable values of k, k', and k”. The special case

kv = kbt

involution in TTM.

M is the most frequently used. It is known as the canonical
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2.1.5. Derivations

Let (M) be the exterior algebra of differential forms on a differential
manifold M. A linear operator a : 2(M) — 2(M) is called a derivation of
Q2(M) of degree p if au is a form of degree g + p and

a(pAv)=apAv+ (1P uAav (85)

when p is a form of degree g and v is any form on M. The exterior differential
d: 2(M)— 2(M) is a derivation of degree 1. The commutator

[a,a'] = aa' — (—1)""'a’a (86)

of derivations a and a’ of degrees p and p' respectively is a derivation of
degree p + p’. A derivation a is said to be of type i, if af = 0 for each
function f on M. A derivation a is said to be of type d, if [a,d] = 0. If
ig is a derivation of type i, then dyg = [i4,d] is a derivation of type d..
Derivations are local operators: if a is a derivation and p is a differential
form on M vanishing on an open subset U C M, then ay vanishes on U. A
derivation is fully characterized by its action on functions and differentials
of functions since each differential form is locally represented as a sum of
exterior products of differentials of functions multiplied by functions. A
derivation of type d is fully characterized by its action on functions.
A wector-valued p-form is a linear mapping

A : A’°TM — TM. (87)

Ifw € NPT M, then A(w) € T,M. Following Frélicher and Nijenhuis [13] we
associate with a vector-valued p-form A a derivation i4 of type i, and degree
p — 1 and the derivation d4 = [i4,d]. The derivation i4 is characterized by
its action on 1-forms. If p is a 1-form, then i4u is a p-form and

(iap, w) = (u, A(w)) (88)

for each w € APTM.
For k=1 or k =2, and each n € N we define a linear mapping

F(k;n): TT*M — TTEM : ¢5Fx(0,0) — t1*x(0,0), (89)
where x is a mapping from R? to M and
X" :RZ2 = M : (s,t) — x(st", ). (90)

Relations
F(k§0) = Lpreas, (91)
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F(k;n') o F(k;n) = F(k;n' +n), (92)

and

F(ksn)=0 ifn>k (93)

are easily established. It follows that F(1;1), F(2;1), and F(2;2) are the
only non trivial cases. The diagrams

F(k;n)
TTFM TT:FM (94)
Tk M Tk M
TkM —_— TkM

are commutative since x™(0,-) = x(0,-) and the diagrams

F(2;n)
TT2M TT2M (95)
T'TIQM T'TIQM
F(1;n)
TTM ————= TTM

are obviously commutative. The mappings F(k;n) are vector-valued
1-forms.

Proposition 1

(@i (ki) () = i) (96)

if 4 > n and

(dfrzi, F (ks n)(w)) =0 (97)

if 1 < n.
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Proof : The proof is established by the calculations

(dfigi, F(kyn) (875x(0,0))) = fup,:(F(kin)(t"*x(0,0)))
= DI (f 0 x™)(0,0)

0sott

O 1))t

ot

i+1

3! aifn+1

(1—n

(1 —n)!

if 4 > n and

(Afis, F (ks m) (65X(0,00)) = o

if 1 < n.

(1 —mn)!

il

D(l,ifn)(f °

o!

(7 5t 0)

(f(X(Stna t)))\s:O,t:O

x)(0,0)

(Afrsi—n» t"*x(0,0))

|u=0,t=0

Here are the non trivial cases of formulae (96) and (97):

fon M.

= 0,
= (df1;0,w),
— 0,
= (dfy0,w),
= 2(dfy1,w),
— 0,
= 0’

= 2<df2;07 w)

=0

1197

) Qudti—n (f (x (1, 7)) ju=0,1=0

(98)

100
101
102
103
104
105

(
(
(
(
(
(
(106
(

)
)
)
)
)
)
)
)

107

d (102) that if w € im(F(1;1)), then
, then (df2,0, w) = 0 for each function
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Proposition 2

If w € TTM and (dfi,0, w) = 0 for each function f, then w € im(F(1;1))
and if w € TT?M and (dfs,w) = 0 for each function f, then w €
m(F(2;1)).

Proof : Let (2*,4*, 6z#,04Y) : TTM — R*™ be a chart of TTM derived
from a chart (z") : M — R™. If w € TTM and (dfi,0,w) = 0 for each
function f, then dz"(w) = (dz",w) = 0. A representative x of w such that

(" o x)(s,t) = 2" (w) + 2"(w)t + 62" (w)st (108)
can be chosen. If { is the mapping

¢:R? = M : (s,t) = lim y(su™",u), (109)
u—t

then x = ¢! and w = F(1;1)(t%1¢(0,0)).

We use in TT?2M coordinates (z*, 3, ##, 6z, 64%, 64P) derived from a
chart (z%) : M — R™. If w € TT?M and (dfa,,w) = 0 for each function
f, then §z"(w) = 0. We choose a representative x of w such that

(z"ox)(s,t) = 2" (w) + 2" (w)t + %.i&"””(w)t2 + 02" (w)st + %55&“(111)3152. (110)

If ¢ is the mapping defined in formula (109), then x¥ = ¢! and w = F(2;1)
(t>1¢(0,0)).

Proposition 3
m(F(1;1)) = ker(F(1;1)) and im(F(2;1)) = ker(F'(2;2)).

Proof : From F(1;1) o F(1;1) = F(1;2) = 0 and F(2;1) o F(2;2) =
F(2;3) = 0 we derive the inclusions im(F(1;1)) C ker(F(1;1)) and
m(F(2;1)) C ker(F(2;2)). If F(1;1)(w) = 0, then

(dfr;0,w) = (dfr;1, F(151)(w)) = 0. (111)
Hence w € im(F(1;1)). If F(2;2)(w) = 0, then
(dfz0,w) = 3{dfa2, F(2;2)(w)) = 0. (112)

Hence w € im(F'(2;1)). ]

Proposition 4
ker(T7ys) = ker(F(1;1)) and ker(T7ops) = ker(F(2;2))

Proof : The results follow directly from the identities

(dfi, F(1;1)(w)) = (df1:0,w) = (df, Trar(w)) (113)
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for w € TTM and
(dfo2, F(2:2)(w)) = 2(d fo0, w) = 2(df, Traps(w)) (114)

for w € TT2M. ]

The relations ker(T7y) = im(F(1;1)) and ker(Trop) = im(F(2;1))
follow from the two above propositions.

Let £2¢(M) and 25(M) denote the exterior algebras of differential forms
on the tangent bundles TM and T2M respectively. We will denote by a9 3/
the homomorphism

mlon™ : 21 (M) — 2o(M). (115)

Derivations ip(x;,) and dp.,) are associated with the vector-valued 1-

forms F(k;n). The diagram

iF 1;1
2 — - 0,(m) (116)
UQlM 021M
ip(2;1
(M) — 0 0, (a)

is commutative.

The article [12] offers a generalization of the Frolicher and Nijenhuis
theory. Let ¢ : N — M be a differentiable mapping. The mapping ¢* :
&(M) — ®(N) is a homomorphism of the exterior algebras. A derivation of
degree p relative to ¢* is a linear operator a : (M) — @(N) such that ay is
a form on N of degree ¢ + p and

a(p Av) =apu A v+ (=1)Pp*u A av (117)

if 4 is a form on M of degree ¢ and v is any form on M. A derivation
of the algebra &(M) is a derivation relative to the identity mapping 1.
A derivation a relative to ¢ is said to be of type i, if af = 0 for each
function f on M. A relative derivation a of degree p is said to be of type
d, if ad — (—1)Pda = 0. If i4 is a derivation of type i, relative to ¢, then
dyg =iad — (—1)Pdiy is a derivation of type d, relative to ¢. Note that the
expressions ad — (—1)Pda and isd — (—1)Pdis are not commutators since
each of these expressions involves two different exterior differentials d. If a
is a derivation of degree p relative to ¢* and ¢ : O — N is a differentiable
mapping, then the operator ¢*a: @(M) — @(0O) is a derivation of degree p
relative to (¢ o ¢)* since

k ok

e a(p Av) = orap A o' + (=)Mo " A prar
= @ apA(pop)v+ (=1)"(pop)'uAy*ar (118)
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if pis a form on M of degree g and v is any form on M. If a is a derivation of
type i, or dy, then p*a is a derivation of the same type. Relative derivations
are again local operators and are completely characterized by their action
on functions and differentials of functions.

