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TOPOLOGICAL COMPACTONS�H. Arod¹M. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Cra
ow, Poland(Re
eived De
ember 21, 2001)One dimensional topologi
al kink whi
h has stri
tly �nite size with-out any exponential or power-like tail is presented. It 
an be observed ina simple me
hani
al system akin to the one used in order to demonstratesinus-Gordon solitons.PACS numbers: 03.50.Kk, 11.10.Lm1. Introdu
tionExtended stable or long-lived obje
ts like kinks, vorti
es or domain wallsare interesting for several reasons. First, they are 
opiously produ
ed in
ondensed matter systems, espe
ially in time dependent 
onditions. Se
-ond, they have non-perturbative origin, often related to existen
e of topo-logi
ally nontrivial se
tors in pertinent models. Resulting 
omplexity oftheir stati
 
hara
teristi
s, of evolution and intera
tions poses a 
hallengeto theorists as well as to experimenters. Third, they likely were produ
edin phase transitions in the early Universe and 
ontributed to later evolutionof it. Finally, physi
s of the extended obje
ts inspires avant-garde ideas,for example, about the four-dimensional Universe being a domain wall. Allthese aspe
ts are dis
ussed in numerous papers. Introdu
tory le
tures andextensive lists of referen
es 
an be found in e.g., [1�5℄.In the present paper we 
on
entrate on topologi
al kinks. In a typi
al
ase one des
ribes them in terms of a �eld theoreti
al model whi
h hasa non 
onne
ted va
uum manifold. Basi
 kink is stati
. The pertinentsolutions of �eld equations smoothly interpolate between a pair of 
lassi
alva
ua belonging to di�erent 
onne
ted 
omponents of the va
uum manifold.Typi
ally, the �elds approa
h the 
lassi
al va
ua exponentially. From thestati
 kink one 
an get a moving one by Lorentzian or Galilean boosts.� Paper supported in part by ESF �COSLAB� Programme(1241)



1242 H. Arod¹The topologi
al kinks are parti
ularly important be
ause they are relatedto domain walls. Consider a stable planar domain wall, homogeneous in thetwo dire
tions along the domain wall. The 
orresponding �elds depend onlyon a 
oordinate � parametrising the dire
tion perpendi
ular to the domainwall. They are pre
isely the same as for the kink. Thus, the kink 
an beidenti�ed with the transverse pro�le of the planar domain wall. The pla-nar domain wall is the main prerequisite of analyti
al des
ription of 
urveddomain walls with a help of expansion in width, see, e.g., [6℄.We 
onsider a �eld theoreti
al model whi
h involves a single, real s
alar�eld � with double degenerate 
lassi
al ground state ��0. This is a typi
alsetup for theoreti
al investigations of domain walls. However, in our 
ase the�eld potential V (�) is not smooth. It is merely 
ontinuous, and it steeplyin
reases to in�nity at the ground state values ��0 of the �eld. At �rstglan
e su
h a model might look quite arti�
ial. As a matter of fa
t, it is justthe opposite � su
h �eld potential has very simple me
hani
al realizationdes
ribed in Se
tion 3. One 
an easily perform experiments in whi
h theone-dimensional kinks are observed. This is the �rst attra
tive feature ofthe presented model.Another interesting fa
t has to do with the theoreti
al side of the model.It turns out that the kink in our model has the pe
uliar feature that at
ertain �nite distan
e �0 from the 
enter of it the s
alar �eld rea
hes exa
tlythe 
lassi
al ground states ��0 and remains 
onstant at larger distan
es.The 
ommon exponential approa
h to the ground state is absent here.Solutions of non-linear evolution equations whi
h have 
ompa
t supportare 
alled 
ompa
tons. They were obtained for various modi�ed Korteweg�de Vries (K�dV) equations [7�11℄. The 
ompa
ton presented in our paperis distinguished by two features. First, it has a non-vanishing topologi
al
harge related to the degenerate 
lassi
al ground state, and therefore itsembedding in a higher dimensional spa
e gives a stable domain wall. Inthe K�dV 
ase, higher dimensional generalisations are not straightforward.Se
ond, our 
ompa
ton 
an be observed in the simple me
hani
al system.The plan of our paper is as follows. In Se
tion 2 we dis
uss the topo-logi
al 
ompa
ton. The me
hani
al system with 
ompa
tons is presented inSe
tion 3. Se
tion 4 
ontains several remarks.2. The topologi
al 
ompa
tonWe 
onsider one dimensional topologi
al kinks. The spa
e 
oordinateis denoted by �, and the time 
oordinate by � . Moreover, � and � aredimensionless. The reason for this notation is that in theoreti
al analysisof the me
hani
al model presented in the next se
tion � and � appear asres
aled ordinary time t and position x, respe
tively.



