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RECENT RESULTS FROM THE PHENIXEXPERIMENT AT RHIC�Senta Vitoria Greenefor the PHENIX CollaborationVanderbilt UniversityBox 1807-B, Nashville, TN 37235, USA(Reeived May 20, 2002)Seleted data from the �rst two running periods of the PHENIX de-tetor at the Relativisti Heavy Ion Collider are presented and disussed.These results emphasize harged partile multipliity as a funtion of en-trality, suppression of hadron prodution at high transverse momentum,and an estimate of open harm prodution from single eletron spetra.PACS numbers: 25.75.Dw 1. IntrodutionA major goal of the PHENIX experiment is to detet and study thephysial properties of the quark�gluon plasma. The design of the PHENIXexperiment was driven by the goal of building a detetor that would allow themeasurement of many di�erent signals from heavy-ion ollisions at RHIC. Bykeeping the sope of the measurements broad, it is expeted that all stagesof the ollision proess, from the early stages to subsequent hadronization,an be studied. The PHENIX detetor an measure hadrons, leptons, andphotons with exellent momentum and energy resolution. The PHENIXdesign also has enough versatility to be used to study proton spin using thepolarized proton beams at RHIC, although that physis program is outsidethe sope of this paper.The �nal detetor design (Fig. 1) omprises a entral spetrometer whihmeasures hadrons, eletrons, and photons at midrapidity and two muon spe-trometer arms whih are sensitive to muons at forward rapidities. The twoarms of the entral spetrometer arms eah over 90 degrees in azimuth with� Presented at the Craow Epiphany Conferene on Quarks and Gluons in ExtremeConditions, Craow, Poland, January 3�6, 2002.(1407)
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Fig. 1. The omplete PHENIX detetor as designed. The spei� on�guration ofthe detetor depends on the year in whih the data were taken.j�j < 0:35: Eah muon arm has full azimuthal overage and 1:1 < j�j < 2:4:The entral arms have three traking systems, Pad Chambers (PC), DriftChambers(DC), and Time-Expansion Chambers (TEC). For partile identi-�ation there are a Ring-Imaging Cerenkov (RICH) ounter and a Time-Of-Flight hodosope (TOF). Energy measurements are made using two typesof EletroMagneti CALorimeters (EMCAL), lead-glass (PbGl) and lead-sintillator (PbS). The muon arms have traking onsisting of three stationsof athode strip hambers (MuTr) and partile identi�ation from �ve layers



Reent Results from the PHENIX Experiment at RHIC 1409of Iaroi tubes with iron absorber (MuID). In addition to the spetrometerarms, there are three detetors whih an be used for event harateriza-tion and measurement of global properties: A quartz Cerenkov Beam�BeamCounter (BBC) [2℄, the standard RHIC Zero-Degree Calorimeter (ZDC) [3℄,and a silion-strip Multipliity and Vertex Detetor (MVD). Some partsof the detetor were either not installed or not instrumented during one orboth of the �rst RHIC runs; suh di�erenes from the full detetor are notedbelow in the desription of the various analysis.2. Charged-partile multipliityGlobal Variables suh as harged-partile multipliity haraterize theevents. In general, these variables are useful for determining informationabout the initial onditions of the ollision. PHENIX has measured theharged-partile multipliity distribution at midrapidity in Au�Au ollisionsat a enter-of-mass energy of 130 GeV. Details of the analysis of the 130 GeVdata an be found in [4℄ and are outlined below. The analysis of the 130 GeVdata uses three PHENIX subsystems: two layers of the pad hambers (PC1and PC3), the zero degree alorimeters, and the beam�beam ounters. ThePCs give three-dimensional spae points along the trajetory of the hargedpartiles and are used to provide the multipliity measurements. The ZDCand the BBC are used in both online and o�ine event seletion.The primary interation trigger requires a oinidene between �rings ofthe two BBC. A �ring is de�ned as having a minimum of two photomulti-pliers �red in one BBC. There is also a requirement that the ollision vertexposition is within 20 m of z = 0. This trigger is based on simulations ofthe BBC and selets 92� 2% of the 7.2 b nulear interation ross setion.(The error is systemati.)A sample of 137,784 events was used in this analysis. All hits in PC 1and PC3 are ombined in pairs. The lines onneting the two points areprojeted on a plane that ontains the beamline and is perpendiular to theaxis of symmetry of the pad hamber system. For events with more thanabout 5 traks, this produes a distint peak that de�nes the vertex. Onethe vertex position is known, the projetion of the PC1-PC3 segment tothe plane desribed above is ompared to the measured vertex position andthe di�erene between them, R, is plotted. The ombinatorial bakgroundis removed using a mixed-event tehnique. Traks up to R = 25 m areounted as harged partiles, a uto� that inludes 95.9% of all traks.Additional orretions are made for inative areas of the hambers andeletronis, the PC hit e�ieny, trak losses from double hit resolution,and unounted harged traks. The net e�et of these unertainties is atotal systemati error of 6.5% at the highest multipliities.