A wector-valued p-form relative to ¢ : N — M is a linear mapping

A A\PTN — TM (119)

such that if w € APTyN, then A(w) € T, M. We associate with a vector-
valued p-form A relative to ¢ a derivation i4 relative to ¢* of type i, and
degree p—1 and the relative derivation d4 = igd—(—1)Pdig. If p is a 1-form
on M, then isqu is a p-form on N and

(iap, w) = (u, A(w)) (120)

for each w € APTN.

Let T(0) : TM — TM be the identity mapping interpreted as a defor-
mation of the tangent projection 7as : TM — M. We associate with T'(0)
derivations ir(g) : 2(M) — 21(M) and dp) : 2(M) — 21(M) relative
to opr = T7m*. The derivation ir(g) is a derivation of degree —1. If p is a
(¢ + 1)-form on M, then irqyu is a g-form on TM and if wi,...,w, are
elements of TTM such that rra(wi) = ... = 7rar(wy), then

<iT(0)M,w1 VANAN wq) = <M,7'TM(U/1) A TTM(wl) VANAN TTM(wq)>. (121)

Let X : M — TM be a vector field. The operator X *ip(q) is a derivation
of 2(M) of type i, and degree —1. For each 1-form p on M we have

X*ipo)p = ir@yp o X = (u, T(0) o X) = (u, X) = ixp. (122)
Hence, X*ir() = ix. The relation X*d7(y) = dx is established by

(123)
Let f be a function on M. For each vector v = £(0) = t£(0) € TM we
find

dr)f(v) = ir@)df(v)

= (df,T(0)(v))

= (df,v)
D(f 2 £)(0). (124)
Hence, i(o)df = fi1, dp)f = fiz1, and dpydf = dfi.1.
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For each vector w € TTM there is a mapping 6¢ : R — TM such that
w = kH1(86£(0)). Let wy, ..., w, be elements of TTM such that

TTM(wl) =...= TTM(wq) (125)

and let
061 :R—=TM,...,06: R —=TM (126)

be the mappings such that
wy = k5 (66€1(0)), ..., w, = KVH(IE,(0)). (127)
We will require that these mappings satisfy the condition
Tar 0 081 = -+ = Tar 0 0§, (128)
The following construction proves the existence of such mappings. Let
(z%,2*) : TM — R?™ be a chart of TM and (z*,3*, 6z*,63") : TTM —

R*" a chart of TTM derived from a chart (%) : M — R™. Mappings
061, ... ,0&, characterized by

(2%, 5) (081 (1)) = (2" (w1) + ti™ (wy), 02 (wy) + t6i™ (wy))

(2", 82) (864 (1)) = (" (wq) + 13" (wg), 62 (wq) + 163 (w1)) (129)
for ¢ close to 0 € R have the required property since z"(w;) = ... = z"(w,)
and #"(w;) = ... = 2" (wy). We denote by & the mapping Tay 0 6&; = ... =

Tar 0 0&,. The following proposition is stated in terms of the mappings ¢ and
0&1,...,0&,.

Proposition 5
If ¢ > 0 and p is a g-form on M, then drgyu is a g-form on TM and

<dT(O)N7 wr A A wq) =D(pu, 06 N... A (5fq>(0) , (130)
where wy, ..., w, are vectors in TTM such that rra(wr) = ... = 7rar(wg).
Proof : Let an operator a : 2(M) — 1(M) of degree 0 be defined by

af =dpq)f (131)

for each function f on M and

(ap, w1 A ... ANwg) = D(p, & A ... A 0Eg)(0), (132)
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if g > 0, pis a g-form on M, and wy,...,w, are elements of TTM such that
TTM(wl) = ... = TTM(wq).

We show that a is a derivation relative to ops. If fi and fo are functions
on M, then

a(fg) = dr)(fg) = dr)fgoTm+formdryg = afgoTm~+formag. (133)

If f is a function on M and p is a g-form on M with ¢ > 0, then

(a(fp),wr Ao Awg) = D(fp, 061 A ... N6&)(0)
— D((f 0 &) (061 A .. A 3E,))(0)
= (df, t€(0))(p, Trar(wr) A A Tar(wq))
T FEO)D{ 66 A ... A dE(0)
= af(t&(0))(opmp, wi A ... Awg)
+on f(E€(0))(ap, wi A ... Awg)
= (afoymp + omfap, wi A... Awyg). (134)

If g1 and pg are forms on M of degrees g1 > 0 and g2 > 0, respectively, and
4= q1 + g2, then (¢(0) = sign(0))

(a (Ml Apz),wi A Awg) =D{p1 A pa, & A ... A 6&q)(0)

= qz. D @)D ({15060 (1) A A1) (20 0y A - A 6o (a) (0)
0€Sy
, D (11,085 (1)A - A0 q1)) (0) {2, 085 (g1 +1) A - AN Eo(q)) (0)
ql qz 0€Sy
+D <H1: 6§a(1) AL A 6£a(q1)> 0 <M23 6§0(q1+1) AN 660(‘1)) (0))
T Z ) ((apr, wo ) A -+ Ag(g)) (B2, TT (Wo (gy 41)) A+ A TTar (W, (g)))
ql a2 g€ESy
+ <,Ll,1, TTM(’an(l)) A TTM(wJ(ql))> <a,u2,w0(q1+1) AN...A wa(q)>)
P D> e(0) ((amn, W) Ao Ay qr)) {002, Wa (g1 A At ()
ql a2 ocESy

(o, Wo (1) A AWo(qy)) (a2, Wo(g41) A - A o))
= (ap1 Aompz +ompr A aps,wi A ... Awg). (135)

This completes the proof that a is a derivation relative to oas.
Let w be an element of TTM. We associate the mapping

06 - R — TM : 1 — tx(-,1)(0) (136)
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with a representative y : R? — M of w. If f is a function on M, then

(adf,w) = D(df,d£)(0)
d
= A0 o

d
= AL (D0 g
= DI (f0x)(0,0)
= fraa(th'x(0,0))
= (dfi;1, "' x(0,0))
= (dp(ydf,w). (137)
The equality adf = dp)df together with dp(g)f = af for each function f

imply the equality dr() = a
The mapping

T(1) : T2M — TTM : t2£(0) — tt£(0) (138)

is a vector valued 0-form relative to 719 M. We associate with T'(1) deriva-
tions iT(l) : .Ql(M) — .QQ(M) and dT(l) : .Ql(M) — .QQ(M) relative to
oot . Derivations ir(1) and dp(1) have properties analogous to those of
derivations iz and dr). If pis a (¢ + 1)-form on TM, then ipg)u
is a ¢-form on T?M and if wi,...,wq are elements of TT?M such that

Tr2pr(wy) = ... = T2 (wy), then
(i@t WA . Awg) = (1, Tp2 ag (w1 ) ATT 9 0p (w1 A ATT 901 (w0,)). (139)

Let F be a function on TM. For each element a = t2£(0) € T2M we
have

dryF(a) = dF(a)

— <dF T(1)(#2€(0)))
— (dF, 11£(0))

— D(F o £)(0). (140)
If wy,...,w, are elements of TT?M such that
TTQM(wl) = ... = ’TTQM(U]q), (141)

then it is possible to choose mappings

06 :R—=TM,...,6{: R —-TM (142)
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such that
wy = &5 (62661(0)), ..., w, = K> (t26€,(0)) (143)

and
TMO(sfl:"'Z’TMO(sfq. (144)
Let (z",4*) : TM — R?®™ be a chart of TM and (2", &, &, 6z¥, 63, 05™) :

TT?M — R a chart of TT?2M derived from a chart () : M — R™.
Mappings 01, ..., 08, such that

() 060 ()= (x" (0 +£8% (00) + G (00) 2 () 40082 )+ 503 )

. . - ., . .
()08 0)= (5" (0)+18% (10 + 5 8% 0,822 1) + 163 1,) + 568 )

(145)

for ¢ close to 0 € R are a correct choice since z"(wi) = ... = z"(w),
H(wy) = ... = i"(wy), and £"(w1) = ... = &"(w,). We introduce mappings
6é =kblo tdEg, . . ,5561 =rtlo tE,. (146)

The following proposition is stated in terms of these mappings.

