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We show, starting from simple differential geometric example, that the
partition function of a twisted N’ = 4 Yang—Mills theory on certain manifold
X is localized on instanton moduli space. Moreover, it equals to the Euler
characteristic of this moduli space.

PACS numbers: 11.15.—q

1. Introduction

Topological Quantum Field Theories of Co-homological type (CQFT)
were first proposed by Witten and Atiyah in the eighties [5]. The construc-
tion called twisting applied on N' = 2 Yang-Mills (YM) theory has led to
the theory whose correlation functions of observables are topological invari-
ants of four manifolds which were identified with Donaldson’s polynomial
invariants. These ideas were then applied by Witten to two dimensional
o-models [6]. The concept of CQFT has given a physical method for com-
puting invariants [7] in several interesting cases.

However, there exists another, physically more important super-
symmetric extension of YM theory in four dimensions. This is N' =4 YM
theory which has the maximal number of independent super-symmetries in
d = 4. Tt is believed that this theory has exactly vanishing g-function. More-
over, the relevance of N' =4 YM follows from the Maldacena’s conjecture,
i.e. it serves as the dual picture in description of IIB-type string theory on
the AdS5 x S° background.

Thus there is a natural question of constructing CQFT from N’ =4 YM
using this twisting method. This paper is devoted to the analysis of certain
topological features of such a twisted theory.

The paper is organized as follows. In Sec. 2 we review the twisting
method. In Sec. 3 we deal with localization of a twisted N’ = 4 Yang—Mills
theory partition function, conclusions are in the last section.
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2. Twisting procedure

Twisting method may be in general described as follows. Consider an
Euclidean super-symmetric Yang—Mills theory on a four dimensional mani-
fold X. Then the symmetry group is locally SU(2)r,xSU(2)gx I where the
first two factors stay for rotational group and I is the internal symmetry
group which “rotates” the super-charges. Now we want to change the rota-
tional group in order to obtain at least one scalar supercharge which will
serve as a BRST cohomology operator. We choose for instance SU(2)y, fixed
and replace SU(2)r with the diag (SU(2)gr x K), where K is a SU(2) copy
embedded in internal symmetry group I. We review this procedure in the
case of N' = 2,4 Yang—Mills theory.

2.1. Case of N =2 Yang—Mills theory

In this theory we have the field content A, )\ﬁ, j\aA, ¢, which means or-
dinary gauge field, two anti-commuting gauginos and scalar field respec-
tively. The corresponding Lagrangian can be found in [5]. Here we focus
on the internal group I which is (neglecting U(1) R-symmetry) SU(2). The
present super-charges Q4, Q4 transform under SU(2);, xSU(2)r xSU(2) as
(2,1,2), (1,2,2).

Since I=SU(2) there is only one (trivial) possibility for embedding a SU(2)
copy. The new rotational group will be simply SU(2);, x diag (SU(2)g x I).
The super-charges split as Q2 — Qus Qi - Qo Qv and transform under
new (twisted) rotational group as (2,2), (1,1) and (1,3). The fields decom-
pose as A, — A, 2 Yy, 5\&44 — 1@ X and ¢ — ¢ and transform under
new rotational group as (2,2), (2,2), (1,1), (1,3) and (1,1).

The scalar supercharge @ is identified with BRST operator and its ac-
tion is nilpotent up to a gauge transformation. However, it is possible to
modify it to obtain strictly nilpotent one [1] and then one may define observ-
ables as its cohomology classes. The resulting theory has T, = {Q, A, }
(Q-exact energy-momentum tensor) and it is a kind of CQFT mentioned in
the introduction.

2.2. Case of N = 4 Yang—Mills theory

Now, we focus on the case of N' = 4. Here the situation is more com-
plicated. The I=SU(4) now and there are several possibilities how to em-
bed a SU(2) copy in it. If one needs to have at least one scalar super-
charge, then there are only three possibilities which are characterized by the
following four dimensional representations of SU(2): 4 — (1,2) & (1,2),
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4— (1,2)®(1,1)® (1,1), 4 — (2,2). Correspondingly, we have three in-
equivalent CQFT. The second embedding leads to the theory of non-Abelian
adjoint monopoles [2], the third one is called amphi-chiral theory since it is
untouched changing the orientation. We will focus on the topological char-
acter of the first one.

Let us recall the field content of N' =4 YM. In N = 1 formalism there are
three chiral superfields @, containing scalars B, gauginos \p, and a vector
superfield V' which contains gauge field A, and fourth gaugino A4, and M-
Scalars B), are usually considered as elements of anti-symmetric tensor

0 -B#¥ B2 _B
B3 0 -BY —B,
¢MV = _BT2 B’[l 0 —Bs : (1)

By By B 0

All fields are in adjoint representation of gauge group. Supercharges Q4
and Q4 transform under SU(2);,xSU(2)r xSU(4) as (2,1,4) and (1,2,4).
Under the twisted rotational group SU(2)1, x diag (SU(2)r x K), where K is
determined by (1,2)®(1,2), the supercharges decompose as Q2 — QiGBwa

and Qag — Qfm The field decomposition is A, — A, Aaq — i”‘d,
5\&44 — Xiga ® 1 and ¢, — @ij © Gap. There is still a subgroup I' of I
which commutes with realization of K. It is of course isomorphic to SU(2)
and plays the role of internal symmetry group of the twisted theory.

