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We employ QCD sum rules and utilize w¢-mixing to calculate the cou-
pling constants g4, and ggq, by studying the three point ¢poy- and ¢agy-
correlation functions. Our results are consistent with the previous estima-
tions of these coupling constants in the literature.
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1. Introduction

The studies of ¢(1020) meson and in particular its radiative decays have
been important sources of information in hadron physics in areas such as
SU(3) symmetry, the quark model, and the Okubo-Zweig-Tizuka (OZI)
rule. The analysis of the dynamics of the vector meson physics, in gen-
eral, is nontrivial and complicated from the theoretical point of view since
the characteristic energy scale, which is in about 1 GeV region, is below
the domain of perturbative QCD. Moreover, in this energy region resonance
effects are known to be present and low-mass scalar mesons may play an
important role which have fundamental importance in understanding low
energy QCD. From the experimental point of view, isoscalar f,(980) and
isovector ag(980) are well established. The existence of the isoscalar o me-
son has long been controversial, but recently direct experimental evidence
seems to emerge from the D* — ont — 37 decay channel observed by the
Fermilab E791 Collaboration, where ¢ meson is seen as a clear dominant
peak with M, = 478 MeV and I', = 324 MeV [1]. On the other hand, the
nature and the quark substructure of these scalar mesons have long been
controversial and a subject of debate [2-6].

The vertices ¢agy and ¢oy are interesting and important for several
reasons. The ¢agy-vertex plays a role in the study of the radiative ¢ — 7%y
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decay [7]. Moreover, it has been noted that ¢ — ayy decay along with the
decay ¢ — foy can differentiate between the different models of the structure
of the scalar mesons ag and fo [7-9]. The knowledge of the ¢oy-vertex is
needed in the analysis of the decay mechanism of the ¢ — 7%7%y decay
[10], and also in the study of the structure of the ¢ meson photoproduction
amplitude on nucleons in the near threshold region based on the one-meson
exchange and Pomeron-exchange mechanisms [11].

In this work, we estimate the coupling constants gg,, and gge,y by em-
ploying QCD sum rules which provide an efficient method to study many
hadronic properties, and which have been employed to study hadronic ob-
servables such as decay constants and form factors in terms of nonper-
turbative contributions proportional to the quark and the gluon conden-
sates [12-14]. In the next section, we give a QCD sum rule analysis of the
scalar current, derive the sum rules for the overlap amplitudes A\, and A4,
and estimate these amplitudes since they are not available experimentally.
We then, by taking into account w¢-mixing, derive the sum rules for the
coupling constants g¢s, and ggae., and utilizing the experimental value of
Ag and the calculated values of A, and A4y, and the known values of the
condensates, estimate the coupling constants g4,y and ggay-

2. Analysis and results

In QCD sum rules method the properties of hadrons are studied through
correlation functions of appropriately chosen currents [12-14]. We choose
the interpolating j; = 3(uu + (—1)’dd) scalar current for isoscalar I = 0
o meson and for isovector I = 1 ag meson. We study the scalar current
correlation function

o(p?) =i / d*ze™ (0| T{js()55(0)}0) - (1)

The three-loop expression for the scalar current correlation function IT(p?)
in perturbative QCD was calculated [15], and it is given by the expression

Iyert(p°) = 1637T2(—p2)1n <_u—€2) {1 +(3) [1?7 o <_u—22>]
+ (%)2 [45.846 - % In <_u—€2> + % In” <;—€2)] } - (2)

QCD vacuum condensate contributions to the scalar current correlation
function IT(p?) were obtained by the operator product method [16], and
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they were found in the m,=my=0 limit as

I(p* = —Q%)cona = QQQ (meGq) + ——5

881

In this equation the magnitude of the condensate (m,gq) can be obtained by
making use of the Gell-Mann-Oakes—Renner relation as —f2m?2 /4, which is
independent of quark mass [12].

