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TOPOLOGICAL COMPACTONS�H. Arod¹M. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Craow, Poland(Reeived Deember 21, 2001)One dimensional topologial kink whih has stritly �nite size with-out any exponential or power-like tail is presented. It an be observed ina simple mehanial system akin to the one used in order to demonstratesinus-Gordon solitons.PACS numbers: 03.50.Kk, 11.10.Lm1. IntrodutionExtended stable or long-lived objets like kinks, vorties or domain wallsare interesting for several reasons. First, they are opiously produed inondensed matter systems, espeially in time dependent onditions. Se-ond, they have non-perturbative origin, often related to existene of topo-logially nontrivial setors in pertinent models. Resulting omplexity oftheir stati harateristis, of evolution and interations poses a hallengeto theorists as well as to experimenters. Third, they likely were produedin phase transitions in the early Universe and ontributed to later evolutionof it. Finally, physis of the extended objets inspires avant-garde ideas,for example, about the four-dimensional Universe being a domain wall. Allthese aspets are disussed in numerous papers. Introdutory letures andextensive lists of referenes an be found in e.g., [1�5℄.In the present paper we onentrate on topologial kinks. In a typialase one desribes them in terms of a �eld theoretial model whih hasa non onneted vauum manifold. Basi kink is stati. The pertinentsolutions of �eld equations smoothly interpolate between a pair of lassialvaua belonging to di�erent onneted omponents of the vauum manifold.Typially, the �elds approah the lassial vaua exponentially. From thestati kink one an get a moving one by Lorentzian or Galilean boosts.� Paper supported in part by ESF �COSLAB� Programme(1241)



1242 H. Arod¹The topologial kinks are partiularly important beause they are relatedto domain walls. Consider a stable planar domain wall, homogeneous in thetwo diretions along the domain wall. The orresponding �elds depend onlyon a oordinate � parametrising the diretion perpendiular to the domainwall. They are preisely the same as for the kink. Thus, the kink an beidenti�ed with the transverse pro�le of the planar domain wall. The pla-nar domain wall is the main prerequisite of analytial desription of urveddomain walls with a help of expansion in width, see, e.g., [6℄.We onsider a �eld theoretial model whih involves a single, real salar�eld � with double degenerate lassial ground state ��0. This is a typialsetup for theoretial investigations of domain walls. However, in our ase the�eld potential V (�) is not smooth. It is merely ontinuous, and it steeplyinreases to in�nity at the ground state values ��0 of the �eld. At �rstglane suh a model might look quite arti�ial. As a matter of fat, it is justthe opposite � suh �eld potential has very simple mehanial realizationdesribed in Setion 3. One an easily perform experiments in whih theone-dimensional kinks are observed. This is the �rst attrative feature ofthe presented model.Another interesting fat has to do with the theoretial side of the model.It turns out that the kink in our model has the peuliar feature that atertain �nite distane �0 from the enter of it the salar �eld reahes exatlythe lassial ground states ��0 and remains onstant at larger distanes.The ommon exponential approah to the ground state is absent here.Solutions of non-linear evolution equations whih have ompat supportare alled ompatons. They were obtained for various modi�ed Korteweg�de Vries (K�dV) equations [7�11℄. The ompaton presented in our paperis distinguished by two features. First, it has a non-vanishing topologialharge related to the degenerate lassial ground state, and therefore itsembedding in a higher dimensional spae gives a stable domain wall. Inthe K�dV ase, higher dimensional generalisations are not straightforward.Seond, our ompaton an be observed in the simple mehanial system.The plan of our paper is as follows. In Setion 2 we disuss the topo-logial ompaton. The mehanial system with ompatons is presented inSetion 3. Setion 4 ontains several remarks.2. The topologial ompatonWe onsider one dimensional topologial kinks. The spae oordinateis denoted by �, and the time oordinate by � . Moreover, � and � aredimensionless. The reason for this notation is that in theoretial analysisof the mehanial model presented in the next setion � and � appear asresaled ordinary time t and position x, respetively.



