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ON A TOPOLOGICAL N = 4 YANG�MILLS THEORYO. Vá¬aMathemati
al Institute of Charles UniversitySokolovská 83, 18675 Prague 8, Cze
h Republi
(Re
eived November 30, 2001)We show, starting from simple di�erential geometri
 example, that thepartition fun
tion of a twistedN = 4Yang�Mills theory on 
ertain manifoldX is lo
alized on instanton moduli spa
e. Moreover, it equals to the Euler
hara
teristi
 of this moduli spa
e.PACS numbers: 11.15.�q 1. Introdu
tionTopologi
al Quantum Field Theories of Co-homologi
al type (CQFT)were �rst proposed by Witten and Atiyah in the eighties [5℄. The 
onstru
-tion 
alled twisting applied on N = 2 Yang�Mills (YM) theory has led tothe theory whose 
orrelation fun
tions of observables are topologi
al invari-ants of four manifolds whi
h were identi�ed with Donaldson's polynomialinvariants. These ideas were then applied by Witten to two dimensional�-models [6℄. The 
on
ept of CQFT has given a physi
al method for 
om-puting invariants [7℄ in several interesting 
ases.However, there exists another, physi
ally more important super-symmetri
 extension of YM theory in four dimensions. This is N = 4 YMtheory whi
h has the maximal number of independent super-symmetries ind = 4. It is believed that this theory has exa
tly vanishing �-fun
tion. More-over, the relevan
e of N = 4 YM follows from the Malda
ena's 
onje
ture,i.e. it serves as the dual pi
ture in des
ription of IIB-type string theory onthe AdS5 � S5 ba
kground.Thus there is a natural question of 
onstru
ting CQFT from N = 4 YMusing this twisting method. This paper is devoted to the analysis of 
ertaintopologi
al features of su
h a twisted theory.The paper is organized as follows. In Se
. 2 we review the twistingmethod. In Se
. 3 we deal with lo
alization of a twisted N = 4 Yang�Millstheory partition fun
tion, 
on
lusions are in the last se
tion.(1277)



1278 O. Vá¬a2. Twisting pro
edureTwisting method may be in general des
ribed as follows. Consider anEu
lidean super-symmetri
 Yang�Mills theory on a four dimensional mani-fold X. Then the symmetry group is lo
ally SU(2)L�SU(2)R� I where the�rst two fa
tors stay for rotational group and I is the internal symmetrygroup whi
h �rotates� the super-
harges. Now we want to 
hange the rota-tional group in order to obtain at least one s
alar super
harge whi
h willserve as a BRST 
ohomology operator. We 
hoose for instan
e SU(2)L �xedand repla
e SU(2)R with the diag (SU(2)R�K), where K is a SU(2) 
opyembedded in internal symmetry group I. We review this pro
edure in the
ase of N = 2; 4 Yang�Mills theory.2.1. Case of N = 2 Yang�Mills theoryIn this theory we have the �eld 
ontent A�; �A� ; ��A_� ; �, whi
h means or-dinary gauge �eld, two anti-
ommuting gauginos and s
alar �eld respe
-tively. The 
orresponding Lagrangian 
an be found in [5℄. Here we fo
uson the internal group I whi
h is (negle
ting U(1) R-symmetry) SU(2). Thepresent super-
harges QA� ; �QA_� transform under SU(2)L�SU(2)R�SU(2) as(2;1;2), (1;2;2).Sin
e I=SU(2) there is only one (trivial) possibility for embedding a SU(2)
opy. The new rotational group will be simply SU(2)L � diag (SU(2)R� I).The super-
harges split as QA� ! Q�, �QA_� ! Q�Q�� and transform undernew (twisted) rotational group as (2;2), (1;1) and (1;3). The �elds de
om-pose as A� ! A�, �A� !  �, ��A_� ! ����� and �! � and transform undernew rotational group as (2;2), (2;2), (1;1), (1;3) and (1;1).The s
alar super
harge Q is identi�ed with BRST operator and its a
-tion is nilpotent up to a gauge transformation. However, it is possible tomodify it to obtain stri
tly nilpotent one [1℄ and then one may de�ne observ-ables as its 
ohomology 
lasses. The resulting theory has T�� = fQ;���g(Q-exa
t energy-momentum tensor) and it is a kind of CQFT mentioned inthe introdu
tion. 2.2. Case of N = 4 Yang�Mills theoryNow, we fo
us on the 
ase of N = 4. Here the situation is more 
om-pli
ated. The I=SU(4) now and there are several possibilities how to em-bed a SU(2) 
opy in it. If one needs to have at least one s
alar super-
harge, then there are only three possibilities whi
h are 
hara
terized by thefollowing four dimensional representations of SU(2): 4 ! (1;2) � (1;2),