Proposition 6
If ¢ > 0 and p is a g-form on TM, then dpyu is a g-form on T?M and

(dpaypswi A .. Awg) = D{u, 661 A ... A 6Eg)(0) (147)

where wy, . .., wq are vectors in TT?M such that 7o (w1)=...=Tp27(wy)-

Proof : The proof of this proposition is analogous to that of Proposition 5.
An operator a : 21(M) — 25(M) of degree 0 is defined by

ag = dp()g (148)
for each function g on TM and
(apr, w1 Ao Awg) = D{u, 6&1 A ... A 6Eg)(0), (149)

if ¢ >0, p is a g-form on TM, and wy, ..., w, are elements of TT?M such
that 7ra(wi) = ... = Trm(wg). It is shown that a is a derivation relative
to 093 by performing essentially the same calculations as in the proof of
Proposition 5.
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With a representative x : R? — M of an element w = t"2y(0,0) of
TT?M we associate the mapping

66 :R — TTM : ¢ 5y (-, 1). (150)
If f is a function on M, then
(ad fi0,w) = D(dfr0,0€)(0)

d
= E <df1;0a 5£(t)>\t:0
d

= E<df1;0aﬂ?l’lX(‘at)(O))\t:o

d
= E(fl,l;l,Oa¢1’1X('at)(0)>|t:0

= 4 (DO (7o x)(0,1)
= DD (f 2 x)(0,0)

= f12:.1(t"%x(0,0))

= fiza,1(w))

= (df2n,w)

= (dpq)dfi,0, w) (151)

=0

and
(adfi;1,w) = D{df1;1,6€)(0)

d .
= 35 (d 11, 0€()) =0
%(dflglaml’IX('at)(O»\t:O
= Sl 0
= 4 (D(7 o x)(0,1)
= D) (f 0 x)(0,0)

= f1,2;1,2(ﬂ:1’2x(0,0))

= fi21,.2(w))

= <df2;27w>

= (dpydfi;1,w). (152)

Equalities dp1)fi;,0 = afi0, dryfin = afi1, dpaydfie = adfip, and
dp(1)dfi;1 = adfi; for each function f imply the equality dp(;) = a. ]

=0
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Proposition 7
The relation

irea)dra) — drayiran = o2 Mira) (153)
holds.

Proof : We show that the operator ip(o,1)d7(1) — dr)iF(;1) is a derivation
of type i, and degree 0 relative to o9'ys. For each function g on TM we
have

(iF(Q;l)dT(l) - dT(l)iF(l;l))Q =0. (154)

For any two forms p and v on TM we have

(iren)dra) — dra)iramn) (kA v)
= ipgn (drayp A o2 vy + o2 vp A dpyv)
—dpa)(ip@np Av+p ANipanv)
= ip@ndrapu A o2 My + dpyp A iF(Q;l)O'QlMV
+iF(2;1)021MM Ndpmyr + o' nrp A g dryv
AL BN A ooty — U21MiF(1;1)M A dpayv
—dgayp A o2’ mipiyy — o2 v A drayieay
= ip@)dras A o2 vy + o2 pp A ippaydra v
—drayiranp A o2 v — o2 v A dpyipany
= (ip@1)dra) — dryira))pe A oo v
+oo' pp A (ir@ndra) — drayira;))v: (155)
This proves that the operator under consideration is a derivation of the
stated type. The equalities

(ir@ndra) — dryira))dfuo = irendfea = dfzo = 02" Mire)dfio

(156)
and
(irendra) — drayirany)dfin = ipeadfee — draydfio
= 2df2;1 - df2;1
= 03 mip@0)dfi (157)

complete the proof. [
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2.1.6. The Lagrange differential
We define a linear operator E : £21(M) — (29(M) by the formula

E = O'QlM - dT(l)iF(l;l)' (158)

Proposition 8
For each 1-form p on TM the 1-form Epu on T2M is vertical with respect
to the projection o : T2M — M.

Proof : Verticality means that (Eu,w) = 0 for each w € ker(Tropr).
Verticality is established by showing that ip(o,)Eu = 0 since ker(Traps) =
im(F(2;1)) and (ip;1)Ep,v) = (Ep, F(2;1)(v)). The equality

ip@Ep = ip@a (o2’ v — drayipan)s

= (02" Mir@;1) — dr@yiraniras) — 02 Mipa))p
0 (159)

follows from ip(1.1)ip(1;1)0 = ipae) = 0. We have used formulae (92) and
(153) and the commutativity of the diagram (116). |

The operator P = ip(1;1) + {4 — {21 appears in the decomposition
ooty = E + dp(1)P used in the calculus of variations. The decomposition
oot yp = Ep+ dp(1)Pu for a 1-form p on TM is usually obtained by using
local coordinates and integrating by parts. For each 1-form g on TM the
1-form Py is vertical with respect to the tangent projection 737 : TM — M.
This property follows from ip1,1)Pu = ip;1)ir@;ns = ir@2)p = 0.

Let L be a function on TM. Verticality of the form EdL makes it possible
to construct a mapping L : T2M — T*M such that ma 0 EL = T93.
This mapping is characterized by (EdL,w) = —(EL(72p(w)), Trons(w))
for each w € TT2M. Verticality of the form PdL implies the existence of
a mapping PL : TM — T*M such that mp; o PL = 7py. This mapping is
characterized by (PdL,w) = (PL(trpm(w)), T1ar(w)) for each w € TTM.

The equation L o t?y = 0 is a second order differential equation for a
curve v : I — M known as the FEuler-Lagrange equation derived from the
Lagrangian L : TM — R. The mapping PL is called the Legendre mapping.

2.1.7. The tangent of a vector fibration and its dual

Let ¢ : E — M be a differential fibration. Local triviality implies the
existence of adapted charts. An adapted chart (z%,e’) : E — R™F as-
sociated with a chart (") : M — R™ is characterized by the equality
% o e = x". Note that the symbol z” is used to denote a coordinate of
M and also of E. The chart (z%,4*) : TM — R?®™ is an adapted chart
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for the tangent fibration 73;. There are two fibrations 7 : TE — FE
and Te : TE — TM for the tangent bundle TFE. The tangent chart
(z",e',3*,¢7) for TE induced by an adapted chart (z”,e’) is adapted to
both fibrations since (2%, e’) o T = (2", ¢€’) and (2", &) o Te = (x, ).
Let e : E— M and ¢ : F — M be differential fibrations. The equalizer

F(WXE)E ={(f,e) € F x E; o(f) =(e)} (160)

of the projections ¢ and ¢ is called the fibre product of F and E. A curve

(0,p) : R — F x E consists of two curves p: R — E and 0 : R — F such
()
that e o p = ¢ 0 0. The mapping

x:T(F x E)y=TF x TE:t(o,p)(0)— (ta(0),tp(0)) (161)
20 (T, Te)

is obviously injective. Let (2, e,di* é7) and (z%, 4,4, fB) be tangent

charts for TE and TF respectively induced by adapted charts (", e') and

(z%, fY). If (w,v) € TF x TE, then (z¢,i)(w) = (z*,4")(v) since
(T, Te)

Typ(w) = Te(v). Curves p: R — E and o : R — F characterized locally by

(zF,e) o p: R — R™F 1 515 (25(v) + 555 (v), €' (v) + sé¢'(v))  (162)

and
(@ [ ep: R—=R™ s (a5 (w) + 53" (w), [ (w) +5f*(w)) (163)
define a curve (o,p) : R — F x E such that x(t(o,p)) = (w,v). It

(p:€)
follows that y is surjective. We will identify the space T(F x F) with

(,2)
TF x TE. The diagram
(Te,Te)
TF TE
(TerTe) (164)
(TFaTE)
F x FE
(p:€)
with

(tpy7g) : TF x TE—=F x E:(w,v)w— (tp(w), 7)) (165)
(T, Te) (:€)
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is a vector fibration. If (wq,v1) and (wq,vy) are elements of TF x TE
(Tp,Te)

such that 7p(w1) = 7r(we) and 7r(v1) = T(v2), then (w1, v1) + (wa,v2) =

(wy + wo,v1 +v2). If (w,v) € TF x TE and k € R, then k(w,v) =
(Tp,Te)

(kw, kv). The diagram

T(F x E) X _TF x TE

(p:) (T, Te) (166)
F o (77, 7)
F x FE F x FE
(ps€) (¢5€)
is an isomorphism of vector fibrations.
Let
E (167)
|
M
be a vector fibration with operations
+:F x E—>FE (168)
(e:)
and
-:Rx FEF— E. (169)
Let
O.:M— FE (170)
be the zero section.
The tangent fibration
TE (171)
TEl
E
is a vector fibration with operations
+:TE x TE—TE (172)

(TE 57—E)
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and
-:RxTE - TF
and the zero section
O, : £ = TE.
The diagram
TFE
Tel
TM

is again a vector fibration with operations

+*.TE x TE—>TE
(Te,Te)

and
4t RxTE—>TE

and the zero section
OTE : TM — TE.