Topologial Compatons 1243Lagrangian of our model has the formL = 12 (���)2 � 12 (���)2 � V (�) ; (1)where V (�) is the �eld potential. In order to keep the following disussionsimple, we assume that the ground state in the model is double degenerate,and that it is obtained for � = ��0. The �eld potential is symmetri,V (�) = V (��), and it has a loal maximum at � = 0. Considerationspresented below an easily be generalised to potentials of other forms.As always, the kinks are given by solutions of the �eld equation obtainedfrom Lagrangian (1). They interpolate between the two ground state valuesof the �eld. For the stati kink the �eld equation has the form�2��� V 0(�) = 0 ; (2)where V 0 = dV=d�. Multiplying Eq. (2) by ��� and integrating over � weobtain the equation 12(���)2 � V (�) = onst: (3)We expet that ��� ! 0 when � ! �0: Therefore, onst: = �V (�0); andEq. (3) an be written in the form(���)2 = 2 (V (�)� V (�0)) : (4)For the kink, �(�) inreases with � monotonially from ��0 to +�0. Hene,��� � 0, and Eq. (4) an be written as��� =p2 (V (�)� V (�0)) : (5)This well-known equation, see e.g. [12℄, is a very onvenient starting pointfor a detailed analysis of the kink.Let us �rst have a look at the behaviour of � when it approahes �0.Then, �(�) = �0 � Æ�(�) ;where Æ� � 0. Expanding the l.h.s. of Eq. (5) in Æ� and keeping only theleading term we obtain the following equation��Æ� = �p2jV 0(�0)jpÆ� : (6)Here V 0(�0) is, of ourse, understood as the limit from the side of � < �0(the same applies to all derivatives V (k)(�0) below). General solution ofEq. (6) has the form Æ�(�) �= 12 jV 0(�0)j(�0 � �)2 ; (7)



1244 H. Arod¹where �0 is an arbitrary onstant. Thus, we have obtained the paraboliapproah to the ground state value of the �eld �0. This value is reahed at� = �0 exatly.The unusual polynomial approah of the �eld to its ground state valueis, of ourse, due to the fat that V 0(�0) 6= 0. Then, in the expansionV (�)�V (�0) = V 0(�0)(�� �0)+ 12V 00(�0)(�� �0)2 + 13!V 000(�0)(� � �0)3 + : : : (8)the �rst term dominates the limit � ! �0�. The well-known exponentialapproah is obtained when V 0(�0) = 0 and V 00(�0) > 0. In this aseÆ�(�) �= 0 exp��pV 00(�0)�� ; (9)where 0 is a onstant. If the �rst non-vanishing term is of the order ofk > 2 and (�1)kV (k)(�0) > 0 then the approah to �0 is power-like witha negative power of �, namelyÆ�(�) �= "�k2 � 1�r2jV (k)(�0)jk! # 22�k 1� 2k�2 : (10)The power-like asymptotis (10) is su�ient for onvergene at large � ofthe integral in the expression for the total energy Ek of the kink,Ek = +1Z�1 d��12 (���)2 + V (�)� V (�0)�: (11)The term V (�0) is inluded in order to subtrat the energy of the groundstate. Of ourse, the existene of the asymptoti solutions (7), (9), (10) doesnot mean that there always exist smooth, �nite energy solutions of Eq. (5)in the whole range of �, whih would have that asymptoti behaviour.The kink loated at � = 0 is the solution �(�) of Eq. (5) whih has thefollowing dependene on �: �(�) is equal to ��0 for � � ��0, then it startsto inrease in the paraboli manner,�(�) �= ��0 + 12 jV 0(�0)j(� + �0)2;it reahes 0 at � = 0, and ontinues to inrease to +�0 as � approahes �0.Close to �0 �(�) �= �0 � 12 jV 0(�0)j(� � �0)2 :