The action of twisted theory is quite complicated [2|. Its bosonic part,

not involving 11, is

1
b 4
Stv?isst = 262 d z\/|g|

X
1

x Tr <Flj;+4 B, Bus| +%[C, B,WD2+<DVB,w +DMC)2 . (2)

where C' = ip19, FT is the self-dual part of F. The corresponding equations
of motion are

1 1
i+ i ma - 3fema] - o

D'B,, +D,C = 0, (3)

and for B, = 0 they reduce to Flj; = 0, i.e. A, is an anti-self-dual con-
nection and D,,C = 0, i.e. C is covariantly constant. We are going to show
that these equations are important for localization of partition function of
the theory.
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3. Localization

We start with a simple differential geometric model.

Suppose now n = 2m and we have an n-dimensional compact manifold
M with spin structure, i.e. we have an isomorphism of T'M with bundle
P Xgpin(n) V associated with a principal Spin(n) bundle P over M and
standard representation of Spin(n) on V' = R™. Hence P x V is a principal
Spin(n) bundle over TM which is equal to #*P, 7 is the T'M projection.
The forms (T M) can be identified with basic forms of 2(P x V), i.e. the
forms which satisfy Rjw = w, ixw = 0 for all g in Spin(n) and all X in
its Lie algebra. In particular, the identification isomorphism is given by
pull-back with respect to the projection f: PxV — TM.

Next, suppose we have the spin connection # in P. This connection may
be pulled back to P x V. We denote this connection by the same symbol.
If one considers its curvature

Q=di+0NM0, (4)

then one can define a form on 2(P X V)pasic ~ 2(T' M) putting

U=n"e? Z e (LIPS <%) (dz + 0z)" . (5)

I (even)

Here I runs over all subsets of n with even cardinality, I is its complement
in n, Pf(§2/2) is the Pfaffian of the sub-matrix of 2/2 with indices in I, z
are coordinates on V and e(I,1) is the sign of permutation transforming 1T
to 1...n; see |4] for further details. In fact, one can show that this form
is closed [3] and integrates to 1 over the fibers as is easily seen from the
identity

T ™ /e“"2 d'z=1. (6)

Rn
U represents the Thom class of TM. Of course, one needs to have a compact
support for such Thom class representative, but this can be reached using

some orientation preserving diffeomorphism of T'M onto some disc bundle
for instance; details can be found in [3,4]. The form U may be expressed as

U= ﬂ—m/Dn e~ +3m! 2k (do+b2)'n (7)

where [ Dr is the Berezin integration with respect to odd variables 1y, ... 7y,
(dx + 6z) denotes the transpose.

If we denote by s: M — TM section with isolated zeroes then s*U
represents the Euler class of M and we have the well-known formula
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/S*U = Zlndi(s) . (8)

M

This can be proved in greater generality for an arbitrary oriented vec-
tor bundle over a compact manifold, considering the family of sections
{st},cg+> st := ts for such s. All the forms s;U represent the same coho-
mology class and thus for ¢ — 0 we obtain the Fuler class by the definition.
The integral [ s;U remains the same for all ¢ and for ¢ — +00 one obtains
right-hand side of (8). However, in the case of T M the famous Hopf theorem
identifies right-hand side of (8) with the Euler characteristic x(M). Finally
if we choose such a section s then we have from (7)

X(M) = w‘m//Dne—52+%ﬂt(5*9)n+(%)tn’ (9)
M

which works even for s = 0 from the reasoning above.

The right-hand side part of (9) may be interpreted as the partition func-
tion Z of a “quantum mechanical” model with bosons and fermions repre-
sented by the coordinates on M and Grassmann variables {7;}. The par-
tition function Z of this “quantum” theory is then simply localized on the
finite subset of isolated points in M.

Suppose now, that the section s has the zero locus in the form U;]:lMZ-,
dim M; = n;. Moreover, let s has nondegenerate behavior in normal direc-
tions with respect to all M;. This means we can define coordinates and
trivialization near M; such that w;, j = 1...m — n; are normal to M;,
sk = A;?u]', 4,k =1...n—mn;for some matrix A and s* =0, k£ > n—n;. One
usually thinks about A as to be the full n X n matrix with other components
zero. In this situation we can calculate right-hand side of (9). Once again we
introduce sy = ts family of section where the parameter ¢ may be interpreted
as a coupling constant. As we said above, the integral is independent of ¢
and for ¢ — +o0o it will be a sum of contributions from all M;. If one does
the integration over normal M; coordinates and then over tangent ones, the
right-hand side of (9) will be

Z =3V, (10)

where V; is bundle of 5 zero modes over M; and the sign denotes the relative
orientation of V; and T M;.

