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ON A TOPOLOGICAL N = 4 YANG�MILLS THEORYO. Vá¬aMathematial Institute of Charles UniversitySokolovská 83, 18675 Prague 8, Czeh Republi(Reeived November 30, 2001)We show, starting from simple di�erential geometri example, that thepartition funtion of a twistedN = 4Yang�Mills theory on ertain manifoldX is loalized on instanton moduli spae. Moreover, it equals to the Eulerharateristi of this moduli spae.PACS numbers: 11.15.�q 1. IntrodutionTopologial Quantum Field Theories of Co-homologial type (CQFT)were �rst proposed by Witten and Atiyah in the eighties [5℄. The onstru-tion alled twisting applied on N = 2 Yang�Mills (YM) theory has led tothe theory whose orrelation funtions of observables are topologial invari-ants of four manifolds whih were identi�ed with Donaldson's polynomialinvariants. These ideas were then applied by Witten to two dimensional�-models [6℄. The onept of CQFT has given a physial method for om-puting invariants [7℄ in several interesting ases.However, there exists another, physially more important super-symmetri extension of YM theory in four dimensions. This is N = 4 YMtheory whih has the maximal number of independent super-symmetries ind = 4. It is believed that this theory has exatly vanishing �-funtion. More-over, the relevane of N = 4 YM follows from the Maldaena's onjeture,i.e. it serves as the dual piture in desription of IIB-type string theory onthe AdS5 � S5 bakground.Thus there is a natural question of onstruting CQFT from N = 4 YMusing this twisting method. This paper is devoted to the analysis of ertaintopologial features of suh a twisted theory.The paper is organized as follows. In Se. 2 we review the twistingmethod. In Se. 3 we deal with loalization of a twisted N = 4 Yang�Millstheory partition funtion, onlusions are in the last setion.(1277)



1278 O. Vá¬a2. Twisting proedureTwisting method may be in general desribed as follows. Consider anEulidean super-symmetri Yang�Mills theory on a four dimensional mani-fold X. Then the symmetry group is loally SU(2)L�SU(2)R� I where the�rst two fators stay for rotational group and I is the internal symmetrygroup whih �rotates� the super-harges. Now we want to hange the rota-tional group in order to obtain at least one salar superharge whih willserve as a BRST ohomology operator. We hoose for instane SU(2)L �xedand replae SU(2)R with the diag (SU(2)R�K), where K is a SU(2) opyembedded in internal symmetry group I. We review this proedure in thease of N = 2; 4 Yang�Mills theory.2.1. Case of N = 2 Yang�Mills theoryIn this theory we have the �eld ontent A�; �A� ; ��A_� ; �, whih means or-dinary gauge �eld, two anti-ommuting gauginos and salar �eld respe-tively. The orresponding Lagrangian an be found in [5℄. Here we fouson the internal group I whih is (negleting U(1) R-symmetry) SU(2). Thepresent super-harges QA� ; �QA_� transform under SU(2)L�SU(2)R�SU(2) as(2;1;2), (1;2;2).Sine I=SU(2) there is only one (trivial) possibility for embedding a SU(2)opy. The new rotational group will be simply SU(2)L � diag (SU(2)R� I).The super-harges split as QA� ! Q�, �QA_� ! Q�Q�� and transform undernew (twisted) rotational group as (2;2), (1;1) and (1;3). The �elds deom-pose as A� ! A�, �A� !  �, ��A_� ! ����� and �! � and transform undernew rotational group as (2;2), (2;2), (1;1), (1;3) and (1;1).The salar superharge Q is identi�ed with BRST operator and its a-tion is nilpotent up to a gauge transformation. However, it is possible tomodify it to obtain stritly nilpotent one [1℄ and then one may de�ne observ-ables as its ohomology lasses. The resulting theory has T�� = fQ;���g(Q-exat energy-momentum tensor) and it is a kind of CQFT mentioned inthe introdution. 2.2. Case of N = 4 Yang�Mills theoryNow, we fous on the ase of N = 4. Here the situation is more om-pliated. The I=SU(4) now and there are several possibilities how to em-bed a SU(2) opy in it. If one needs to have at least one salar super-harge, then there are only three possibilities whih are haraterized by thefollowing four dimensional representations of SU(2): 4 ! (1;2) � (1;2),