On a Topologi
al N = 4 . . . 12794! (1;2) � (1;1) � (1;1), 4! (2;2). Correspondingly, we have three in-equivalent CQFT. The se
ond embedding leads to the theory of non-Abelianadjoint monopoles [2℄, the third one is 
alled amphi-
hiral theory sin
e it isuntou
hed 
hanging the orientation. We will fo
us on the topologi
al 
har-a
ter of the �rst one.Let us re
all the �eld 
ontent ofN = 4 YM. InN = 1 formalism there arethree 
hiral super�elds �p 
ontaining s
alars Bp, gauginos �p� and a ve
torsuper�eld V whi
h 
ontains gauge �eld A� and fourth gaugino �4� and ��4 _�.S
alars Bp are usually 
onsidered as elements of anti-symmetri
 tensor��� = 0BB� 0 �By3 By2 �B1By3 0 �By1 �B2�By2 By1 0 �B3B1 B2 B3 0 1CCA : (1)All �elds are in adjoint representation of gauge group. Super
harges QA�and �QA_� transform under SU(2)L�SU(2)R�SU(4) as (2;1;4) and (1;2; �4).Under the twisted rotational group SU(2)L � diag (SU(2)R�K), where K isdetermined by (1;2)�(1;2), the super
harges de
ompose as QA� ! Qi�Qi��and �QA _� ! �Qi� _�. The �eld de
omposition is A� ! A�, �A� !  i�_�,��A_� ! �i�� � �i and ��� ! 'ij � G�� . There is still a subgroup I0 of Iwhi
h 
ommutes with realization of K. It is of 
ourse isomorphi
 to SU(2)and plays the role of internal symmetry group of the twisted theory.The a
tion of twisted theory is quite 
ompli
ated [2℄. Its bosoni
 part,not involving '11, isSbostwist = 12e2 ZX d4xpjgj�Tr"�F+��+14 hB Æ� ; B�Æi+12hC;B��i�2+�D
B�
 +D�C�2#; (2)where C = i'12, F+ is the self-dual part of F . The 
orresponding equationsof motion are F+�� + 14hB Æ� ; B�Æi+ 12hC;B��i = 0 ;D
B�
 +D�C = 0 ; (3)and for B�� = 0 they redu
e to F+�� = 0, i.e. A� is an anti-self-dual 
on-ne
tion and D�C = 0, i.e. C is 
ovariantly 
onstant. We are going to showthat these equations are important for lo
alization of partition fun
tion ofthe theory.



1280 O. Vá¬a3. Lo
alizationWe start with a simple di�erential geometri
 model.Suppose now n = 2m and we have an n-dimensional 
ompa
t manifoldM with spin stru
ture, i.e. we have an isomorphism of TM with bundleP �Spin(n) V asso
iated with a prin
ipal Spin(n) bundle P over M andstandard representation of Spin(n) on V = Rn. Hen
e P � V is a prin
ipalSpin(n) bundle over TM whi
h is equal to ��P , � is the TM proje
tion.The forms 
(TM) 
an be identi�ed with basi
 forms of 
(P � V ), i.e. theforms whi
h satisfy R�g! = !, iX! = 0 for all g in Spin(n) and all X inits Lie algebra. In parti
ular, the identi�
ation isomorphism is given bypull-ba
k with respe
t to the proje
tion f : P � V ! TM .Next, suppose we have the spin 
onne
tion � in P . This 
onne
tion maybe pulled ba
k to P � V . We denote this 
onne
tion by the same symbol.If one 
onsiders its 
urvature 
 = d� + � ^ � ; (4)then one 
an de�ne a form on 
(P � V )basi
 ' 
(TM) puttingU = ��me�x2 XI (even) " (I; I0)Pf �
I2 � (dx+ �x)I0 : (5)Here I runs over all subsets of n̂ with even 
ardinality, I0 is its 
omplementin n̂, Pf(
=2) is the Pfa�an of the sub-matrix of 
=2 with indi
es in I, xare 
oordinates on V and "(I; I0) is the sign of permutation transforming I I0to 1 : : : n; see [4℄ for further details. In fa
t, one 
an show that this formis 
losed [3℄ and integrates to 1 over the �bers as is easily seen from theidentity ��m ZRn e�x2 dnx = 1 : (6)U represents the Thom 
lass of TM . Of 
ourse, one needs to have a 
ompa
tsupport for su
h Thom 
lass representative, but this 
an be rea
hed usingsome orientation preserving di�eomorphism of TM onto some dis
 bundlefor instan
e; details 
an be found in [3,4℄. The form U may be expressed asU = ��m Z D� e�x2+ 12�t
�+(dx+�x)t� ; (7)where R D� is the Berezin integration with respe
t to odd variables �1; : : : �n,(dx+ �x)t denotes the transpose.If we denote by s : M ! TM se
tion with isolated zeroes then s�Urepresents the Euler 
lass of M and we have the well-known formula



