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The net-baryon density at midrapidity is proposed as an order param-
eter in the search for the QCD critical point in heavy ion collisions. As
a function of the initial energy and the total number of participants, this
quantity obeys a scaling law, dictated by the critical exponents of the appro-
priate universality class. The corresponding scaling variable specifies the
proximity of a given experiment to the critical point. Within this frame-
work, measurements at the SPS are discussed and predictions for RHIC
and LHC are extracted.

PACS numbers: 12.38.Mh, 25.75.—q

1. Introduction

A remarkable property of the QCD phase diagram (p — T') is the exis-
tence of an endpoint along the critical line of the first order quark-hadron
phase transition [1|. It defines a critical point of second order, belonging to
the universality class of a 3d Ising system and located on a line of nonzero
baryonic density p = p.. The QCD critical point is associated with the
chiral phase transition in the sense that it is the remnant of a tricritical
point corresponding to the chiral limit m, = mg = 0 [2]. In other words,
the existence of a second-order critical point, at nonzero baryonic density, is
a fundamental property of real QCD with small but nonzero quark masses
(my,mg # 0). The QCD critical point communicates with the hadronic
world through the fluctuations of a scalar field (o-field) which carries the
quantum numbers of an isoscalar (o-meson) as the manifestation of a quark
condensate, o ~ (Gq), in thermal environment. At the critical temperature
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(and infinite volume) the isoscalar has zero mass, in order to provide the in-
finite wavelength mode required by the divergence of the correlation length.
It remains, therefore, stable in the thermal environment of a nuclear collision
as long as the temperature stays close to the critical value. At the freeze-out
stage the mass of the o-field may reach the two-pion threshold (m, 2 2m;)
and become accessible to observation [2,3]|. In the effective theory of the
QCD critical point, the classical o-field is a natural order parameter, the
fluctuations of which obey scaling laws dictated by the critical exponents of
the 3d Ising system (n =~ 0, =~ %, SRS %) In a baryonic environment,
however, the chiral condensate is expected to have, at T' = T¢, a strong
dependence on the net-baryon density, driving the o-field close to zero for

p R pe (Gq), = A (p;c"c) (@q)o + O[(p — pc)?] where X is a dimensionless

constant of the order of unity [4]. This dependence suggests a new order
parameter, m = p — p., associated with the critical properties of the bary-
onic fluid created in a quark-hadron phase transition. In fact, approaching
the critical point in the phase diagram, both the o-field fluctuations and
the fluctuations of the order parameter m(Z) obey the same scaling laws
({ga), ~ m ().

In this work we exploit the scaling properties of the order parameter
m(Z), properly adjusted to measurable quantities, in heavy ion collisions.
For this purpose we consider net-baryon production in collisions of heavy
nuclei with total number of participants A; and initial energy corresponding
to a total size in rapidity Ay = L. The paper is organised as follows: In
Section 2 we discuss in detail the scaling properties of the net-baryon fluid
near the critical point. In Section 3 we present shortly phenomenological
consequences of the presence of critical fluctuations in the baryonic sector.
Finally in Section 4 we present our conclusions concerning the possibility to
approach and observe the QCD critical point in heavy-ion colliders.

2. Net-baryon scaling

The created baryons in the process of quark-hadron phase transition

occupy a cylindrical volume with transverse radius R ~ Ai_/3 and longitu-
dinal size L (in rapidity). The parameter A specifies the effective number
of participants, contributing to the transverse geometry of the collision, and
it is assumed A | ~ %, valid both for central (A; = Anin) and non-central
collisions. Projecting out the net-baryon system onto the longitudinal di-
rection we end up with a 1d liquid confined in a finite rapidity region of

W) - directly related to the measurable
TR T¢

size L with local density p(y) =

net-baryon density in rapidity ny(y) = %. Putting R, = RoAi/s, we in-
troduce a characteristic volume V = WR%’Tf in terms of the freeze-out time
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scale 7 > 6-8 fm [5] and the nuclear-size scale Ry which contains also any
growth effects near the critical point (Rg >1.2 fm). ). Using V; ' as a
scale for baryonic, freeze-out densities, the order parameter m(y) of the 1d
baryonic liquid is written:

my) = AT n(y) —pe,  0<y<TL. (1)

In what follows, our basic assumption is that the deconfined phase of quark
matter, in heavy-ion collisions, approaches the QCD critical point in local
thermal equilibrium. In the framework of inside-outside mechanism, this
process is implemented by considering the isothermal space-time hyperbo-
las 2 — xﬁ = 72 and employing the corresponding rapidity variable as the
appropriate longitudinal coordinate. In this description, the assumed local
equilibrium in the conventional geometry (z),71,?) is translated as global
equilibrium in the new geometry (y,Z,,7) and one may consistently im-
pose, near criticality, static scaling laws on the order parameter m(y). In
particular, the expected singularity at T' = T, is incorporated in a general
expansion of the form:

m(y) =t [Fo(y/L) + tFi(y/L) +...] , (2)