The operation +° is obtained from the tangent mapping

T+:T(E x E) > TE

G

(173)

(174)

(175)

(176)

(177)

(178)

(179)

by identifying the space T(E x E) with TE x TE. The operation -*

(£,) (Te,Te)
is constructed from the tangent mapping

T-: T(R x E) — TE.

(180)

The space T(R x E) is identified with TRx TE = R?x TFE and the operation

% is defined as the mapping
P RxTE — TE: (k,v) = T-((k,0)v).

In the diagrams

Te TE

TE T™ TE E
TE ™ L Te 15
E 2 M ™ —M Ny

(181)

(182)
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vertical arrows are vector fibrations and horizontal arrows define vector fi-
bration morphisms. The space TE with its two vector bundle structures
forms a double vector bundle.

Let
FE F (183)
J ‘|
M M

represent a vector fibration ¢ and its dual vector fibration ¢. Let

(,):F(x)E—>]R (184)
72X

be the canonical pairing. We have the double vector bundle structures for
TE and TF'. The tangent fibrations

TE TF (185)
Te Ty
TM TM

are a dual pair of vector fibrations. The tangent pairing

(,):TF x TE—R (186)
(Te,Te)

is constructed from the tangent mapping

T(,):T(F x E)— TR (187)
(¢5)

by identifying the space T(F x FE)with TF x TE and composing the
(p:€) (T, Te)

tangent mapping with the second projection of TR = R? onto R. If (w,v)

is an element of TF x TFE and (o,p) is a curve in F' x FE such that

(T, Te) ()
(w,v) = (ta(0),tp(0)), then
(w, )" = (t0(0), tp(0))* = Do, p)(0). (188)

If (0,p) isacurve in F' x FE, then
(¢:€)

(to, tp)® = D(o, p). (189)
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Linearity of the tangent mapping (187) implies linearity of the tangent
pairing. If (wi,v1) and (wq,vy) are elements of TF x TE such that

(T, Te)
TF(wl) = TF(UIQ) and TE(Ul) = TE(UQ), then
(w1 + w2, v1 +v2)* = (w1, 01)" + (w2, va)". (190)
If (w,v) € TF x TEF and k € R, then
(Tp,Te)
(kw, kv)® = k{w,v)". (191)
There are mappings
pe : E x E—TE : (e,e) — ty(0) (192)
(£:2)
with
y:R—=>E:s+— e+ se (193)
and
w::E x TE—=TE: (eé)—é— u(ru(é),e). (194)
(g,607TR)
The image of . is the subbundle
VE = {v € TE; te(v) =0} (195)

of vertical vectors.
Let e be an element of a vector bundle E and let f and f’ be elements of
the dual bundle F such that ¢(f) = ¢(f') = e(e). The vector pu,(f, f') € TF

is the tangent vector of the crve 0 : R — F : s — f+sf and O, (e) € TE
is the tangent vector of the constant curve p : R — E : s — e. We have
D{(o, p)(0) = (f',e) since (o, p)(s) = (f,e) + s(f’,e). It follows that

(o(f, ['), Org(e)) = (f',e). (196)

2.1.8. The structure of the tangent bundle of the cotangent bundle

As was stated earlier the fibrations
T*M TM™ (197)
M T™

M M
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for each differential manifold M are a dual pair of vector fibrations with the
canonical pairing

(,): T"M x TM —R. (198)
(WM,TM)
The fibrations
T*TM TTM (199)
TTM TTM
TM TM

are again a dual pair with the pairing

(,):T*TM x TTM >R (200)

(WTM ;TTM)

By applying the tangent functor to fibrations (197) we obtain a dual pair
of vector fibrations

TT*M TTM (201)
Ty T7ar
™ ™
with the pairing
(,):TT*M x TTM = R. (202)
(TWM,TTM)

If ¢ : R — TM and n: R — T*M are curves such that mps on = 737 0 6&
and if w = td£(0) and z = t7(0), then

(z,w)" = D(n, 6)(0). (203)

We have two vector bundle structures for the manifold TTM and the
diagram

K
TTM M

TTM (204)

Tra TTM

™™ ™
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represents an isomorphism of vector fibrations. This is the diagram (83)
with ¥ =k =1 and k" = 0.

Pairings (200) and (202) permit the introduction of the vector fibration
isomorphism

TT*M T*TM (205)
Ty TTM
TM TM

dual to the vector fibration isomorphism (204). If w € TTM, z € TT*M
and 77y (w) = T (2), then

(anr(2), w) = (2, kur ()" (206)
Let dr and iz denote the derivations dp(g) : 2(T*M) — £1(T*M) and iz (g) :
Q2(T*M) — ,(T*M) respectively. The manifold TT*M with the 2-form
drwys = ddpd s form a symplectic manifold (TT* M, drwys). We construct

two natural special symplectic structures for this symplectic manifold.
The following proposition implies that the diagrams

(TT*M,dr9 ) TT*M T*TM (207)
T Tmar TTM
™™ TM T™

constitute a special symplectic structure for the symplectic manifold
(TT*M,drwyr).

Proposition 9
If e TT*M, w € TTT*M, and v € TTM satisfy relations 7pr=pr(w) =
z and TT7p(w) = v, then

(apr(2),v) = (dpdpr, w). (208)

Proof : Let x : R?> — T*M be a representative of w. The mapping
@ = w0 x is a representative of v and ¢ = x(0,-) is a representative of z.
The vector ks (v) = t115(0,0) is represented by the curve

n: R — TM : ¢ 3(t,)(0) = ty(-, 1)(0). (209)
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The mapping
0C: R — TT*M : t — tx(-,1)(0) (210)

appears in the formula
(drdar, w) = D(dar,6¢)(0) (211)

derived in Proposition 5. Relations n = Tmps 0 8¢ and ¢ = 7p+ps 0 ¢ follow
from

(Tmar 0 6¢)(8) = Trar(tx (-, 2)(0)) = t(mar 0 x) (-, 2)(0) = t(-,£)(0) (212)
and
(Trear 0 0C) (1) = Trmr (8x(+, 1) (0)) = x(0, ). (213)
The calculation

(anr(2),0) = (z,60(v))"

= (t¢(0), t(0))"

= D(¢,n)(0)

= D(In,d¢)(0)

= (drInr, w) (214)
completes the proof. [

The mapping Br«arw,,) @ TT*M — T*T*M characterized by

(Ber=Mwn) (), ) = (war, u A ) (215)

with v € TT*M and v € TT*M such that 7« (u) = 7r<pr(v) establishes
an isomorphism

/8 T* M
T — M) e (216)
TT*M TTT* M
T*M T*M

of vector fibrations.

Proposition 10
A special symplectic structure for the symplectic manifold (TT*M,
drwyy) is introduced by the diagrams
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Bir=m
(TT* M, irwnr) TT* M (CMent) _peepr . (217)
TT*M TT*M TT* M
T* M T*M T*M

Proof : We have dywjys = dirw)s since dwys = 0. Further

(Ber= M) I My w) = (I a1, TH(T M) ()

= (T M (TBr Mwopg) (W) T vt (T B M) (W)
= (B Mywnr) (TTT* M (W), T(7T2 01 © B M) (W)
= (B Mwnr) (T 0 (W) ), T2 01 (W)
= (wm, T M (w) A Trre s (w))
= (i

1ITWhr, W ) (218)

for each w € TTT*M. Hence, ﬁEkT*M,wM)ﬁT*M = irwy. [
The symplectic form d7wps can be obtained as the pull back aj,;wras of
the symplectic form wrys on T*TM. The pull back 5} (T M) T M is again
the symplectic form drway.
Comparing the Hamiltonian special symplectic structure with the La-

grangian structure we observe that irwys — drdy = —dipdys. The function
Gy = —ipdy on TT*M plays the role of the function G introduced in
Section 2.4.

An alternative analysis of the structure of TT*M is offered in a recent
Springer-Verlag text! in Section 6.8 on page 161. We are not in total agree-
ment with this analysis. In particular, we failed to identify the second sym-
plectic structure whose existence is claimed in this publication. We suspect
that the claim may be false.

3. Dynamics of autonomous systems

3.1. Motions and variations

Let M be the configuration manifold of an autonomous mechanical sys-
tem. A configuration is a point z € M and a motion of the system is a
differentiable curve £ : I — M defined on an open interval I C R. The first
and second prolongations of a motion ¢ denoted by § and f represent the
velocity and the acceleration along the motion.