The correlation function IT(p?) satisfies the standard subtracted disper-
sion relation [12]

ert p2 l) + H(O) ’ (4)
ot i

'(s' —p?)

where the spectral density function is given as p(s') = (1/7)Im II(s"). The
spectral density contains a single sharp pole mAs6(s’ — m?2) corresponding
to the coupling of the scalar meson s, with s denoting o or ag, to the
scalar current j; where the overlap amplitude Ay is defined by Ag = (0]75]s).
The continuum contribution of the higher states to the spectral density is
estimated in the form p(s") = pp,(s")0(s'—sp) where s denotes the continuum
threshold and py, is given by the expression p,(s') = (1/7)Im opg(s’) with
Ilopr(s') obtained from Eq. (2) and Eq. (3) as Topr(s’) = Ilert(s') +
I.ona(s'). After performing the Borel transformation we obtain the QCD
sum rule for the overlap amplitude Ag of o or ay meson

[1 PG (i) 31.864]
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so/M?
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For the numerical evaluation of the above sum rule, we use the values
(mqdq) = (—0.82 £ 0.10) x 10~* GeV*, (asG?) = (0.038 £ 0.011) GeV*,
(as(@q)?) = —0.18 x 1073 GeV® [14], and m, = 0.5 GeV, mq, = 0.980 GeV.
The running coupling constant agz(M?) in Eq. (5) is calculated using the
expression to 3-loop order given by the Particle Data Group [17]. The con-
tinuum threshold sg is chosen below a possible pole in respective channels,
it is varied between sqg = 1.1-1.3 GeV? for o meson and between sy =
1.5-1.7 GeV? for ag meson, and we study the M? dependence of the sum
rule. Since the Borel parameter has no physical meaning, we look for a range
of its values where the sum rule is almost independent of M?, we choose the
interval of values of the Borel parameter M? as 1.2-1.4 GeV?. The overlap
amplitudes A,, and A, as a function of M 2 for different values of sy are
shown in Fig. 1 and in Fig. 2, respectively. We choose the middle value
M? = 1.3 GeV? in its interval of variation, and we obtain the overlap am-
plitudes as Ay, = (0.23 +0.06) GeV?, and A, = (0.15 +0.04) GeV?, where
we include the uncertainty due to the variation of the continuum threshold
and the Borel parameter M? as well as the uncertainty due to the errors
attached to the estimated values of the condensates as quoted above. In a
previous work [18], we estimated the overlap amplitude A, of o meson as
Ao = (0.12£0.03) GeV? using the two-loop expression for the scalar current
correlation function IT(p?) calculated in perturbative QCD. Our new result
shows the importance of the higher order effects. The overlap amplitude A,
was also recently calculated using light cone QCD sum rules [19], and the
value A\, = (0.2+0.04) GeV? is obtained which is consistent with our result.
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Fig. 1. The overlap amplitude \,, as a function of Borel parameter M?2.
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Fig.2. The overlap amplitude A, as a function of Borel parameter M2,

In the following, we will analyze radiative ¢ — agy and ¢ — oy decays
using QCD sum rules. We begin with the observation that the ¢ — 70y
decay width vanishes if the ¢ meson is a pure ss state. The measured width
I'(¢ — 7%y) = (5.6 £0.5) KeV [17] is significantly different from zero which
is primarily due to w¢-mixing. Bramon et al. [20] have recently studied ra-
diative V P~ transitions between vector (V') mesons and pseudoscalar (P)
mesons, and using the available experimental information they have deter-
mined the mixing angle as well as other relevant parameters for the w—¢
system and also for the n—n' system. We follow their treatment and we
write the physical w and ¢ meson states as

| w) = cos@ | wy) —sinb | ¢o),
| ¢) = sinf | wo) +cosf | ¢o), (6)

where | wy) = & | T + dd) and ¢o) =| ss) are the non-strange and the
72 g

strange basis states. The mixing angle is determined by Bramon et al. as
0 = (3.4 £0.2)° [20]. We, therefore, choose the interpolating currents for w
and ¢ mesons defined in the quark flavour basis as

Ju = cosfj;° —sin ijfo ,

jl‘f = sinfj;° + cos Oj;fo , (7)

where 50 = t(@yu + dy,d) and jg° = —335y,s [12].
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In order to derive the QCD sum rule for the coupling constants g,
with s denoting o or ag, we consider the three-point correlation function

T (p,p') = / d'wd'ye’ Ve~ (0|T{j}(0)j5 ()]s (y) }10), (8)

where the electromagnetic current is given as jj, = e, Uy, u+ edgfyﬂd, and j,‘f
and js are the interpolating currents for ¢ and scalar ¢ or ay meson.