where ¢t = % and [ is the appropriate critical exponent (8 = %) The
leading term Fy(y/L) in the expansion (2) has a universal power-law be-
haviour near the walls (y = 0, L), shared by all fluids belonging to the same
universality class and confined in a finite, one-dimensional region [6,7]. At
midrapidity (y &~ L/2), Eq. (2) gives the deviation of the measurable, bulk
density of net baryons, from the critical value p., as we approach the critical

point, not along the critical isochore (p = p.) but along the freeze-out line:
A12/3nb = Pc + t? [Fo + thl + .. ] s (3)

where t; = TCT;CTf, ny, = ny(L/2), F; = F;(1/2) and Tt is the freeze-out

temperature. Integrating now Eq. (2) in the interval 0 < y < L we obtain
at T = Tf:
AP AL = pe+ 0 (o + te +..) (4)

where I; = fol F;(&)d¢. Introducing the variable 2z, = A12/3AtL*1 we find
from Egs (3) and (4) a scaling law for the net-baryon density at midrapidity:

A12/3nb = W(an pc) ; Ze 2 P s (5)

where the scaling function ¥ (z, p.) has the property ¥(z. = pc, pc) = pe. In
the crossover regime z, < p., where critical fluctuations disappear, the local
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density at midrapidity is, to a good approximation, ny ~ A;L~! suggesting a
continuous extension of the scaling law (5) in this region with ¥(z¢, pc) = zc
(zc < pc)- Tt is of interest to note that although the scaling function ¥ (z, p.)
is continuous at the critical point (2. = p.), the first derivative is expected
to be discontinuous at this point in accordance with the nature of the phase
transition (critical point of second order).

In order to study in detail the critical behaviour of the baryonic fluid
in terms of the new variables ny, z, a further investigation of the structure
of the scaling function ¥(zc, pc) for z. > p. is necessary. For this purpose
we approximate the nearby part of the freeze-out line, close to the criti-
cal point (tf < 1), by truncating the series (2) keeping only the next to
the leading term Fi(y/L). As a result, equations (3) and (4) are written
correspondingly:

APy ~ pe+t2(Fy + tFy) (62)
2o — pe ~ t2(Io+ 1)) . (6b)

Neglecting terms of order O(t7) in the power expansion of the quantity
(Io + t¢I;)'/8 and combining Eqs (6) we finally obtain:

_ Vg
ATy = ot T2 e po)P + CLY e p )P (7a)
1+
_ cI, ?
AJ_2/3nb = pc+ FOt? 1+ thL ) (7b)
0

f(zeype) = é <_1 + \/1 + 2G (2 — Pc)l/ﬁ> ;o Ze 2 Pe (7c)

where ' = 1 G = 20
B B
I BI,

The component Fy(y/L) which dominates the order parameter m(y) in
the limit T — T, is approximately constant in the central region (y ~
% , L> 1), far from the walls (at the points y = 0, L) due to the approxi-
mate translational invariance of the finite system in this region. On the other
hand, approaching the walls, Fyy(y/L) describes the density correlation with
the endpoints and obeys a universal power law. In summary:

Fy(¢) ~ const. (E~3), (8a)
)

Fo(&) ~ &8 (>0, (8b)
Fo(¢) ~ (1=¢) " (¢<1). (8¢)
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The solution which fulfils these requirements is:

Fo(¢) = gl -1 7" (0<¢<), (9a)
Fy 4BV I'(m)I'(n)

— = i B(n,m)=——"—".
Iy B(l_g,l_g) I(m+n)

(9b)

Inserting the constant % into the Eq. (7b), the final form of the scaling
0

function ¥(zc, pc) is obtained:

4B8/v 5
gp(zCa pC) = Pc + [f(zca pC)]
B (1 —B1- é)
+C [f(zcapc)]ﬂ—i_l 3 Ze 2 Pes (103)
VU(ze,pc) = ze; 2 < pe, (10b)

where f(z¢, pc) is given by Eq. (7c). It is straightforward to show that the dis-
continuity of the first derivative of ¥(z, p.) at z. = p. is a nonzero universal

constant: disc (57‘”) ~1-— % (é ~ %) as expected from the characteristic
c Pe

properties of a second-order phase transition. Combining Eqgs (5)—(10) one
may propose a framework for the treatment of certain phenomenological as-
pects of the QCD critical point. The scaling law (5) combined with Eq. (10)
involves three nonuniversal parameters: (a) the critical density p. and (b)
the constants C, G which give a measure of the nonleading effects, allowing
to accommodate in the scaling function (10) processes not very close to the
critical point. We have used measurements at the SPS in order to fix these
parameters on the basis of Egs (5) and (10). More specifically, in a series
of experiments (Pb-+Pb, S+Au, S+Ag, S+S) with central and noncentral
(Pb+Pb) collisions at the SPS [8,9] net baryons have been measured at

midrapidity whereas the scaling variable 2z, = A12/ 3Atlﬁl, associated with
these experiments, covers a sufficiently wide range of values (1 < 2z, < 2)
allowing for a best fit solution. The outcome of the fit is consistent with the
choice G = 0 and the equations (7) are simplified as follows:

B 2

ALQ/?’nb = pct ;(ZC — pe) + Clze = pe)*, (11a)
_ 21, crl/?