1410 S.V. GreeneEvents were seleted whih had a reonstruted vertex position within17 m of z = 0. The resulting minimum-bias harged-partile multipliitydistribution into the trak aeptane j�j < 0:34; Æ� = 88:4 deg is shownin Fig. 2. The distributions for the top four entrality lasses (0%�5%,5%�10%, 10%�15%, and 15%�20%) of the total interation ross setion arealso shown. Centrality lasses were determined by seleting events from aplot of BBC vs ZDC. There is an ambiguity in this distribution beausethe ZDC an produe a low response for both very entral ollisions andno ollisions. This an be resolved by onsidering the response of a thirddetetor. A Glauber model alulation is used to relate the entrality lassesto the number of nuleons partiipating in the ollision (Np) and the numberof binary ollisions (N). Fig. 3 shows our results for dNh=d� as a funtionof Np. In addition, UA5 data for p�p ollisions at the same ps are shown [22℄.If we extrapolate the PHENIX data to lower Np, the result is lose to thep�p data.
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Fig. 2. BBC vs ZDZ analog response (top panel) and minimum-bias multipliityin the PHENIX measurement aperture (lower panel). The lower axis onverts theobserved distribution to the orresponding average dNh=d� for trak multipliitiesless than � 120; beyond that value the shape of the distribution has a signi�antontribution from �utuations into the measurement aperture. From [4℄.



Reent Results from the PHENIX Experiment at RHIC 1411Calulations for two ollision models, HIJING [14℄ and EKRT [13℄, arealso shown in Fig. 3. HIJING shows the same trend as the data, althoughthe values are � 15% lower. The shape of the EKRT urve is onsiderablydi�erent. HIJING predits that there are omponents of partile produtionfrom both soft and hard proesses. Soft proesses are expeted to sale withNp and hard proesses with N. Thus we �t the data to a funtion:dNh=d� = ANp +BN:The parameters of this �t are given in Fig. 3. The values suggest that hardproesses ontribute signi�antly to partile prodution. On the other hand,EKRT predits that the gluon density is saturated by a large prodution ofgluons. Entropy prodution is thus limited by gluon fusion, leading to aredution of partile prodution. The PHENIX data show no evidene forsuh saturation e�ets.
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UA5Fig. 3. Charged-partile pseudorapidity density per partiipant pair vs the numberof partiipants. Preditions from HIJING and EKRT models and a simple phe-nomenologial �t are also shown. The shaded area represents the systemati areasof dNh=d� and Np. This �gure and the errors of N may be found in [4℄.3. Hadrons at high transverse momentumIn pp ollisions, the dominant soure of high transverse momentum (pT)hadrons is jet fragmentation, where the jets are the result of hard satter-ings between partons [5℄. Typial pT values for suh interations are � 2GeV/. In high-energy heavy ion ollisions, hard sattering is expeted totake plae early in the ollision, most likely long before any formation ofthe quark�gluon plasma. Thus the possibility exists for the sattered par-tons to interat in the system, losing energy through proesses suh as gluonbremsstrahlung [6℄. This would have the e�et of reduing jet prodution.