1 J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer (1999).
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An infinitesimal variation of a motion § : I — M is a differentiable
mapping 0§ : I — TM such that 7 0 0§ = {. Mappings 0§ = kb o t6€
and 0§ = k%1 s o $26¢ are the infinitesimal variations of the velocity f and
the acceleration f Relations 7y 0 66 =&, 7ras 0 55 f, and T2/ 0 55 f
are satisfied. The derivations of additional relations

TTMO(Sé::TTMOKMOTt(sf
= TTMOTt(sf
— ¢ (219)

and

Trlon o 55 = Trloy ok o 1‘5265
= Ky o Troras o 266
K o 66
= ¢ (220)

are based on the commutativity of the diagram (212) with &' = k£ = 1 and
k" = 0 and the same diagram with k =1, ¥’ =2, and k" = 1.

3.1.1. Force-momentum trajectories

The fibre product
™M x T'M (221)

(ﬂ—M 77TM)

is the force-momentum phase space Ph of the system. A pair (f,p) € Ph
consists of the external force f and the momentum p at x = wpr(f) = mar(p).
A force-momentum trajectory of an autonomous system is a curve

(¢,n) : I — Ph. (222)

The two curves ¢ : I — T*M and 5 : I — T*M represent the external force
and the momentum along the motion & = mpr 0 = mpr 0.

3.1.2. The variational principle of dynamics

Let L : TM — R be the Lagrangian of the mechanical system. The
action is a function A which associates the integral

b
A(E, [0, ) = /L o (223)
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with a motion ¢ : I — M and an interval [a,b] C I. The variation of the

action is the integral
b

A o) = [ (dL,) (224)
associated with an infinitesimal variation 6§ : I — TM.

The dynamics of the system is a set D of force-momentum trajectories
satisfying the following variational principle. A trajectory ((,n) : I — Ph
isin D if

b
A ab) = = [(6.56) + ((8).560) — (n(a).Be(@)  (225)
a

for each [a,b] C I and each variation ¢ such that 7p7006 = a0l = marom.
The variation of the action can be converted to an equivalent expression:

SA(E, [a,b]) = [(dL,6¢)
(AL, T7'9 s 0 6€)

(09! prd L, 6€)

b
(02" mdL — dopryip(;1)dL, 66) + /(dT(l)iF(l;l)dLa 5€)

S S S S

_ /bgLogag +/bD<PLoé,5£>

= - / (EL 0 &, 88) + ((PL o §)(b),0¢(b)) — ((PL o €)(a), 6(a)).

(226)

By using variations §¢ with §¢(a) = 0 and 6£(b) = 0 we first derive from the
variational principle the Euler-Lagrange equations

ELof=¢( (227)
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in [a,b]. Equations

(PL o &)(a) = n(a) (228)

and

(PLo&)(b) = n(b) (229)

follow. These equations are satisfied for each interval [a,b] C I. It follows
that a force-momentum trajectory (¢,n) is in D if and only if equations

ELof =¢ (230)
and _
PLo& =n (231)
are satisfied in 1.
Sets
E= {(f, @) ET*M x T°M; f= EL(a)} (232)
(7TM5T2M)
and
P= {(p,v) €ET*M x TM;p= PL(U)} (233)
(mm,T)

are graphs of the Euler-Lagrange and the Legendre maps respectively. The
dynamics can be stated in terms of these sets treated as differential equa-
tions. Equation (230) means that the mapping (¢, £) is a solution curve of the
differential equation E and equation (231) means that the mapping (7, ) is a
solution curve of the differential equation P. The relation & = mp0( = mpr0n
is always imposed. The Euler-Lagrange equation alone does not provide a
complete characterization of dynamics. The equation (231) could be called
the velocity-momentum relation. It is an essential part of dynamics. The set

Ey={a€T*M; 0=EL(a)} (234)

is a version of the Euler-Lagrange equations without external forces. Solu-
tion curves are motions of the system with zero external forces.

3.1.3. Lagrangian formulation of dynamics

The version

/b (AL, 8¢) = — /b (¢,08) + /b D(n, 6¢) (235)
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of the variational principle is suitable for deriving the infinitesimal limits.
Infinitesimal limits are obtained by dividing both sides of the equality by
b — a and passing to the limit of b =a =t € I. The resulting equality

<dLa 55) = _<Ca 55) + D<na 55) (236)

satisfied by the force-momentum trajectory (¢,n) : I — Ph for each varia-
tion §€ : I — TTM such that 757 0 ¢ = wpr 0 € is a characterization of the
dynamics D equivalent to the original variational principle. The equality

(€,08) = (pmys © (1,€), Oy © 6€)" (237)
is derived from formula (196) and the equality
D{1,66) = {8, £0€)" = (1, rins © 06)" (238)

is a version of formula (189). By combining the two equalities we obtain the
formula

_<<a 55) + D(na 5§> = _<,u'7rM © (nﬂ C)a OTTM o 5§>t + <n7 KM © 5§>ﬂ: (239)
Relations
TT+M © fry, © (1,() = TTopr 00 = 1) (240)
and .
oM © Orgyy © 68 = Toap 0 Kipp © 6§ (241)

permit the use of formula (190). The result is

_<Ca 55) + D<n’ 55) = <7’ — My © (na C)a K/]V.[ ° 5€>¢
= <(PM ° (Ca 77)7 Knp © (%)t
= {anm o par o (¢,1),88). (242)

We have obtained a characterization of the dynamics D in terms of a first
order differential equation

or o (¢) =ay " odLoé (243)
with & = mp 0¢ = mp om. The codomain of (¢,7n) is the fibre product
M X TT*M.

(T T OT 7% 1)

Starting with the identity

b b b
/(dL,&g’) = —/(5/:05, 5€) +/D<7>Log',5g) (244)
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instead of equation (236) and performing the operations leading from (236)
to (243) with n and ¢ replaced by PL o & and EL o € respectively we obtain
the identity

orr o (ELo €, t(PLof)) = ay 'odLok. (245)

A useful characterization
PL =1r-pr0apy ' odL (246)

of the Legendre mapping follows from this identity.
Equation (243) means that the curve (¢, n) satisfies the differential equa-
tion

D={<f,w)eT*M < TT'M; @M(f,w)EDo}, (247)

(T Mr>TAroT s ar)

where
Do ={w € TT*M; ay(w) = dL(rr-p(w))} . (248)

The set Dy is a version of the Lagrange equation without external forces. The
image of the differential dL : TM — T*TM is a Lagrangian submanifold of
(T*TM,wrar). Consequently the set Dy = aps ' (im(dL)) = im(aps 'odL)
is a Lagrangian submanifold of (TT*M,drwys) and the Lagrangian is its
generating function relative to the Lagrangian special symplectic structure

(04
(TT*M, dr9 ) TT* M M T*TM (249)
T T [ TTM
™M ™™ ™M

for the symplectic manifold (TT* M, drwyy).

3.1.4. Hamiltonian formulation of dynamics

A Lagrangian is said to be hyperregular if the Legendre mapping PL =
T3 0 apr o dL is a diffeomorphism. We will denote by A the inverse of
the Legendre mapping for a hyperregular Lagrangian.

For a hyperregular Lagrangian the set Dg is the image im(Z) of the
mapping Z = ap; " o dL o A. This mapping is a vector field on T*M since
Trepm 0 Z = Tpepr0oaps L odLo A= 1p«p. Let a function H : T*M — R
be defined by H(p) = (p, A(p)) — L(A(p)). We show that the function —H
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is a generating function of Dy relative to the Hamiltonian special symplectic
structure

Bt m,
(TT* M, irwn) TT* M (Mwr) g (250)
TT*M TT*M TT* M
T*M T*M T*M

for (TT*M,drwyr). The generating function of Dy relative to the Hamilto-
nian special symplectic structure is the function

(LOT7TM—|-GM)OZ, (251)
where Gy = —ird,s. From
TryoZ=Tryoay 'odLoA=rnpyodLoA=A (252)

and

~Gu(Z(p)) = irdnm((an ' odLo A)(p))

(I, (on_1 ) dL o A)(p))

((rr=m o an P odLo A)(p), (Trp o ap ' odLo A)(p))
{p, (s 0 dL o A)(p))

{p, A(p)) (253)

it follows that
(LoTrpy +Gyp)oZ =—H. (254)

The field Z is a Hamiltonian vector field and the function H is a Hamiltonian
for this field since
iZwM = Z*iTwM = —dH. (255)

The formula

7= odH (256)

-1
_'B(T*M,wM)
is an equivalent expression of the field Z in terms of the Hamiltonian. A
force-momentum trajectory ({,n) is in D if and only if

(t) = Z(0(t)) + pmy (C(2), (1)) (257)

for each t € I.
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3.1.5. Poisson formulation of dynamics

We define the Poisson temsor Wy : T*T*M — TT*M by Wy =
—B(_Tl*M’wM). The Poisson bracket of two functions F and G on T*M is
the function {F,G} = (dF, Wy o dG). The vector field Z is expressed as
7 = WyrodH and the Lie derivative dz F = (dF, Z) of a function F on T*M
is expressed as the Poisson bracket {F, H}. A force-momentum trajectory

((,m): I — Phis in D if and only if

D(F on)(t) = {F, H}(n(t)) + (dF, pry, (C(2), 1(2))) (258)

for each function F on T*M and each t € I.