In order to obtain the phenomenological part of the sum rule, we consider
the double dispersion relation satisfied by the vertex function T}, (p, p")

v(s1,8
TIM/ pb,p) = /dsl/dSQ IOM : ,22) 32) ) (9)
- 02

where we neglected possible subtraction terms since they will not make
any contribution after Borel transform. For low values of s; and so, the
spectral density function p,,(s1, s2) contains a term proportional to double
o-function §(s; — m%)d(SQ — m?2) corresponding to the transition ¢ — sy
where s = o or ag. We can therefore obtain the physical part by extracting
this contribution as

(015 16) ()i |5(p")) (s13s10)

) — md)
hads s
[ [ iy

where s1g and sgg are continuum thresholds. In this expression, the overlap
amplitudes A\; = (s|j5|0) have been estimated above for s = o and ag. The

Twp,p') =

overlap amplitude Ay of ¢ meson is defined as (0| & |¢) = Apu, where u,, is
the polarization vector of the ¢ meson. The e*e™ leptonic decay width of ¢
meson neglecting electron mass is then given by

2
dra”

22 (11)

I'(¢p—ete)= -
¢

We use the experimental value for the electronic branching ratio B(¢ —
ete™) = (2.91 £0.07) x 10~ of ¢ meson [17], and this way we determine
the overlap amplitude Ay of ¢ meson as Ay = (0.079 £ 0.016) GeV2. The
matrix element of the electromagnetic current can be written in the form

(b5 15(0)) = —z’m%gmm(q?)(p Uy —u-q ), (12)
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where ¢ = p—p’ and K (q?) is a form factor with K (0) = 1. This expression
defines the coupling constant g4, through the effective Lagrangian

e
L= m—¢g¢573a¢ﬂ(aaz45 — DpAy)s (13)

describing the ¢sy-vertex [21]. Furthermore, we invoke the quark-hadron
global duality, and therefore assume that the physical and perturbative spec-
tral densities p"d and pPe™, respectively, are dual to each other in the sense
that they give the same result approximately when integrated above some
threshold [14].

We obtain the theoretical part of the sum rule by calculating the pertur-
bative contributions and the power corrections from operators of different
dimensions to the three point function 7T}, (p,p’). If we consider the gauge
invariant structure (p,g, —p - qgu) we can then write for three point corre-
lation function

pert
T /dsl/dSQ P 811282) B
= 57)(p'"" = s3)

+e3(~ (Gq)) + cs(= (qa -Gq)) + ... (14)

where c3, cs,...denote the power corrections coming from operators of dif-
ferent dimensions that are proportional to various vacuum condensates. For
the perturbative contribution we consider the lowest order bare-loop dia-
grams shown in Fig. 3(a), therefore in Eq. (8) for the correlation function

Ty, we can replace the interpolating current j,‘f = sinf3%° + cos 03, go by

j9 = sin@je0 = sinL & (Wy,u— dv,d) with 6 denoting the mixing angle of the

w@-system. For the power corrections we consider the contributions coming
from the operators of different dimensions that are proportional to vacuum
condensates (gq), (go - Gq) and {(gq)?). Since the gluon condensate con-
tribution proportional to (G?) is estimated to be negligible for the light u
and d quark systems, it is not taken into account. We perform the calcu-
lation of power corrections in the fixed point gauge [22]. We work in the
limit m, = mg = my = 0, and in this limit perturbative bare-loop diagram
does not make any contribution. Moreover, in this limit only operators of
dimensions d = 3 and d = 5 make contributions that are proportional to
(gq) and (go - Gq), respectively. The relevant Feynman diagrams for power
corrections are shown in Fig. 3(b) and Fig. 3(c). We obtain the following
power corrections for ¢svy-vertex
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31

1 _ = .
c3 = ZZPF (ew(uu) + eq(dd)) sin @ (15)

and

.51 1 .31 1 _ = .
c5 = <7,3—2E? - 13—21??) (eu(gsuo - Gu) £ eq{gsdo - Gd)) sinf, (16)

where the plus sign is for the ¢oy-vertex and the minus sign is for the ¢agy-
vertex.

Y
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u(d)
0] s
yV
(a)
Y
0] s

()

Fig.3. Feynman diagrams for the ¢sy-vertex: (a) — bare loop diagram, (b) —
d = 3 operator corrections, (c) — d = 5 operator corrections. The dotted lines
denote gluons.