The formula (10) has one disadvantage. It contains + dependence. To
eliminate this we can use a technique from localization theory. Suppose we
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are in the situation where s* = 0,k = 1...n,n' < n, so now dim M; =
n—n . We extend the manifold M in order to depend on additional {z}}_,
variables and introduce the additional functions

dst .
rjzzk:zk%w(z?),;:l---n- (11)

Now let us consider topological invariant of s¥ = rj = 0. Then we have
a theorem

Theorem 3.1 Suppose we have a theory whose partition function is localized
on the sub-manifold defined by s* = rj = 0, situation is nondegenerate and
(11) holds. Moreover, let all the solutions of s* = rj = 0 be localized at
z=0. Then

!

Z=x(M), (12)

where M’ is the space of solutions of s¥ = 0.

The proof is straightforward. The condition (11) ensures two things. Firstly,
all signs for the r-extended system are positive and secondly, V; = T'M; in
this case. So we can proceed as in deriving (10) and we obtain (12). The
addition of r; function may seem to be a little bit uncomfortable, but it
indeed reflects the situation in our twisted N' = 4.

However, we have to generalize our model for the case of gauge invariant
theory. Consider a compact g dimensional gauge group G that acts on M
without fixed points. Consider a n = 2m + g dimensional manifold M and
a bundle V over M of rank 2m which is oriented and equipped with an
inner product. In this situation some of r; could be removed using gauge
invariance. Next, we must have r; tangent to the pull-back of T(M/G) —
M/G to M if we want to divide simply by G and use what we just have
done. We start with n invariant r; functions and take into account a new
adjoint valued function C"* on M. If rj = — ChThj, where we denote by
T}; the components of the vector field induced on M by the element T}, of
some chosen basis in G, then such r; are removed “dividing” by G since they
are tangent to the gauge orbits. This C thus plays the role of projection
of rj onto the part orthogonal to the gauge orbits (using the metric on M;
the parts tangent to gauge orbits are thus removed). Let us put

rji=1j+ ChThj . (13)

Then we can divide by G and use Theorem 3.1. Thus we have generalized
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Theorem 3.2 Suppose we have a theory whose partition function is localized

on the sub-manifold defined by s* = 7'; = 0, the situation is nondegenerate

and (11) holds. Moreover, let all the solutions of s* = 7'; = 0 be localized at
z2=C=0 and are nondegenerate as before. Then after integrating out C

Z=x (%) , (14

where M’ is the space of solutions of s* = 0.

Finally, let us consider our twisted N/ = 4. The role of M plays the
space of connections on a G bundle over the space of the theory X. The
bundle V is identified with the bundle of self-dual adjoint valued two forms.
Equations (3) play the role of sections s,, and 7'; which correspond to the
previous s*, 7';, respectively. The independent variables are now A,, B,
C' which play the role of the previous u;, z; and C". The bosonic action (2)
may be rewritten as

. IsI” + 71> _ 1
Sfi?}?st = 262 == @ d4$ |g|
X
D,B,,)? Bs, Bys|[B.s, B
< Tr |:F;;2+( 74#1/) + (’D“C)Q +[ o V&i[ﬁ upB yﬂ]
[C, Buw)? (9u09vy — Gur9vs) R B
T B (T A W | | (19)

where W is the self-dual part of Weyl tensor, R is scalar curvature. If the
curvature is such that

(98907 — Gur9vs) R B;
BW< HOZVY 6’” +Whss T”>o, (16)

whenever By, # 0, then s,, = ’I”;L = 0 implies B,,—=0. Thus for such a
manifold X we have a localization condition for B. However, we need one
for C, too. By, = 0implies D, C' = 0 immediately. This means that if C' # 0
then we have a reducible instanton and correspondingly our action on M will
not be without fixed points. Therefore, we need some further restrictions
on X. If we restrict ourselves to manifolds with b5 > 0 (positive dimension
of the space of self-dual harmonic two forms), then such instantons do not
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exist there. b; > 0 trivially for any K&hler manifold since the Kéhler form
itself is self-dual. Thus we have C = 0 too, and we may use Theorem 3.2
again. We therefore conclude with the following statement which is our final
generalization of (9):

Theorem 3.3 Let X be a four manifold with by > 0 such that (16) is
satisfied for every By, # 0. Then the partition function Z of 4 — (1,2) @
(1,2) twisted Yang-Mills theory on X is equal to the Euler characteristics
of the moduli space of instantons.

4. Conclusions

Our understanding of non-perturbative aspects of Yang—Mills theories
made the strong progress in 1994 when Seiberg and Witten formulated their
hypothesis about the form of Wilsonian effective action. This hypothesis
was then successfully tested via instanton calculus. The localization theory
applied on N' = 4 Yang-Mills theory is one of the most powerful methods
for testing such aspects. Moreover, the computational method for certain
class of correlation functions in ' = 2 Yang-Mills theory, using the moduli
space differential analysis, has been published recently [1]. There is a natural
question if there is a possibility of generalizing these results to the N' = 4
case on special types of manifolds. Then it is clear that such a thing would
have great importance for AdS/CFT correspondence, which is very popular
nowadays. We are concerned with these generalizations in present research.
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