Topologial Compatons 1245Finally, �(�) = �0 for � � �0. Anti-kink is obtained by hanging the sign of�(�). It is lear that suh kinks and anti-kinks are ompatons.As the example, let us take the �eld potential V (�) of the formV (�) = � os�� 1 for j�j � �01 for j�j > �0 ; (12)where �0 is a onstant, � > �0 > 0, see Fig. 1. It has two degenerate minimaat � = ��0.
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Fig. 1. Plot of the potential V (�) for �0 = 1:1.Beause of the in�nite potential barrier, modulus of the �eld � annotexeed �0. Therefore, Eq. (5) is now supplemented by the ondition��0 � � � �0: (13)Potential of this kind has the simple mehanial realisation desribed in thenext setion. The angle �0 is an external parameter whih we an easilyregulate.The sharp turns of the potential (12) at � = ��0, as well as its in�niteslope when j�j > �0, are idealisations, of ourse. Nevertheless, in the ase ofthe mehanial model desribed in the next setion these idealisations quiteaurately apture the essentials of the physis of the model. The detailedform of potential is to ertain extent a matter of hoie. To desribe thephysis of the mehanial model we ould take another potential Vs(�) whih,for example, would be smooth and �nite for all values of �. Suh potentialwould have V 0s (�0) = 0, and a very large V 00s (�0). Then, the exponentialtail (9) pratially vanishes for all � larger than ertain �0, and e�etivelywe get the ompaton with auray whih is satisfatory from the physial



1246 H. Arod¹viewpoint. The potential Vs(�) would also have a very large slope for � > �0,whih e�etively would not allow to inrease signi�antly � above �0. Thus,e�etively we would have again the restrition � � �0 with satisfatoryauray.The length of the ompaton is equal to 2�0. It is related to �0 by thefollowing formula obtained by integration of Eq. (5)�0Z0 d� 1pos�� os�0 = p2�0 :The hange of the integration variable to � = �=�0 gives formula1Z0 d� 1pos(��0)� os�0 = p2�0 �0 ; (14)from whih we an �nd the dependene of �0 on �0. In partiular, for small�0 we may expand the osine funtions. Keeping the terms up to � �40 weobtain the following formula�0 = �2 �1 + �2016 + : : :� : (15)Thus, the length of the kink remains �nite in the limit �0 ! 0. Nevertheless,in this limit the kink, of ourse, disappears beause it beomes ompletely�at, �(�) � 0.Beause �(��) = ��(�), it is su�ient to obtain the kink solution in thehalf-line � � 0. The initial value of � at � = 0 is known: �(0) = 0. Then,Eq. (5) is equivalent to the following integral equation�(�)=�0Z0 d�pos(�0�)� os�0 = p2�0 � : (16)The integral on the l.h.s. an be related to an ellipti funtion, but theorresponding formulas are not very illuminating. The integral equation(16) an be used for alulation of the approximate forms of �(�). For small� we just expand in � the osine funtion os(�0�) and the inverse of thesquare root. We �nd that for � ! 0�(�) = 2 sin �02 � � 13 sin �02 �3 + : : : : (17)



Topologial Compatons 1247In order to obtain �(�) for � ! �0� we subtrat from both sides of Eq. (16)p2�0=�0, and on the l.h.s. we use formula (14). We obtain the integral over� in the interval [�(�)=�0; 1℄. Suh integral an be takled by expanding theintegrand in " = 1� �. Finally, we �nd that for � ! �0��(�) = �0 � sin�02 (� � �0)2 � sin(2�0)48 (� � �0)4 + : : : : (18)Also obtaining a numerial solution is rather easy. The solution �(�)starts from � = 0 at � = 0 with the slope�������=0 = 2 sin �02 ;and it has the smooth shape presented in Fig. 2. It has been obtained withthe help of Maple .
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Fig. 2. The numerial solution �(�) of Eq. (5). V (�) is given by formula (12) with�0 = 1:1.The total energy of the �eld is given by the formulaE = �0Z��0 d�h12 (���)2 + os�� 1i : (19)This formula gives E = 0 for � = 0 � suh a hoie is the most natural onein the ontext of the mehanial model of Setion 3. Using Eq. (4) we anwrite it also as E = �2�0(1� os�0) + �0Z��0 d�(���)2: (20)