After performing double Borel transform with respect to the variables
Q? = —p? and Q' 2 = —p/ 2, and by considering the gauge-invariant structure
(Pugv — P+ qguv) we obtain the sum rules for the coupling constants gy~ and
9paoy a8

m, 2 2 2 12 _
sy = VjsemﬂM M (o) & o) (Tiu)

3 05 ,1 3 , 1),
(1 grbam i) sme. 0

where the plus sign is for the coupling constant g4, and the minus sign is
for the coupling constant g, and we use the relations (go - Gg) = m2(qq)
and (uw) = (dd).

For the numerical evaluation of the sum rule we use the values m3 =
(0.8£0.02) GeV?, (wu) = (—0.01420.002) GeV? [14], and my = 1.020 GeV,
Mg, = 0.980 GeV and m, = 0.5 GeV. For the overlap amplitudes A\, and
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AgoWe use the values A\, = (0.154+0.04) GeV? and ), = (0.23 +£0.06) GeV?
that we have estimated previously, and for A4 we use its experimental value
As = (0.079 £ 0.016) GeV? as obtained from the measured leptonic width
I'(¢ — eTe™) of ¢ meson. In order to analyze the dependence of g4, on the
Borel parameters M? and M’ 2, we study the independent variations of M?
and M'?. The variation of the coupling constant gssy and geq,~ as a function
of Borel parameters M? for different values of M’ % are shown in Fig. 4 and
Fig. 5, respectively. The Borel parameter has no physical meaning, and we
look for a range of its values where the sum rules are almost independent
of M?. Examination of Fig. 4 and in Fig. 5 indicates that such a stability
window is achieved in the interval 1 GeV2 < M2, M'* < 1.4 GeV? for the
coupling constant g4, and in the interval 1 GeV? < M? < 1.4 GeV? and
1.4 GeV2 < M'? < 1.8 GeV? for the coupling constant gg.,,. We choose
the middle value M? = 1.2 GeV? of the Borel parameter in its interval of
variation and obtain the coupling constants as g4,y = (0.043 = 0.009) and
Ggaoy = (0.12 £0.03). The errors arise from the numerical analysis of the
sum rule due to variations of M2 and M'? and also from the uncertainties
in the estimated values of the vacuum condensates.
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Fig.4. The coupling constant gs,, as a function of the Borel parameter M? for
different values of M'*.

In a previous work [10], we followed a phenomenological approach to
study the radiative ¢ — 797y decay by considering p-pole vector me-
son dominance amplitude as well as scalar o-pole and fyo-pole amplitudes.
By employing the experimental value for this decay rate and by analyzing
the interference effects between different contributions in the experimen-
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Fig.5. The coupling constant gs4,~ as a function of the Borel parameter M? for
different values of M'”.

tal 7970 invariant mass spectrum for the decay ¢ — 7%7%y, we estimated

the coupling constant g4, as gpsy = (0.025 £ 0.009) which is in reason-
able agreement with our present calculation utilizing QCD sum rules. On
the other hand, Friman and Soyeur [21] in their study of the photopro-
duction of p” mesons on proton targets near threshold showed that pho-
toproduction cross section is given mainly by o-exchange, and they cal-
culated the poy-vertex assuming vector meson dominance of the electro-
magnetic current, and their result when described using an effective La-
grangian for the poy-vertex gave the value g,,, = 2.71 for this coupling
constant. In their study of the structure of the ¢ meson photoproduction
amplitude on nucleons near threshold based on the one-meson exchange
and Pomeron-exchange mechanisms, Titov et al. [11] used this value of
the coupling constant g,,, to calculate the coupling constants g4, and
9paoy Dy invoking unitary symmetry arguments, and they obtained the re-
sults gpoy = 0.047 and | ggpe0y |= 0.16 for these coupling constants. Our
results ggo, = (0.043 £ 0.009) and ggey = (0.12 £ 0.03) are in good
agreement with the values of these coupling constants calculated by Titov
et al. and used in their analysis. However, it should be noted that in order
to derive their result Titov et al. assumed that o, fj, and ag are members of
a unitary nonet, but in our work we do not make any assumption about the
assignment of scalar states into various unitary nonets, which is not without
problems.
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