On a Topologial N = 4 . . . 12794! (1;2) � (1;1) � (1;1), 4! (2;2). Correspondingly, we have three in-equivalent CQFT. The seond embedding leads to the theory of non-Abelianadjoint monopoles [2℄, the third one is alled amphi-hiral theory sine it isuntouhed hanging the orientation. We will fous on the topologial har-ater of the �rst one.Let us reall the �eld ontent ofN = 4 YM. InN = 1 formalism there arethree hiral super�elds �p ontaining salars Bp, gauginos �p� and a vetorsuper�eld V whih ontains gauge �eld A� and fourth gaugino �4� and ��4 _�.Salars Bp are usually onsidered as elements of anti-symmetri tensor��� = 0BB� 0 �By3 By2 �B1By3 0 �By1 �B2�By2 By1 0 �B3B1 B2 B3 0 1CCA : (1)All �elds are in adjoint representation of gauge group. Superharges QA�and �QA_� transform under SU(2)L�SU(2)R�SU(4) as (2;1;4) and (1;2; �4).Under the twisted rotational group SU(2)L � diag (SU(2)R�K), where K isdetermined by (1;2)�(1;2), the superharges deompose as QA� ! Qi�Qi��and �QA _� ! �Qi� _�. The �eld deomposition is A� ! A�, �A� !  i�_�,��A_� ! �i�� � �i and ��� ! 'ij � G�� . There is still a subgroup I0 of Iwhih ommutes with realization of K. It is of ourse isomorphi to SU(2)and plays the role of internal symmetry group of the twisted theory.The ation of twisted theory is quite ompliated [2℄. Its bosoni part,not involving '11, isSbostwist = 12e2 ZX d4xpjgj�Tr"�F+��+14 hB Æ� ; B�Æi+12hC;B��i�2+�DB� +D�C�2#; (2)where C = i'12, F+ is the self-dual part of F . The orresponding equationsof motion are F+�� + 14hB Æ� ; B�Æi+ 12hC;B��i = 0 ;DB� +D�C = 0 ; (3)and for B�� = 0 they redue to F+�� = 0, i.e. A� is an anti-self-dual on-netion and D�C = 0, i.e. C is ovariantly onstant. We are going to showthat these equations are important for loalization of partition funtion ofthe theory.



1280 O. Vá¬a3. LoalizationWe start with a simple di�erential geometri model.Suppose now n = 2m and we have an n-dimensional ompat manifoldM with spin struture, i.e. we have an isomorphism of TM with bundleP �Spin(n) V assoiated with a prinipal Spin(n) bundle P over M andstandard representation of Spin(n) on V = Rn. Hene P � V is a prinipalSpin(n) bundle over TM whih is equal to ��P , � is the TM projetion.The forms 
(TM) an be identi�ed with basi forms of 
(P � V ), i.e. theforms whih satisfy R�g! = !, iX! = 0 for all g in Spin(n) and all X inits Lie algebra. In partiular, the identi�ation isomorphism is given bypull-bak with respet to the projetion f : P � V ! TM .Next, suppose we have the spin onnetion � in P . This onnetion maybe pulled bak to P � V . We denote this onnetion by the same symbol.If one onsiders its urvature 
 = d� + � ^ � ; (4)then one an de�ne a form on 
(P � V )basi ' 
(TM) puttingU = ��me�x2 XI (even) " (I; I0)Pf �
I2 � (dx+ �x)I0 : (5)Here I runs over all subsets of n̂ with even ardinality, I0 is its omplementin n̂, Pf(
=2) is the Pfa�an of the sub-matrix of 
=2 with indies in I, xare oordinates on V and "(I; I0) is the sign of permutation transforming I I0to 1 : : : n; see [4℄ for further details. In fat, one an show that this formis losed [3℄ and integrates to 1 over the �bers as is easily seen from theidentity ��m ZRn e�x2 dnx = 1 : (6)U represents the Thom lass of TM . Of ourse, one needs to have a ompatsupport for suh Thom lass representative, but this an be reahed usingsome orientation preserving di�eomorphism of TM onto some dis bundlefor instane; details an be found in [3,4℄. The form U may be expressed asU = ��m Z D� e�x2+ 12�t
�+(dx+�x)t� ; (7)where R D� is the Berezin integration with respet to odd variables �1; : : : �n,(dx+ �x)t denotes the transpose.If we denote by s : M ! TM setion with isolated zeroes then s�Urepresents the Euler lass of M and we have the well-known formula