1248 H. Arod¹The �rst term on the r.h.s. of formula (20) gives just the energy of thebakground on the segment oupied by the kink. The seond term is equalto the proper energy of the kink. It an be regarded as its rest mass M .We have omputed E and M numerially. Sample results are given inTable I. TABLE IResults of numerial omputations of the total energy of the �eld and of the restmass of the ompaton. �0 E M �01.5 �0.263 3.128 1.8241.0 �0.062 1.478 1.6740.2 �0.019 0.044 1.5740.05 �0.002 0.002 1.570We see that the total energy E of the �eld is negative in spite of thepresene of the kink with the positive rest mass. We have heked that thisis the ase also for other hoies of �0.3. The mehanial system with the topologial ompatonLet us take a thik retilinear wire with 2N +1 pendulums onneted toit at the points xi; i = �N; ::: ; N: The points xi are separated by a onstantdistane a. Eah pendulum has a very light arm of length R and a massm at the free end. It an swing only in the plane perpendiular to thewire. All pendulums are fastened to the wire sti�y, hene their swingstwist the wire aordingly. The wire is elasti with respet to suh twists.Eah pendulum has one degree of freedom whih may be represented bythe angle �(xi; t) between the vertial diretion and the pendulum. Thus,�(xi; t) = 0 orresponds to the upward position of the i-th pendulum. Whenall pendulums point upwards the wire is not twisted.Equation of motion for eah pendulum, exept for the �rst and the lastones, has the following formmR2d2�(xi; t)dt2 =mgR sin�(xi; t) + ��(xi � a; t) + �(xi + a; t)� 2�(xi; t)a ; (21)



Topologial Compatons 1249where � is a onstant whih haraterises the elastiity of the wire withrespet to the twisting. The �rst term on the r.h.s. of Eq. (21) is due tothe gravitational fore ating on the mass m, the seond term is the elastitorque due to the torsion of the wire.As for the two outermost pendulums, we assume that they are kept inthe upward position by some external fore, that is that�(x�N ; t) = 0; �(xN ; t) = 0: (22)The mehanial system desribed above is essentially idential with oneused in a realization of sinus-Gordon solitons, exept that in the ase ofthese solitons all pendulums initially point downwards, so that they are inthe stable equilibrium position. In the present ase they are put into theseemingly unstable equilibrium position �(xi; t = 0) = 0. However, as weshow below, this position an atually be stable due to the presene of theexternal fore whih implements onditions (22). Another di�erene withthe sinus-Gordon ase is that we mehanially restrit the range of �(xi; t)j�(xi; t)j � �0 < � (23)by putting on both sides of the wire and parallely to it two rigid rods. Thependulums rebound from the rods if �(xi; t) = ��0:Let us introdue a funtion �(x; t), where x is a real ontinuous variable,twie di�erentiable with respet to x and suh that its values at the pointsx = xi are equal to the angles �(xi; t). Hene, �(x; t) interpolates between�(xi; t). Of ourse, for a given set of values of the angles there is an in�nitenumber of suh funtions. For any of them the following identity holds�(xi�a; t)+�(xi+a; t)�2�(xi; t) = aZ0 ds1 0Z�a ds2�2�(s1 + s2 + x; t)�x2 ������x=xi :We shall restrit our onsiderations to suh motions of the pendulums thatthere exists the interpolating funtion �(x; t) of ontinuous variables x; tsuh that aZ0 ds1 0Z�a ds2�2�(s1 + s2 + x; t)�x2 ������x=xi � a2 �2�(x; t)�x2 ����x=xi (24)for all times t and at all points xi. For example, this is the ase when theseond derivative of � with respet to x is almost onstant when x runsthrough the interval [xi� a; xi + a℄, for all times t. With the approximation



1250 H. Arod¹(24) the identity written above an be replaed by the following approximateone �(xi � a; t) + �(xi + a; t)� 2�(xi; t) � a2 �2�(x; t)�x2 ����x=xi :Using this formula in Eq. (21) we obtainmR2d2�(xi; t)dt2 � mgR sin�(xi; t) + �a �2�(x; t)�x2 ����x=xi : (25)Let us now suppose that our funtion �(x; t) obeys the following partialdi�erential equation,mR2�2�(x; t)�t2 = mgR sin�(x; t) + �a�2�(x; t)�x2 ; (26)where x 2 [�Na;Na℄, and�(�Na; t) = 0 ; �(Na; t) = 0 : (27)Then, it is lear that �(xi; t) obey Eq. (25) and the boundary onditions (22).Hene, if ondition (24) is satis�ed we obtain the approximate solution of theinitial Newton equations (21). In the �nal step, we pass to the dimensionlessvariables � =r gRt ; � =rmgR�a x ; �(�; �) = �(x; t) :Then, Eq. (26) aquires the form�2�(�; �)��2 � �2�(�; �)��2 � sin�(�; �) = 0 : (28)This equation oinides with the Euler�Lagrange equation obtained fromLagrangian (1) with potential (12) for j�j < �0. The restrition (23) nowhas the form j�(�; �)j � �0 :The range of the spatial oordinate � is from ��N to �N , where �N = N �pmgRa=�. The boundary onditions for � have the form�(��N ; �) = 0 = �(�N ; �) : (29)Equation (28) with boundary onditions (29) has the trivial solution�(�; �) = 0 : (30)