1412 S.V. GreeneSuh `jet quenhing' would lead to a diminished yield of high pT hadrons, ane�et readily measurable on the laboratory [7,8℄. If the energy loss in a QGPis greater than in hot hadroni matter, as has been suggested in [1℄, this ob-servable ould prove valuable as a potential signature for the formation ofthe QGP.In order to determine whether the data indiate this e�et is present, itis reasonable to ompare the results for A+A ollisions to that expeted in asimple binary saling from independent nuleon�nuleon (N +N) ollisions:RAA(pT) = (1=Nevt)d2NA+A=dpTd��hNbinaryi=�N+Ninel � d2�N+N=dpTd� :This ratio will be unity if there are no nulear modi�ations to hardsattering proesses. A deviation suggests the existene of nulear mediume�ets. One example of a medium e�et is the Cronin e�et, seen in p+Aollisions, in whih partile prodution for pT above 2 GeV/ is enhanedrelative to binary saling [9℄. Another is parton shadowing [10,11℄, observedin lepton + nuleus ollisions. Both of these e�ets are likely to be presentin A+A ollisions as well as possible e�ets of jet quenhing.The data were taken with both of the entral spetrometer arms, eahhaving an aeptane of �� = 90deg and j�j < 0:35. The analysis isdesribed in detail in [12℄. Charged partiles are reonstruted using theDC and PC systems. The momentum resolution for this on�guration isÆp=p � 0:6: 
 3:6p GeV/. Bakground to signal is negligible below a pTof 2 GeV/, 1/10 for 3.5 GeV/, and 1/1 for a pT of 6 GeV/. A fullGEANT simulation is used to orret the data for aeptane, reonstrutione�ieny, in-�ight deays, momentum resolution, and dead regions. Trakreonstrution e�ieny ranges from 98 % for peripheral ollisions, to 68�6%for entral ollisions.The deay �0 !  is used to observe neutral pions. Two methodsare used to detet photons � a lead-sintillator sampling alorimeter anda lead-glass Cerenkov alorimeter. Hadron showers are suppressed usinguts on shower shape and arrival time. The ombinatorial bakground forthe pair data is subtrated using a mixed-event analysis. The data arealso orreted for energy resolution, overlapping lusters, analysis uts, deadregions of the detetors, and aeptane. Results from both detetors arein good agreement. There is a ontamination from pions not originating atthe vertex whih is estimated to be 6%�8%.The event lassi�ation is similar to that desribed above for the multi-pliity data. The entral data sample inludes the 10% most entral frationof the geometrial ross setion. The peripheral sample ontains events inthe 60%�80% entrality bin. Using a Glauber model, we alulate that this



Reent Results from the PHENIX Experiment at RHIC 1413orresponds to hNbinaryi = 905 � 96 for events in the entral sample, andhNeventsi = 20�6 in the peripheral sample. Fig. 4 shows the pT distributionsfor harged hadrons and neutral pions for both entral and peripheral eventsas desribed above, along with the yields estimated assuming binary sal-ing. For the peripheral data, both harged and neutral, the binary-salingestimate agrees well with the data above a pT of 2 GeV/. The entral datalies below the binary-saling alulation, with the di�erene being espeiallypronouned for the �0's.
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1414 S.V. GreenepT > 2GeV. The suppression at high-pT for Au+Au ollisions at psNN =130 GeV is suggestive of the model of energy loss by sattered partons by adense medium. However, it is neessary to eliminate other possible nulearmedium e�ets before a de�nitive interpretation an be made. A series ofmeasurements in p + A ollisions at RHIC are planned whih should makethe piture learer.
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Reent Results from the PHENIX Experiment at RHIC 1415We analyzed 1.23 M minimum bias events with a vertex seletion jzj < 30m. Only the west are of the entral spetrometer is used. (Details of theanalysis are given in [17℄.) The DC and PC1 are used to reonstrut hargedpartile traks with a momentum resolution give above. A on�rming hit inthe EMCAL is required. The resolution of the EMCAL is 8:2%=pEGeV 
1:9%: The EMCAL and the RICH are used for eletron identi�ation andappropriate quality uts are applied to the RICH hit pattern and the E=pratio. Combinatorial bakground is subtrated using event-mixing. Theeletron aeptane is � 7:4% of dN=dy and the e�ieny is � 60%; bothare determined by a GEANT simulation. There is a loss in e�ieny thatis dependent on entrality but independent of pT; the e�ieny is 27 � 4%for entral ollisions and 4� 2% for peripheral ollisions.The eletron pT spetra for peripheral, minimum-bias, and entral olli-sions is shown in Fig. 6. The error bars are statistial, while the systematierror is about 11%. These spetra ontain bakground from (i) Dalitz de-ays of �0, �, �0, !, and �, (ii) dieletron deays of �, !, and �, (iii) photononversions, (iv) kaon deays. Signal eletrons ome from (i) semileptoniharm deay, and (ii) bottom deays and thermal dileptons. The souresof bakground are estimated using a hadron event generator as input to aGEANT simulation.
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1416 S.V. Greeneontribute only a few perent to the total. The upper panel of Fig. 7 showsthe ratio of the measured eletron spetrum to the alulated bakground asa funtion of pT for minimum bias events. The shaded region indiates theenvelope of the estimate of the systemati errors. There is a de�nite exessof eletrons above the bakground for pT > 0:6 GeV/. The plot for entralollisions is similar, while the peripheral data has insu�ient statistis.
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