On a Topologial N = 4 . . . 1281ZM s�U =Xi Indi(s) : (8)This an be proved in greater generality for an arbitrary oriented ve-tor bundle over a ompat manifold, onsidering the family of setionsfstgt2R+ , st := ts for suh s. All the forms s�tU represent the same oho-mology lass and thus for t! 0 we obtain the Euler lass by the de�nition.The integral R s�tU remains the same for all t and for t ! +1 one obtainsright-hand side of (8). However, in the ase of TM the famous Hopf theoremidenti�es right-hand side of (8) with the Euler harateristi �(M). Finallyif we hoose suh a setion s then we have from (7)�(M) = ��m ZM Z D� e�s2+ 12 �t(s�
)�+(rs)t� ; (9)whih works even for s = 0 from the reasoning above.The right-hand side part of (9) may be interpreted as the partition fun-tion Z of a �quantum mehanial� model with bosons and fermions repre-sented by the oordinates on M and Grassmann variables f�ig. The par-tition funtion Z of this �quantum� theory is then simply loalized on the�nite subset of isolated points in M .Suppose now, that the setion s has the zero lous in the form [qi=1Mi,dimMi = ni. Moreover, let s has nondegenerate behavior in normal dire-tions with respet to all Mi. This means we an de�ne oordinates andtrivialization near Mi suh that uj ; j = 1 : : : n � ni are normal to Mi,sk = Akjuj; j; k = 1 : : : n�ni for some matrix A and sk = 0; k > n�ni. Oneusually thinks about A as to be the full n�n matrix with other omponentszero. In this situation we an alulate right-hand side of (9). One again weintrodue st = ts family of setion where the parameter t may be interpretedas a oupling onstant. As we said above, the integral is independent of tand for t ! +1 it will be a sum of ontributions from all Mi. If one doesthe integration over normal Mi oordinates and then over tangent ones, theright-hand side of (9) will be Z =Xi ��(Vi) ; (10)where Vi is bundle of � zero modes over Mi and the sign denotes the relativeorientation of Vi and TMi.The formula (10) has one disadvantage. It ontains � dependene. Toeliminate this we an use a tehnique from loalization theory. Suppose we



1282 O. Vá¬aare in the situation where sk = 0; k = 1 : : : n0 ; n0 < n, so now dimMi =n�n0 . We extend the manifoldM in order to depend on additional fzkgnk=1variables and introdue the additional funtionsrj =Xk zk �sk�uj +O(z2); j = 1 : : : n : (11)Now let us onsider topologial invariant of sk = rj = 0. Then we havea theoremTheorem 3.1 Suppose we have a theory whose partition funtion is loalizedon the sub-manifold de�ned by sk = rj = 0, situation is nondegenerate and(11) holds. Moreover, let all the solutions of sk = rj = 0 be loalized atz = 0. Then Z = �(M 0) ; (12)where M 0 is the spae of solutions of sk = 0.The proof is straightforward. The ondition (11) ensures two things. Firstly,all signs for the r-extended system are positive and seondly, Vi = TMi inthis ase. So we an proeed as in deriving (10) and we obtain (12). Theaddition of rj funtion may seem to be a little bit unomfortable, but itindeed re�ets the situation in our twisted N = 4.However, we have to generalize our model for the ase of gauge invarianttheory. Consider a ompat g dimensional gauge group G that ats on Mwithout �xed points. Consider a n = 2m + g dimensional manifold M anda bundle V over M of rank 2m whih is oriented and equipped with aninner produt. In this situation some of rj ould be removed using gaugeinvariane. Next, we must have rj tangent to the pull-bak of T (M=G) !M=G to M if we want to divide simply by G and use what we just havedone. We start with n invariant rj funtions and take into aount a newadjoint valued funtion Ch on M . If rj = �ChThj, where we denote byThj the omponents of the vetor �eld indued on M by the element Th ofsome hosen basis in G, then suh rj are removed �dividing� by G sine theyare tangent to the gauge orbits. This C thus plays the role of projetionof rj onto the part orthogonal to the gauge orbits (using the metri on M ;the parts tangent to gauge orbits are thus removed). Let us putr0j := rj + ChThj : (13)Then we an divide by G and use Theorem 3.1. Thus we have generalized