4. Dynamics in the presence of non potential forces

If non potential internal forces are present, then the dynamics is no
longer represented by a Lagrangian. Formulations similar to those for the
potential case are still possible if the differential dL of the Lagrangian is
replaced by a 1-form A on TM. This form is typically the difference dL — p
of a potential part dL and a 1-form p on TM vertical with respect to the
tangent projection 7j; representing velocity dependent forces. With the
help of operators E and P we construct mappings EX : T?M — T*M and
PA: TM — T*M characterized by (EX,w) = —(EX (7237 (w)), Ton(w))
for each w € TT2M and (P, w) = (PA(7ra(w)), Trar(w)) for each w €
TTM. These constructions are possible due to verticality properties of forms
E ) and P established in Section 2.7.

4.0.6. The variational principle

The dynamics can be derived from a variational principle even if the
action and its variation are no longer defined. The dynamics of the system is
a set D of force-momentum trajectories satisfying this variational principle.
A trajectory (¢,n) : I — Phis in D if

b b

/ (M 6€) = — / (C,66) + (n(B). GE(B)) — (n(a),66(a))  (259)

a a

for each [a,b] C I and each variation 6¢ such that 7p;00¢ = mpr0 = mpr0m.
From the equivalent form

b b
/ (M 56) = - / (EXoE.66) +((PAoE)(b), 6E(B)) — (PAoE)(a). 5¢(a)) (260)
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of the variational principle equations

Exoé=¢, (261)
(PAo&)(a) =n(a), (262)

and
(PAo&)(b) =n(b) (263)

are derived. These equations are satisfied for each interval [a,b] C I. It fol-
lows that a force-momentum trajectory (¢,n) is in D if and only if equations

Edoé=( (264)

and

Proé=n (265)

are satisfied in 1.

4.0.7. Lagrangian formulation of dynamics

The Lagrangian formulation is the infinitesimal limit derived from the
version

b b b
[onvaer=- [tc.o0+ [ Do (266)
a a a
of the variational principle. The first order differential equation
oo (Ci) =anr todof (267)

follow from this principle.
The identity (245) is replaced by

oro(ELoé, t(PLo€))=ap ‘odLok. (268)
The formula
'P)\:TT*MOOAMflo)\ (269)

follows.
The differential equation

p={iweTM  x  TTMipn(fu)eDof. (1)
(T ,TMOT T )

with

Dy ={w € TT*M; ay(w) = Arr-m(w))} (271)
can be introduced. The set Dy is submanifold of (TT*M,drwys) but not a
Lagrangian submanifold unless A is closed. The form A can be considered a
generating form of Dy relative to the Lagrangian special symplectic structure
since Do = apy H(im(N)).
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4.0.8. Hamiltonian formulation of dynamics

Asin the potential case we say that the Lagrangian form A is hyperregular
if the mapping PA is a diffeomorphism. In the hyperregular case we denote
by A the inverse of the mapping PA. The set Dy is the image of the vector
field Z = apr~' o Mo A. This field is not necessarily a Hamiltonian vector
field. Let a 1-form x on T*M be defined by

(x,2) = (2, TA(2))t — (\, TA(2)). (272)

We will show that —y is the generating form of Dy relative to the Hamilto-
nian special symplectic structure.

According to formula (61) adapted to the present case the generating
form of Dy relative to the Hamiltonian special symplectic structure is the
form

Z*((TTFM)*A-FdGM). (273)

The formula Z*Gy(p) = —(p, A(p)) derived for the potential case is still
valid in the non potential case with dL replaced by A. The equality

(Z*dGar, 2) = (AZ*Gar, 2) = — (v, TA(2))® (274)
follows from this formula. We have
(Z*((Tra)* A+ dG ), 2) = (N, TA(2)) — (2, TA(2))* = —(x,2)  (275)

since
TryoZ =Trpyoay "odoA=mppyolod=A (276)

Hence, the form —x defined in (272) is the generating form of Dq relative
to the Hamiltonian special symplectic structure. The formula
—1
Z = _’B(T*M,MM) o X (277)
follows.
In the special case of A = dL —p we have PA = PL since ip(;1)p = 0 due
to verticality of p. Let H : T*M — R be the Hamiltonian corresponding to
L. This Hamiltonian is defined by H(p) = (p, A(p)) — L(A(p)) and satisfies

the relation
(dH, z) = (2, TA(2))" — (dL, TA(z)). (278)

By comparing this relation with
(x:2) = (2, TA(2))" = (dL, TA(2)) + {p, TA(2)) (279)

we derive the formula
x =dH + A*p. (280)
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As in the potential case a force-momentum trajectory ({,n) is in D if
and only if

n(t) = Z(n(t)) + pry (1), n(2)) (281)
for each t € 1.

4.0.9. Poisson formulation of dynamics

The vector field Z of the Hamiltonian formulation is expressed as Z =
W ox. A force-momentum trajectory (¢,n) : I — Phis in D if and only if

D(F on)(t) = (AF, War o x) + (dF, pr,, (¢ (), 1(2))) (282)

for each function F on T*M and each t € I.

5. Local expressions

Coordinate definitions of objects add nothing to the clarity of the con-
ceptual structure of a theory. Covariance of a definition with respect to
coordinate transformations guarantees the existence of an intrinsic interpre-
tation of the object being defined without providing an interpretation. We
have provided intrinsic definitions. Now we give local expressions of most
objects introduced earlier in order to facilitate comparison with traditional
formulations of mechanics. Local expressions are also used in calculations
and appear in examples.

5.1. The tangent and the cotangent fibrations

Coordinates
(zF,02) : TM — R*™ (283)
and
(z", fr) : T*M — R*™ (284)
induced by coordinates
() : M — R™. (285)
Projections:
(") o Tar = (z"), (286)
(%) 0 oar = (27). (287)

Zero sections and linear operations:
(xn’ 61')\) o OTM = (xn’ 0)7 (288)

(2%, 627) (v + ') = (25 (), 02> (v) + 02> (v')) (289)
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defined if
(z"(v")) = (z"(v)),
(2", 627) (kv) = (2" (v), kéz (v)),
(@™, fA) © Ox,, = (27,0),
(@™, L)+ 1) = (@ () IA(F) + ()
defined if

(z"(f')) = (="(f)).
(@, P (RSF) = (@ (), kIA(F))-

The canonical pairing:

defined if

Coordinates
(zF,4*) : TM — R*™

and
(", pn) : T"M — R

are also used.

5.1.1. The dual pair TTM and T*TM

Coordinates:
(25,3, 0z", 64%) : TTM — R*™,

(z", 3, a,,b,) : T*TM — R'™.

Projections:
(25, 3) o rap = (25,30,

(x",at)‘) OTTNM = (x",a'c)‘).