Topologi
al Compa
tons 1243Lagrangian of our model has the formL = 12 (���)2 � 12 (���)2 � V (�) ; (1)where V (�) is the �eld potential. In order to keep the following dis
ussionsimple, we assume that the ground state in the model is double degenerate,and that it is obtained for � = ��0. The �eld potential is symmetri
,V (�) = V (��), and it has a lo
al maximum at � = 0. Considerationspresented below 
an easily be generalised to potentials of other forms.As always, the kinks are given by solutions of the �eld equation obtainedfrom Lagrangian (1). They interpolate between the two ground state valuesof the �eld. For the stati
 kink the �eld equation has the form�2��� V 0(�) = 0 ; (2)where V 0 = dV=d�. Multiplying Eq. (2) by ��� and integrating over � weobtain the equation 12(���)2 � V (�) = 
onst: (3)We expe
t that ��� ! 0 when � ! �0: Therefore, 
onst: = �V (�0); andEq. (3) 
an be written in the form(���)2 = 2 (V (�)� V (�0)) : (4)For the kink, �(�) in
reases with � monotoni
ally from ��0 to +�0. Hen
e,��� � 0, and Eq. (4) 
an be written as��� =p2 (V (�)� V (�0)) : (5)This well-known equation, see e.g. [12℄, is a very 
onvenient starting pointfor a detailed analysis of the kink.Let us �rst have a look at the behaviour of � when it approa
hes �0.Then, �(�) = �0 � Æ�(�) ;where Æ� � 0. Expanding the l.h.s. of Eq. (5) in Æ� and keeping only theleading term we obtain the following equation��Æ� = �p2jV 0(�0)jpÆ� : (6)Here V 0(�0) is, of 
ourse, understood as the limit from the side of � < �0(the same applies to all derivatives V (k)(�0) below). General solution ofEq. (6) has the form Æ�(�) �= 12 jV 0(�0)j(�0 � �)2 ; (7)



1244 H. Arod¹where �0 is an arbitrary 
onstant. Thus, we have obtained the paraboli
approa
h to the ground state value of the �eld �0. This value is rea
hed at� = �0 exa
tly.The unusual polynomial approa
h of the �eld to its ground state valueis, of 
ourse, due to the fa
t that V 0(�0) 6= 0. Then, in the expansionV (�)�V (�0) = V 0(�0)(�� �0)+ 12V 00(�0)(�� �0)2 + 13!V 000(�0)(� � �0)3 + : : : (8)the �rst term dominates the limit � ! �0�. The well-known exponentialapproa
h is obtained when V 0(�0) = 0 and V 00(�0) > 0. In this 
aseÆ�(�) �= 
0 exp��pV 00(�0)�� ; (9)where 
0 is a 
onstant. If the �rst non-vanishing term is of the order ofk > 2 and (�1)kV (k)(�0) > 0 then the approa
h to �0 is power-like witha negative power of �, namelyÆ�(�) �= "�k2 � 1�r2jV (k)(�0)jk! # 22�k 1� 2k�2 : (10)The power-like asymptoti
s (10) is su�
ient for 
onvergen
e at large � ofthe integral in the expression for the total energy Ek of the kink,Ek = +1Z�1 d��12 (���)2 + V (�)� V (�0)�: (11)The term V (�0) is in
luded in order to subtra
t the energy of the groundstate. Of 
ourse, the existen
e of the asymptoti
 solutions (7), (9), (10) doesnot mean that there always exist smooth, �nite energy solutions of Eq. (5)in the whole range of �, whi
h would have that asymptoti
 behaviour.The kink lo
ated at � = 0 is the solution �(�) of Eq. (5) whi
h has thefollowing dependen
e on �: �(�) is equal to ��0 for � � ��0, then it startsto in
rease in the paraboli
 manner,�(�) �= ��0 + 12 jV 0(�0)j(� + �0)2;it rea
hes 0 at � = 0, and 
ontinues to in
rease to +�0 as � approa
hes �0.Close to �0 �(�) �= �0 � 12 jV 0(�0)j(� � �0)2 :