Topologial Compatons 1251Let us hek stability of this solution against small perturbations. To thisend we write �(�; �) = "(�; �) and we linearise Eq. (28) with respet to ".The resulting equation has the form�2"��2 � �2"��2 � " = 0 :It leads to the following dispersion relation!(k) = �pk2 � 1 ; k = �2�N n ;where n is an integer di�erent from zero. The disrete values of k are dueto the boundary onditions (29). We see that the trivial solution is stableif �N < �=2. Loosely speaking, this ondition is satis�ed when the wire isshort enough.The kink an appear only if the trivial solution is not stable. Then theboundary onditions (29) an be satis�ed by loating one half of the kinkat the one end of the wire and one half of the anti-kink at the other end.Eah of them has the length �0, where �0 has been introdued in previoussetion. We have to put at least one full kink in the middle. Therefore, thetotal dimensionless length of the wire has to be equal at least to 4�0. Thus,full ompatons an be observed if �N > 2�0.Finally, let us note that we made a mehanial model of that kind, andthe ompatons were learly seen.4. Remarks1. The single kink solution disussed in Setion 2 an be trivially gen-eralised. Lagrangian (1) and ondition (13) are Poinaré invariant.Therefore, Lorentzian boosts give kinks moving with arbitrary veloi-ties not exeeding 1 in the dimensionless variables. Beause the kinksdo not feel eah other when their enters are separated by a distanelarger that 2�0, it is lear that there exist stati multi-kink solutions.Suh �trains� of separated kinks and anti-kinks are also the ompatontype solutions. Moreover, also kinks and anti-kinks moving with dif-ferent veloities an be trivially ombined to give ompaton solutionsin a �nite time interval until they touh eah other.2. Our work an be extended in several diretions. One ould study therelated non-planar domain walls. We have mentioned in the Intro-dution that they an be onstruted with the help of expansion inwidth.



1252 H. Arod¹Another diretion is suggested by the fat that the separated ompatonsdo not interat. Therefore, they seem to be well-suited for testing theoret-ial desriptions of produtions of topologial defets, [2�4℄. The lak ofinterations in the �nal state simpli�es ounting of the defets. Our urrentwork is devoted to this topi.One ould also study interation of the kink with the anti-kink, for ex-ample, when they satter on eah other with various relative veloities.We would like to thank Dr. P. W�grzyn for remarks pertinent to thiswork. REFERENCES[1℄ P.M. Chaikin, T.C. Lubensky, Priniples of Condensed Matter Physis, Cam-bridge University Press, 1995.[2℄ T.W.B. Kibble, M.B. Hindmarsh, Rep. Prog. Phys. 58, 447 (1995).[3℄ Topologial Defets and the Non-Equilibrium Dynamis of Symmetry BreakingPhase Transitions, Eds. Y.M. Bunkov, H. Godfrin, Kluwer Aademi Publish-ers, 2000.[4℄ W.H. �urek, Phys. Rep. 276, 177 (1996).[5℄ M. Pavsi�, The Landsape of Theoretial Physis: a Global View. From PointPartiles to the Brane World and Beyond, in Searh of a Unifying Priniple,Kluwer Aademi Publishers, 2001.[6℄ H. Arod¹, Ata Phys. Pol. B29, 3725 (1998).[7℄ P. Rosenau, J.M. Hyman, Phys. Rev. Lett. 70, 564 (1993).[8℄ F. Cooper, H. Shepard, P. Sodano, Phys. Rev. E48, 4027 (1993).[9℄ A. Khare, F. Cooper, Phys. Rev. E48, 4843 (1993).[10℄ B. Dey, A. Khare, Phys. Rev. E58, R2741 (1998).[11℄ F. Cooper, J.M. Hyman, A. Khare, Phys. Rev. E64(2), 026608 (2001).[12℄ R. Rajaraman, Solitons and Instantons, North-Holland Publ. Comp.,Chapt. 2, 1982.