On a Topologi
al N = 4 . . . 1281ZM s�U =Xi Indi(s) : (8)This 
an be proved in greater generality for an arbitrary oriented ve
-tor bundle over a 
ompa
t manifold, 
onsidering the family of se
tionsfstgt2R+ , st := ts for su
h s. All the forms s�tU represent the same 
oho-mology 
lass and thus for t! 0 we obtain the Euler 
lass by the de�nition.The integral R s�tU remains the same for all t and for t ! +1 one obtainsright-hand side of (8). However, in the 
ase of TM the famous Hopf theoremidenti�es right-hand side of (8) with the Euler 
hara
teristi
 �(M). Finallyif we 
hoose su
h a se
tion s then we have from (7)�(M) = ��m ZM Z D� e�s2+ 12 �t(s�
)�+(rs)t� ; (9)whi
h works even for s = 0 from the reasoning above.The right-hand side part of (9) may be interpreted as the partition fun
-tion Z of a �quantum me
hani
al� model with bosons and fermions repre-sented by the 
oordinates on M and Grassmann variables f�ig. The par-tition fun
tion Z of this �quantum� theory is then simply lo
alized on the�nite subset of isolated points in M .Suppose now, that the se
tion s has the zero lo
us in the form [qi=1Mi,dimMi = ni. Moreover, let s has nondegenerate behavior in normal dire
-tions with respe
t to all Mi. This means we 
an de�ne 
oordinates andtrivialization near Mi su
h that uj ; j = 1 : : : n � ni are normal to Mi,sk = Akjuj; j; k = 1 : : : n�ni for some matrix A and sk = 0; k > n�ni. Oneusually thinks about A as to be the full n�n matrix with other 
omponentszero. In this situation we 
an 
al
ulate right-hand side of (9). On
e again weintrodu
e st = ts family of se
tion where the parameter t may be interpretedas a 
oupling 
onstant. As we said above, the integral is independent of tand for t ! +1 it will be a sum of 
ontributions from all Mi. If one doesthe integration over normal Mi 
oordinates and then over tangent ones, theright-hand side of (9) will be Z =Xi ��(Vi) ; (10)where Vi is bundle of � zero modes over Mi and the sign denotes the relativeorientation of Vi and TMi.The formula (10) has one disadvantage. It 
ontains � dependen
e. Toeliminate this we 
an use a te
hnique from lo
alization theory. Suppose we



1282 O. Vá¬aare in the situation where sk = 0; k = 1 : : : n0 ; n0 < n, so now dimMi =n�n0 . We extend the manifoldM in order to depend on additional fzkgnk=1variables and introdu
e the additional fun
tionsrj =Xk zk �sk�uj +O(z2); j = 1 : : : n : (11)Now let us 
onsider topologi
al invariant of sk = rj = 0. Then we havea theoremTheorem 3.1 Suppose we have a theory whose partition fun
tion is lo
alizedon the sub-manifold de�ned by sk = rj = 0, situation is nondegenerate and(11) holds. Moreover, let all the solutions of sk = rj = 0 be lo
alized atz = 0. Then Z = �(M 0) ; (12)where M 0 is the spa
e of solutions of sk = 0.The proof is straightforward. The 
ondition (11) ensures two things. Firstly,all signs for the r-extended system are positive and se
ondly, Vi = TMi inthis 
ase. So we 
an pro
eed as in deriving (10) and we obtain (12). Theaddition of rj fun
tion may seem to be a little bit un
omfortable, but itindeed re�e
ts the situation in our twisted N = 4.However, we have to generalize our model for the 
ase of gauge invarianttheory. Consider a 
ompa
t g dimensional gauge group G that a
ts on Mwithout �xed points. Consider a n = 2m + g dimensional manifold M anda bundle V over M of rank 2m whi
h is oriented and equipped with aninner produ
t. In this situation some of rj 
ould be removed using gaugeinvarian
e. Next, we must have rj tangent to the pull-ba
k of T (M=G) !M=G to M if we want to divide simply by G and use what we just havedone. We start with n invariant rj fun
tions and take into a