Topologi
al Compa
tons 1245Finally, �(�) = �0 for � � �0. Anti-kink is obtained by 
hanging the sign of�(�). It is 
lear that su
h kinks and anti-kinks are 
ompa
tons.As the example, let us take the �eld potential V (�) of the formV (�) = � 
os�� 1 for j�j � �01 for j�j > �0 ; (12)where �0 is a 
onstant, � > �0 > 0, see Fig. 1. It has two degenerate minimaat � = ��0.
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Fig. 1. Plot of the potential V (�) for �0 = 1:1.Be
ause of the in�nite potential barrier, modulus of the �eld � 
annotex
eed �0. Therefore, Eq. (5) is now supplemented by the 
ondition��0 � � � �0: (13)Potential of this kind has the simple me
hani
al realisation des
ribed in thenext se
tion. The angle �0 is an external parameter whi
h we 
an easilyregulate.The sharp turns of the potential (12) at � = ��0, as well as its in�niteslope when j�j > �0, are idealisations, of 
ourse. Nevertheless, in the 
ase ofthe me
hani
al model des
ribed in the next se
tion these idealisations quitea

urately 
apture the essentials of the physi
s of the model. The detailedform of potential is to 
ertain extent a matter of 
hoi
e. To des
ribe thephysi
s of the me
hani
al model we 
ould take another potential Vs(�) whi
h,for example, would be smooth and �nite for all values of �. Su
h potentialwould have V 0s (�0) = 0, and a very large V 00s (�0). Then, the exponentialtail (9) pra
ti
ally vanishes for all � larger than 
ertain �0, and e�e
tivelywe get the 
ompa
ton with a

ura
y whi
h is satisfa
tory from the physi
al



1246 H. Arod¹viewpoint. The potential Vs(�) would also have a very large slope for � > �0,whi
h e�e
tively would not allow to in
rease signi�
antly � above �0. Thus,e�e
tively we would have again the restri
tion � � �0 with satisfa
torya

ura
y.The length of the 
ompa
ton is equal to 2�0. It is related to �0 by thefollowing formula obtained by integration of Eq. (5)�0Z0 d� 1p
os�� 
os�0 = p2�0 :The 
hange of the integration variable to � = �=�0 gives formula1Z0 d� 1p
os(��0)� 
os�0 = p2�0 �0 ; (14)from whi
h we 
an �nd the dependen
e of �0 on �0. In parti
ular, for small�0 we may expand the 
osine fun
tions. Keeping the terms up to � �40 weobtain the following formula�0 = �2 �1 + �2016 + : : :� : (15)Thus, the length of the kink remains �nite in the limit �0 ! 0. Nevertheless,in this limit the kink, of 
ourse, disappears be
ause it be
omes 
ompletely�at, �(�) � 0.Be
ause �(��) = ��(�), it is su�
ient to obtain the kink solution in thehalf-line � � 0. The initial value of � at � = 0 is known: �(0) = 0. Then,Eq. (5) is equivalent to the following integral equation�(�)=�0Z0 d�p
os(�0�)� 
os�0 = p2�0 � : (16)The integral on the l.h.s. 
an be related to an ellipti
 fun
tion, but the
orresponding formulas are not very illuminating. The integral equation(16) 
an be used for 
al
ulation of the approximate forms of �(�). For small� we just expand in � the 
osine fun
tion 
os(�0�) and the inverse of thesquare root. We �nd that for � ! 0�(�) = 2 sin �02 � � 13 sin �02 �3 + : : : : (17)



Topologi
al Compa
tons 1247In order to obtain �(�) for � ! �0� we subtra
t from both sides of Eq. (16)p2�0=�0, and on the l.h.s. we use formula (14). We obtain the integral over� in the interval [�(�)=�0; 1℄. Su
h integral 
an be ta
kled by expanding theintegrand in " = 1� �. Finally, we �nd that for � ! �0��(�) = �0 � sin�02 (� � �0)2 � sin(2�0)48 (� � �0)4 + : : : : (18)Also obtaining a numeri
al solution is rather easy. The solution �(�)starts from � = 0 at � = 0 with the slope�������=0 = 2 sin �02 ;and it has the smooth shape presented in Fig. 2. It has been obtained withthe help of Maple 
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Fig. 2. The numeri
al solution �(�) of Eq. (5). V (�) is given by formula (12) with�0 = 1:1.The total energy of the �eld is given by the formulaE = �0Z��0 d�h12 (���)2 + 
os�� 1i : (19)This formula gives E = 0 for � = 0 � su
h a 
hoi
e is the most natural onein the 
ontext of the me
hani
al model of Se
tion 3. Using Eq. (4) we 
anwrite it also as E = �2�0(1� 
os�0) + �0Z��0 d�(���)2: (20)