Zero sections and linear operations:

(%, 4, 02", 62”) 0 Oy, = (27,47, 0,0),

1227

(297)

(298)

(299)

(300)
(301)

(302)
(303)

(304)

(2,37, 62", 627 ) (w+w') = (2" (w), & (w), 02 (w)+oz" ('), 02" (w)+6a" (w'))

defined if
(", &) (w') = (2, i) (w),
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(2,5, dzH, 63" ) (kw) = (x"(w), £ (w), kdzH (w), kdz” (w)), (307)
(2", 3, 4, by) 0 Oy, = (27,37,0,0), (308)
(z", a'n)‘, ayu,by)(z + Z') = (2"(2), a'c>‘(z), a,(z)+ au(z'), by(z) +b,(2")) (309)

defined if
(z",80)(2) = (&",3)(2), (310)

(x“,:b)‘,au,by)(kz) = (ac"(z),ﬁn)‘(z),kau(z),kby(z)). (311)
The canonical pairing
(z,w) = a,(2)0z" (w) + be(z)0z" (w) (312)

defined if
(x“,dC)‘)(z) = (ac’““,a'c)‘)(w). (313)

5.1.2. The dual pair TTM and TT*M

Coordinates: .
(2,02, i", 62¥) : TTM — R*™, (314)
(", pr, 3", py) : TT*M — R*™. (315)
Coordinates (.’L‘H,.’i‘)‘) in TM are used.
Projections:
(z",3%) o Tray = (a%,37), (316)
(x“,:bA) oTrmy = (ac’““,a'c)‘). (317)

Zero sections and tangent linear operations:

(z", 02>, 2", 02") 0 Oryy, = (2,0, 8", 0), (318)
(2", 622, i, bz ) (w+Tw)=(z" (w), dz (w oz (w'), " (w), 62 (wHSE (w'))
(319)

defined if
(a”, ) (') = (2%,87) (w), (320)
(", 627, ", dx¥ ) (k -* w) = (2" (w), kdz N (w), £ (w), kdE (w)), (321)
(", px, 2", py) © Orpr,, = (27,0, 24,0), (322)
(&%, o2, 8", o) (2 +" 2') = (27(2), pA(2) +pA(2"), 8" (2), B (2) + D0 (') (323)

defined if
(z",80)(2') = (&",3)(2), (324)

(2", px, %, Do) (k¥ 2) = (2(2), kpa(2), 2" (2), kpy(2)). (325)
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The tangent pairing;:
(z,w)® = pe(2)02" (w) + pr(2)03" (w) (326)

defined if
(a",3%)(2) = (2", ) (w). (327)

Let £ : R — M, 0§ : R — TM, and n : R — T*M be curves such that
maron = Thodé =& Let £ : R — TM, 66 : R — TTM, and 7 : R — TT*M
be prolongations of these curves.

(3(0), FEO) = T DT (1) 1= = 6 (0)3E"(0) + me(0)3E5(0).  (328)

5.1.3. Relations between TT*M and T*TM
The local expression
Y A -
(xn’ T 50, bl/) capy = (x'ia x apuapl/) (329)

of the isomorphism as : TT*M — T*TM dual to the canonical involution
kb1 : TTM — TTM defined locally by

(25,627, 2", 64Y) o kP = (27,4, 0z, 64). (330)
Coordinate systems (301), (314), and (315) are used in the local expressions.

5.1.4. The dual pair TT*M and T*T*M

Coordinates:
(2%, px, &%, py) : TT*M — RA™, (331)
(@, pas Y, 2) : TT*M — R (332)

Projections:
(2", px) o 7= = (27, py) (333)
("Lﬁap)\) O TT*M = (‘ILﬁap}\) (334)

Zero sections and linear operations:
(xnap)\aibuapu) ° OTT*M = (x“,p)\,0,0), (335)

(@, px, 34, By) (2 +2) = (27(2), pa(2), 29 (2) + 3" (2), o (2) +Pu) (2")) (336)
defined if
(2", p2)(2) = (2", p2)(2), (337)

(@, px, &, pu) (kz) = (2"(2), pa(2), ki (2), kpy (2)), (338)
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(Inap)\ayluzy) OOWT*M = (xﬁapAa070)7 (339)
(2", Dxs Yy 27) (b 1) = (27 (5), PA (D), ypu (D) + yu(V'), 2" (b) + 27 (V) (340)
defined if

(@, p2) () = (2", p) (D), (341)
(2", Pxs Y, 27) (kb) = (3"(b), pA (), ky,(b), kz" (b)). (342)
The canonical pairing
(b, 2) = y(b)2"(2) + 2" (b)p" (2) (343)
defined if
(2", pA)(0) = (5", p) (2). (344)

The isomorphism B(7+pr,,) : TT*M — T*T*M has a local expression
(.’L‘K,p)\, Yus ZV) o /B(T*M,wM) = (In,p)\,p“, _I‘V)' (345)

5.1.5. The bundles T>*M, TT?*M, and T*TM

Coordinates:
(5,0, i") : T2M — R?™ (346)
(25,2, 4, &', &', %) . TT?M — R%™ (347)
(zF, &, &' &, " ") TPTM — R™ (348)

Projections:
(z") o Tor = (2), (349)
(xnaib)\) o 7-12M = (l'n,iﬁ)\), (350)
(Inai‘)\’i‘#) O Tr2)p = ("L‘Kai‘)\ai#% (351)
(2", 3") o Trons = (2%, 2"), (352)
(25,20, 2", i) o Trlop = (25, 20, &', &), (353)

Mappings:
(xn’i,)\’xl#’ilu’xllw’i,llﬂ) o /<;2’1 — (:E'i,x')‘,:t“,:bw,iﬁw,.’fm), (354)
[ NESCY VR S VN IV L ¢ 1,2 _ (.6 JN My v slw T

(2, 2%, " 2™, 2 8 o kT = (2, 2" TR Y 22T, (355)



Dynamics of Autonomous Systems with External Forces 1231

5.1.6. Tangent prolongations and tangent mappings

Iff :R — TM and f : R = T?M are prolongations of a curve ¢ : R —
M and z" o £ = &7, then

(z%,3%) 0 & = (&7, &%) = (€%, D). (356)

and
(2", 8%, i) 0 € = (¢7,6",€") = (£7,DEY, D*¢H). (357)
Let () and (y') be charts of manifolds M and N let (z"&}) and (3, 97)
be induced charts of TM and TN, and let (z"& x“) and (y',97,3"%) be
induced charts of T2M and T?N. A differentiable mapping o : M — N
is represented locally by a set of functions ' : R™ — R defined by o =
y' o ao (z%)~'. The tangent mapping T and the second tangent mapping
T2 have local representations

o . J
(', 57) 0 Tar = (of(m“), Oa (IW> (358)
oxhk
and
o X oo 02ak ook
i onk 2. _ i L K LY K A L K
) 0 Toa = (o), S (o), 200 o) + B i
(359)

5.1.7. Vector valued forms and derivations

Local expressions
(zF,4*) o T(0) = (", i), (360)

(2", px, 2", py) o T = (2", px, 2", pv), (361)
(zF, 3N, 2, i) o T(1) = (2, i, 2", &), (362)

(2%, 20, 2", i) o F(1;1) = (2, 37,0, ), (363)
(25,30, i1, 2V &9 E ™) o F(2;1) = (¢, 20,57, 0,2'%, /™), (364)
(25,22, ik, 2 B9 3™ o F(2;2) = (2F, 2, 5",0,0,22'™) (365)

of vector valued forms
T(0): TM — TM, (366)

T:TT*M — TT*M, (367)
T(1) : T°M — TTM, (368)
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F(1;1) : TTM — TTM, (369)
F(2;1) : TT?M — TT?M, (370)

and
F(2;2) : TT2M — TT?M. (371)

Corresponding derivations:

dr(yz" = ip@ydz” = 3", (372)
drz" = ipds” = 2", drp, = irdps = Pr. (373)
dr(1)z® = iyda® = &%, dp)i® = iy da” = i, (374)
ip(nda” = 0, ipg)di® = da, (375)
ipo e = 0, ipe)dd® = da¥, ipe)di® = di", (376)
and
(22 A" = 0, ip(0)dd® = 0, ipr(ai)di”™ = 2da”. (377)
5.1.8. Louville, symplecting and Poisson structures
On T*M:
Iy = prdaz”, (378)
wyr = dpy A dz. (379)
On T*TM:
Yrm = apdx”™ + b dz”, (380)
wry = dag A dz® + db, A dE". (381)
On T*T*M:
Irear = Ypdz”™ + 2" dpy, (382)
I pr = dye A dz™ + d2 A dp,.. (383)
On TT*M:
drdas = prdz” + pedi”, (384)
irwyr = peda® — 2%dpy, (385)
drwyr = dps A dz® + dp,. A di”. (386)

The function Gy on TT*M:

GM = iTﬁM = p,i.’I'}K. (387)
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Local expression

_ oOF 0G oG oF
F K T _
{ 7G} ° ($ 7p)\) ok apﬁ Ik apn

(388)

of the Poisson bracket of functions F' and G on T*M with local expressions

F=Fo(z"p\)" (389)
and
G=Go(z"py)" (390)
5.1.9. Other constructions
The mapping
Pry : T"M x T'M — TT'M (391)
(Tar,mar)
has a local expression
(:L‘Hap)\amluapu) O Umyr = (:Lﬁap)\aoa fV) (392)
in terms of coordinates
(", fopu) : T°"M x  T*M — R*™ (393)
(7TM,71'M)
and (315).
The mapping
Oryy 2 TFM X TT*M — TT*M (394)

(M ST MOTTH 1)
is defined locally by

(Inap)\a:tﬂapl/) C Prpr = (Inap)\ai‘#apl/ - fV) (395)

in terms of coordinates

(@, fxs Pus 37, P0) : T*M X TT*M — R™™ (396)

(AT M OTT* ap)

and (315).
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6. Local description of dynamics
6.1. The variational principle

We associate mappings

£ = 2% 0 §€
£ = 3% o0 §€
8¢5 = 52" o 6€
6EF = 53" o 6€

defined in terms of coordinates
(2, i, 6x", 627) : TTM — R*™,
with a variation
06 : 1 — TTM.
We will denote by L the local expression
Lo (zF,i*) ' : R™ - R

of the Lagrangian.