ount a newadjoint valued fun
tion Ch on M . If rj = �ChThj, where we denote byThj the 
omponents of the ve
tor �eld indu
ed on M by the element Th ofsome 
hosen basis in G, then su
h rj are removed �dividing� by G sin
e theyare tangent to the gauge orbits. This C thus plays the role of proje
tionof rj onto the part orthogonal to the gauge orbits (using the metri
 on M ;the parts tangent to gauge orbits are thus removed). Let us putr0j := rj + ChThj : (13)Then we 
an divide by G and use Theorem 3.1. Thus we have generalized



On a Topologi
al N = 4 . . . 1283Theorem 3.2 Suppose we have a theory whose partition fun
tion is lo
alizedon the sub-manifold de�ned by sk = r0j = 0, the situation is nondegenerateand (11) holds. Moreover, let all the solutions of sk = r0j = 0 be lo
alized atz=C=0 and are nondegenerate as before. Then after integrating out CZ = � M 0G ! ; (14)where M 0 is the spa
e of solutions of sk = 0.Finally, let us 
onsider our twisted N = 4. The role of M plays thespa
e of 
onne
tions on a G bundle over the spa
e of the theory X. Thebundle V is identi�ed with the bundle of self-dual adjoint valued two forms.Equations (3) play the role of se
tions s�� and r0� whi
h 
orrespond to theprevious sk, r0j , respe
tively. The independent variables are now A�, B�� ,C whi
h play the role of the previous ui, zj and Ch. The bosoni
 a
tion (2)may be rewritten asSbos:twist = ksk2 + kr0k22e2 = 12e2 ZX d4xpjgj�Tr �F+��2 + (D
B��)24 + (D�C)2 + [B�Æ; B�Æ ℄[B�� ; B��℄16+ [C;B�� ℄24 + B�� �(g�Æg�
 � g�
g�Æ)R6 +W+��Æ�� BÆ
4 � ; (15)where W+ is the self-dual part of Weyl tensor, R is s
alar 
urvature. If the
urvature is su
h thatB�� �(g�Æg�
 � g�
g�Æ)R6 +W+��Æ�� BÆ
4 > 0 ; (16)whenever B�� 6= 0, then s�� = r0� = 0 implies B��=0. Thus for su
h amanifold X we have a lo
alization 
ondition for B. However, we need onefor C, too. B�� = 0 implies D�C = 0 immediately. This means that if C 6= 0then we have a redu
ible instanton and 
orrespondingly our a
tion onM willnot be without �xed points. Therefore, we need some further restri
tionson X. If we restri
t ourselves to manifolds with b+2 > 0 (positive dimensionof the spa
e of self-dual harmoni
 two forms), then su
h instantons do not



1284 O. Vá¬aexist there. b+2 > 0 trivially for any Kähler manifold sin
e the Kähler formitself is self-dual. Thus we have C = 0 too, and we may use Theorem 3.2again. We therefore 
on
lude with the following statement whi
h is our �nalgeneralization of (9):Theorem 3.3 Let X be a four manifold with b+2 > 0 su
h that (16) issatis�ed for every B�� 6= 0. Then the partition fun
tion Z of 4 ! (1;2) �(1;2) twisted Yang�Mills theory on X is equal to the Euler 
hara
teristi
sof the moduli spa
e of instantons.4. Con
lusionsOur understanding of non-perturbative aspe
ts of Yang�Mills theoriesmade the strong progress in 1994 when Seiberg and Witten formulated theirhypothesis about the form of Wilsonian e�e
tive a
tion. This hypothesiswas then su

essfully tested via instanton 
al
ulus. The lo
alization theoryapplied on N = 4 Yang�Mills theory is one of the most powerful methodsfor testing su
h aspe
ts. Moreover, the 
omputational method for 
ertain
lass of 
orrelation fun
tions in N = 2 Yang�Mills theory, using the modulispa
e di�erential analysis, has been published re
ently [1℄. There is a naturalquestion if there is a possibility of generalizing these results to the N = 4
ase on spe
ial types of manifolds. Then it is 
lear that su
h a thing wouldhave great importan
e for AdS/CFT 
orresponden
e, whi
h is very popularnowadays. We are 
on
erned with these generalizations in present resear
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