1248 H. Arod¹The �rst term on the r.h.s. of formula (20) gives just the energy of theba
kground on the segment o

upied by the kink. The se
ond term is equalto the proper energy of the kink. It 
an be regarded as its rest mass M .We have 
omputed E and M numeri
ally. Sample results are given inTable I. TABLE IResults of numeri
al 
omputations of the total energy of the �eld and of the restmass of the 
ompa
ton. �0 E M �01.5 �0.263 3.128 1.8241.0 �0.062 1.478 1.6740.2 �0.019 0.044 1.5740.05 �0.002 0.002 1.570We see that the total energy E of the �eld is negative in spite of thepresen
e of the kink with the positive rest mass. We have 
he
ked that thisis the 
ase also for other 
hoi
es of �0.3. The me
hani
al system with the topologi
al 
ompa
tonLet us take a thi
k re
tilinear wire with 2N +1 pendulums 
onne
ted toit at the points xi; i = �N; ::: ; N: The points xi are separated by a 
onstantdistan
e a. Ea
h pendulum has a very light arm of length R and a massm at the free end. It 
an swing only in the plane perpendi
ular to thewire. All pendulums are fastened to the wire sti�y, hen
e their swingstwist the wire a

ordingly. The wire is elasti
 with respe
t to su
h twists.Ea
h pendulum has one degree of freedom whi
h may be represented bythe angle �(xi; t) between the verti
al dire
tion and the pendulum. Thus,�(xi; t) = 0 
orresponds to the upward position of the i-th pendulum. Whenall pendulums point upwards the wire is not twisted.Equation of motion for ea
h pendulum, ex
ept for the �rst and the lastones, has the following formmR2d2�(xi; t)dt2 =mgR sin�(xi; t) + ��(xi � a; t) + �(xi + a; t)� 2�(xi; t)a ; (21)



Topologi
al Compa
tons 1249where � is a 
onstant whi
h 
hara
terises the elasti
ity of the wire withrespe
t to the twisting. The �rst term on the r.h.s. of Eq. (21) is due tothe gravitational for
e a
ting on the mass m, the se
ond term is the elasti
torque due to the torsion of the wire.As for the two outermost pendulums, we assume that they are kept inthe upward position by some external for
e, that is that�(x�N ; t) = 0; �(xN ; t) = 0: (22)The me
hani
al system des
ribed above is essentially identi
al with oneused in a realization of sinus-Gordon solitons, ex
ept that in the 
ase ofthese solitons all pendulums initially point downwards, so that they are inthe stable equilibrium position. In the present 
ase they are put into theseemingly unstable equilibrium position �(xi; t = 0) = 0. However, as weshow below, this position 
an a
tually be stable due to the presen
e of theexternal for
e whi
h implements 
onditions (22). Another di�eren
e withthe sinus-Gordon 
ase is that we me
hani
ally restri
t the range of �(xi; t)j�(xi; t)j � �0 < � (23)by putting on both sides of the wire and parallely to it two rigid rods. Thependulums rebound from the rods if �(xi; t) = ��0:Let us introdu
e a fun
tion �(x; t), where x is a real 
ontinuous variable,twi
e di�erentiable with respe
t to x and su
h that its values at the pointsx = xi are equal to the angles �(xi; t). Hen
e, �(x; t) interpolates between�(xi; t). Of 
ourse, for a given set of values of the angles there is an in�nitenumber of su
h fun
tions. For any of them the following identity holds�(xi�a; t)+�(xi+a; t)�2�(xi; t) = aZ0 ds1 0Z�a ds2�2�(s1 + s2 + x; t)�x2 ������x=xi :We shall restri
t our 
onsiderations to su
h motions of the pendulums thatthere exists the interpolating fun
tion �(x; t) of 
ontinuous variables x; tsu
h that aZ0 ds1 0Z�a ds2�2�(s1 + s2 + x; t)�x2 ������x=xi � a2 �2�(x; t)�x2 ����x=xi (24)for all times t and at all points xi. For example, this is the 
ase when these
ond derivative of � with respe
t to x is almost 
onstant when x runsthrough the interval [xi� a; xi + a℄, for all times t. With the approximation