The variation of the action

b

/ (e (1), € (1))at

a

is expressed as the integral

oL
ok

b
/ @ﬁ» (€9(), €7 (1))¢" () +

(en(2), é”(t))één(t)) ar.

a

If non potential internal forces represented by the form

p = px(z”,")dz"

are present, then the differential of the Lagrangian is replaced by

- gﬁe (a,)da" + 27

A
oz

(xll’ xu)dxﬁ — Pk (mﬂ’ 'i'y)dxfi

(401)

(402)

(403)

(404)

(405)

(406)

(407)
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and the variation takes the form

b
[ (e 0.emmen+ 5

a

(69 (1), € (£))56~ (1) — pn(f“(t),é”(t))t?f”(t)) dt.

(408)
Integration by parts results in

b
/ (“ (e (1), & (1)) — L 9% <su<t>,é"<t),é‘“<t»—pn@“(t),é"(t») 56~ (1)t

ox”®  dt di~
Ye . o . ﬂ
o (€4(0), € 0)5E(B) — (€ ), € ()56 (). (109)
The expression 5
d or s
C L (e, ). (410
stands for
d /oL . 8%°L . . 2L . -
G (B (0.8 0) = 2@ 0.8 00 + o (0.8 0 )
(411)
The variational principle requires that the variation (409) be equal to
b
- [ Cwser vt + n " 0) - nu(0)6" ), (12)
where
Nk =PxOMN (413)
and
Ce=[ro( (414)
are mappings derived from a force-momentum trajectory
(¢,n) : I — Ph. (415)

The Euler-Lagrange equation

doc
dt 9~

oL
oxh

(E7(2), €7 (), €9 (1)) = 7 (€4(8), € (8)) + pu(€"(1), € (1)) = ()

in [a,b] and the momentum-velocity relations

O € 0,8 (@) = na), (417
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9 (e @.€0) = et an

are derived from this variational principle. The variational principle is to
be satisfied in each interval [a,b] C I. It follows that the Euler-Lagrange
equations and the relation

€. 0) = i) (19

are satisfied in 1.

6.1.1. The Lagrangian formulation

Lagrange equations

Melt) = o (€ (1), €4(0) (420)

and
ielt) — Gell) = S (E0. (D) — pul€H (D, E70)  (421)

are derived from the infinitesimal form

O (€00, € (D)IE" (1) + (€ (1) € ()IE(1) — pal€(1) € (1))35(1)
= A1) (1) i (IE (1) + e ()31 (422)

of the variational principle.
Equations describing the dynamics in the potential case are obtained by
setting p = 0.

6.1.2. The Hamiltonian formulation

The Legendre mapping P is represented locally by

oL
(o) o PA = (5, 2508 ) (423)
It is convenient to introduce functions
IIy =pyoPlo(zH z")"" = % (424)

If the Legendre mapping is a diffeomorphism, then the inverse diffeomor-
phism A is represented locally by

(z%,2*) 0 A = (2", Az*, py)), (425)
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where A® are the functions

A% =3F o Ao (zM,p,) L. (426)
Relations
Ty (2" (p), A" (2" (p), P (P))) = PA(P) (427)
and
A (a"(v), 11, (27 (v), 27 (v))) = 37 (v) (428)

are satisfied.
In the potential case we have a Hamiltonian H : T* — R represented
locally by the function

H =Ho (zF,py)"". (429)
This function is obtained from the formula
H(z",py) = pkA"(zt,p,) — L(z", A (2", p,)). (430)

In the non potential case there is the Hamiltonian form

X = Xx(o",py)dz" + x" (2", p,)dps

OH OH
= H v “7 v " #aAV p’ g "
b, (@, po)dpi + 2o (2", py)da” + pi(a, A7 (27, py))de
= A"(z",py)dps — oc (", A7(3", po))dz" + py (2, A (2”, ps))dz”

oxh
(431)

obtained from formula (280). The function  is the local expression of the
Hamiltonian H associated with L.
The vector field Z = apr P odoAd = —ﬁ(Tl*MwM) o x is expressed by
(:L‘nap)\aml#apu) °0Z = (I'f’p)\’xﬂ(mﬂ’pa)’ _XI/(:L‘papU))

. on oH o
= ("0 S0P )e = S . 0) — ol 475, )
n

oL
= <$K7p)\a/1“($pap0') —(:L‘p7AU(:L‘w7p7F)) _pl/(Ip’Aa(Iwapﬂ))) .

" Oz
(432)

A force-momentum trajectory ({,n) satisfies Hamilton’s equations

_oH

éli (t) - apn

(), m (1)) (433)

and
iel0) = Gult) = — (€0, (1)) — pe€ (1), €°0)). (434)
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6.1.3. The Poisson formulation

Hamilton’s equations are equivalent to equations

af (68, m0 (1))

K

T (Wm0 +

OF OM  OM OF

- o - "
<8xn opr,  OzF 3pﬁ) (EX(t),nu(t))
LOF
Opx

(€5 (@), 1 (£)) (G (1) = pr(€(2), mw (1)) (435)

satisfied for each function F on T*M with local expression

F =Fo(z"p))"". (436)

7. An example

An aircraft is travelling in a vertical plane M. The force of gravity and
the force due to air viscosity are the internal forces. The jet propulsion force
and the aerodynamic forces acting on the wings, the rudder, and the elevator
are controlled by the pilot and are considered external forces.

An Euclidean affine chart

(z",2") : M — R? (437)
induces charts
(z", 2", i" V) : TM — R, (438)
(2P, zv, &P, 27, 5", 7)) TM — RS, (439)
and
(:Eh?IUafhafvaphapv) . T*M( X )T*M — RG. (440)
TM T M

A force-momentum trajectory ({,n) has a local representation

(fhagﬂagha<vanhanv) = (mh,mv,fh,fv,ph,pv) ° (CJI) (441)

The mapping £ = wpr o { = mpr on and its prolongations § and § have local
representations
(¢",€") = (&",a") o¢, (442)
(€",€°,€",€%) = (a* 2%, 3", i") o €, (443)
and

(Eh,gv,gh, €0, e &%) = (ah, 2", ", 57, @", 7)o €. (444)
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The form
A =dL — p = mi"di" + mi'di® — mgda® — ypatdah — y,a0dz?  (445)

is constructed from the Lagrangian
L= Z((@")? + (")) - mga" (446)
and the form
p = yidz" 4,30 da® (447)
representing the non potential force of viscosity.
The dynamics in a time interval [0, T is governed by the Euler-Lagrange
equations

m&" (t) + " (t) = Cu(t), (448)
mé" (1) + 1" (t) + mg = (u(t), (449)

and the momentum-velocity relations

nw(0) = m"(0), 1,(0) = m&¥(0), m(T) =mé"(T), ny(T)=mé"(T)

(450)
at the boundary. In the absence of external forces and with initial conditions
(¢",€",€",€)(0) = (0,0,0,0) (451)
we obtain the trajectory
eht) = o (1 — exp (—’y—ht)) , (452)
Yh m
2
&) =22 (1 ~exp (—ﬂt)) M9y (453)
Yo m Yo
and the momenta
mu
mn(0) = mvg, 7,(0) =0, mu(T) = 2 exp (- 247),
Yh m
2
o (T) = — 29 (1 — exp (-lhT)) (454)
Yo m
at the boundary. In order to maintain a horizontal trajectory
g (t) = vot, €(t) =0 (455)
with constant velocity it is necessary to supply external forces
Cn(t) = yhvo, Cu(t) = mg. (456)

The external forces are true forces of control. We have described a very
simple situation. In reality these forces can not be chosen in advance since
they may have to compensate the effects of varying weather conditions and
allow changes of the trajectory necessary due to unforeseeable circumstances.
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