On a Topologial N = 4 . . . 1283Theorem 3.2 Suppose we have a theory whose partition funtion is loalizedon the sub-manifold de�ned by sk = r0j = 0, the situation is nondegenerateand (11) holds. Moreover, let all the solutions of sk = r0j = 0 be loalized atz=C=0 and are nondegenerate as before. Then after integrating out CZ = � M 0G ! ; (14)where M 0 is the spae of solutions of sk = 0.Finally, let us onsider our twisted N = 4. The role of M plays thespae of onnetions on a G bundle over the spae of the theory X. Thebundle V is identi�ed with the bundle of self-dual adjoint valued two forms.Equations (3) play the role of setions s�� and r0� whih orrespond to theprevious sk, r0j , respetively. The independent variables are now A�, B�� ,C whih play the role of the previous ui, zj and Ch. The bosoni ation (2)may be rewritten asSbos:twist = ksk2 + kr0k22e2 = 12e2 ZX d4xpjgj�Tr �F+��2 + (DB��)24 + (D�C)2 + [B�Æ; B�Æ ℄[B�� ; B��℄16+ [C;B�� ℄24 + B�� �(g�Æg� � g�g�Æ)R6 +W+��Æ�� BÆ4 � ; (15)where W+ is the self-dual part of Weyl tensor, R is salar urvature. If theurvature is suh thatB�� �(g�Æg� � g�g�Æ)R6 +W+��Æ�� BÆ4 > 0 ; (16)whenever B�� 6= 0, then s�� = r0� = 0 implies B��=0. Thus for suh amanifold X we have a loalization ondition for B. However, we need onefor C, too. B�� = 0 implies D�C = 0 immediately. This means that if C 6= 0then we have a reduible instanton and orrespondingly our ation onM willnot be without �xed points. Therefore, we need some further restritionson X. If we restrit ourselves to manifolds with b+2 > 0 (positive dimensionof the spae of self-dual harmoni two forms), then suh instantons do not



1284 O. Vá¬aexist there. b+2 > 0 trivially for any Kähler manifold sine the Kähler formitself is self-dual. Thus we have C = 0 too, and we may use Theorem 3.2again. We therefore onlude with the following statement whih is our �nalgeneralization of (9):Theorem 3.3 Let X be a four manifold with b+2 > 0 suh that (16) issatis�ed for every B�� 6= 0. Then the partition funtion Z of 4 ! (1;2) �(1;2) twisted Yang�Mills theory on X is equal to the Euler harateristisof the moduli spae of instantons.4. ConlusionsOur understanding of non-perturbative aspets of Yang�Mills theoriesmade the strong progress in 1994 when Seiberg and Witten formulated theirhypothesis about the form of Wilsonian e�etive ation. This hypothesiswas then suessfully tested via instanton alulus. The loalization theoryapplied on N = 4 Yang�Mills theory is one of the most powerful methodsfor testing suh aspets. Moreover, the omputational method for ertainlass of orrelation funtions in N = 2 Yang�Mills theory, using the modulispae di�erential analysis, has been published reently [1℄. There is a naturalquestion if there is a possibility of generalizing these results to the N = 4ase on speial types of manifolds. Then it is lear that suh a thing wouldhave great importane for AdS/CFT orrespondene, whih is very popularnowadays. We are onerned with these generalizations in present researh.This work was partially supported by grants GA �R 201/99/0675 andMSM 113200007. REFERENCES[1℄ D. Bellisai, F. Fuito, A. Tanzini, G. Travaglini, hep-th/0003272.[2℄ J.M.F. Labastida, C. Lozano, hep-th/9702106.[3℄ V. Mathai, D. Quillen Topology, 25 1, 85, 1985.[4℄ O. Vana, math-ph/0111023.[5℄ E. Witten Commun. Math. Phys. 117, 353 1988.[6℄ E. Witten Commun. Math. Phys. 118, 411 1988.[7℄ E. Witten J. Math. Phys. 35, 5101 1994.