1250 H. Arod¹(24) the identity written above 
an be repla
ed by the following approximateone �(xi � a; t) + �(xi + a; t)� 2�(xi; t) � a2 �2�(x; t)�x2 ����x=xi :Using this formula in Eq. (21) we obtainmR2d2�(xi; t)dt2 � mgR sin�(xi; t) + �a �2�(x; t)�x2 ����x=xi : (25)Let us now suppose that our fun
tion �(x; t) obeys the following partialdi�erential equation,mR2�2�(x; t)�t2 = mgR sin�(x; t) + �a�2�(x; t)�x2 ; (26)where x 2 [�Na;Na℄, and�(�Na; t) = 0 ; �(Na; t) = 0 : (27)Then, it is 
lear that �(xi; t) obey Eq. (25) and the boundary 
onditions (22).Hen
e, if 
ondition (24) is satis�ed we obtain the approximate solution of theinitial Newton equations (21). In the �nal step, we pass to the dimensionlessvariables � =r gRt ; � =rmgR�a x ; �(�; �) = �(x; t) :Then, Eq. (26) a
quires the form�2�(�; �)��2 � �2�(�; �)��2 � sin�(�; �) = 0 : (28)This equation 
oin
ides with the Euler�Lagrange equation obtained fromLagrangian (1) with potential (12) for j�j < �0. The restri
tion (23) nowhas the form j�(�; �)j � �0 :The range of the spatial 
oordinate � is from ��N to �N , where �N = N �pmgRa=�. The boundary 
onditions for � have the form�(��N ; �) = 0 = �(�N ; �) : (29)Equation (28) with boundary 
onditions (29) has the trivial solution�(�; �) = 0 : (30)



Topologi
al Compa
tons 1251Let us 
he
k stability of this solution against small perturbations. To thisend we write �(�; �) = "(�; �) and we linearise Eq. (28) with respe
t to ".The resulting equation has the form�2"��2 � �2"��2 � " = 0 :It leads to the following dispersion relation!(k) = �pk2 � 1 ; k = �2�N n ;where n is an integer di�erent from zero. The dis
rete values of k are dueto the boundary 
onditions (29). We see that the trivial solution is stableif �N < �=2. Loosely speaking, this 
ondition is satis�ed when the wire isshort enough.The kink 
an appear only if the trivial solution is not stable. Then theboundary 
onditions (29) 
an be satis�ed by lo
ating one half of the kinkat the one end of the wire and one half of the anti-kink at the other end.Ea
h of them has the length �0, where �0 has been introdu
ed in previousse
tion. We have to put at least one full kink in the middle. Therefore, thetotal dimensionless length of the wire has to be equal at least to 4�0. Thus,full 
ompa
tons 
an be observed if �N > 2�0.Finally, let us note that we made a me
hani
al model of that kind, andthe 
ompa
tons were 
learly seen.4. Remarks1. The single kink solution dis
ussed in Se
tion 2 
an be trivially gen-eralised. Lagrangian (1) and 
ondition (13) are Poin
aré invariant.Therefore, Lorentzian boosts give kinks moving with arbitrary velo
i-ties not ex
eeding 1 in the dimensionless variables. Be
ause the kinksdo not feel ea
h other when their 
enters are separated by a distan
elarger that 2�0, it is 
lear that there exist stati
 multi-kink solutions.Su
h �trains� of separated kinks and anti-kinks are also the 
ompa
tontype solutions. Moreover, also kinks and anti-kinks moving with dif-ferent velo
ities 
an be trivially 
ombined to give 
ompa
ton solutionsin a �nite time interval until they tou
h ea
h other.2. Our work 
an be extended in several dire
tions. One 
ould study therelated non-planar domain walls. We have mentioned in the Intro-du
tion that they 
an be 
onstru
ted with the help of expansion inwidth.



1252 H. Arod¹Another dire
tion is suggested by the fa
t that the separated 
ompa
tonsdo not intera
t. Therefore, they seem to be well-suited for testing theoret-i
al des
riptions of produ
tions of topologi
al defe
ts, [2�4℄. The la
k ofintera
tions in the �nal state simpli�es 
ounting of the defe
ts. Our 
urrentwork is devoted to this topi
.One 
ould also study intera
tion of the kink with the anti-kink, for ex-ample, when they s
atter on ea
h other with various relative velo
ities.We would like to thank Dr. P. W�grzyn for remarks pertinent to thiswork. REFERENCES[1℄ P.M. Chaikin, T.C. Lubensky, Prin
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