APy = pc+7‘%t§/3(1+tf7T 0, (11b)

(ze — pc) L

T/ y(L —y)

AP ny(y) = pet +O[(ze — po)Y]. (11c)

In Eqgs (11) we have used the approximate values of the critical exponents
B~ %, g ~ % in the 3d Ising universality class [10]. We have also added
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Eq. (11c¢) which gives the universal behaviour of the net-baryon density
np(y), in the vicinity of the critical point (2. — p. < 1). The fitted values
of the parameters in Eq. (11b) are p. = 0.81, C' = 0.68 and the overall
behaviour of the solution is shown in Fig. 1.
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Fig. 1. The scaling law (10) is illustrated together with measurements at the SPS.
The critical point and the corresponding break in the slope of ¥(z, p.) are also
shown.

The difference d. = |2z, — pc| in Fig. 1 is a measure of the proximity of a given
experiment (A, L) to the critical point. We observe that the central Pb+Pb
collisions at the SPS (d, = 1.1) drive the system into the most distant freeze-
out area, from the critical point, as compared to other processes at the same
energy. In fact, the most suitable experiments to bring quark matter close
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to the critical point at the SPS are: S+S (d. ~ 0.18), S;+S; (d. = 0.20) and
C+C (d. = 0.06) ), central collisions. One may even reach the critical point
(de = 0) at the SPS with medium-size nuclei, either in noncentral collisions:
S+8S, S;+S; (A; = 29) or at lower energies: C+C (P ~ 130 A GeV/c. Also,
the experiments at RHIC, with central Au+Au (d. = 0.27) collisions, come
close to the critical point and may even reach it exactly (d, = 0) either with
lighter nuclei or with noncentral Au+Au collisions (A; ~ 165). Finally at the
LHC (y/s &~ 5.5 TeV), Pb+Pb collisions are expected to drive quark matter
into the crossover area (z. < p¢, dc = 0.13) where no critical fluctuations
occur. At lower energies however (/s = 1.4 TeV), Pb+Pb central collisions
may reach the critical point even at the LHC. Obviously, in order to have
a clear answer on the proximity of a given experiment to the critical point,
precision measurements of the net-baryon density at midrapidity, in a wide
range of energies (between SPS and RHIC), are needed, both for central and
noncentral collisions. With such measurements, the scaling law (5) may be
tested in its full extent and a sharp determination of the critical density can
be achieved through Eq. (7a).

3. Baryonic critical fluctuations

Once the phase of quark matter has reached the critical point in a partic-
ular class of experiments, as discussed in the previous section, strong critical
fluctuations are expected to form intermittency patterns both in the pion
and net-baryon sector. As already mentioned in the introduction, the origin
of these fluctuations can be traced in the presence, at T' = T, of a zero mass
field with a classical profile (o-field) which, under the assumption of a phase
transition in local thermal equilibrium, is described by an effective action in
3 — d, the projection of which onto rapidity space is written as follows [3]:

7 R2 1 /0o
I~ 1 d - [ YY 92 4 5+1
T Cy / y[2 <3y> + 2040
1]

Y

TC -1
Ci=—, B=T
A ,Bc ,Bc

(12)
Equation (12) gives the free energy of the o-field within a cluster of size dy in
rapidity and R in transverse space. The critical fluctuations generated by
(12) in the pion sector have been studied extensively in our previous work [3],
therefore, in what follows, we are going to discuss the fluctuations induced
by the o-field in the net-baryon sector, noting that a direct measurement
of these fluctuations may become feasible in current and future heavy-ion
experiments. For this purpose we introduce in Eq. (12) the order parameter
m(y) through the following equations:
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o(y) = FBm(y); F=- . (Gq)o ~ —3 fm ™3,

3
2

A\ 2
o [ [% (52) +g2|m|‘”1]; nly) = Bmly),  (13)

dy

where g; = F? (gf[;), g2 = 2C3F*. The partition function Z = [ D[]
— T[]

xe for each cluster is saturated by instanton-like configurations [11]
which for dy < . lead to self-similar structures, characterised by a pair-
correlation function of the form:

5I(1/3) (nR2CA\ ,_q _ 1
7 7(0)) ~ — F 5+, 14
) = L (TR oy (14
TR2 2/3
The size, in rapidity, of these fractal clusters is J. =~ (W) accord-
cA

ing to the geometrical description of the critical systems [11]|. Integrating
Eq. (14) we find the fluctuation (dn,) of the net-baryon multiplicity with
respect to the critical occupation number within each cluster, as follows:

TR Ca\ 2230(1/3) 56
262 r(/e) °
The dimensionless parameter F is of the order 102 and the size d., on general

grounds (R < 27.) is of the order of one (. < 1). This is in agreement with
the fact that the rapidity separation of two causally correlated space-time

(5nb) ~F ! < (15)

07c
Te

events is logarithmically bounded, dy < In (1 + ), leading, practically, to

a direct correlation length of the order of one (dy < 1). However, in reality,
the global baryonic system develops fluctuations at all scales in rapidity since
the direct correlation (O(d.)) propagates along the entire system through the
cooperation of many self-similar clusters of relatively small size (§. ~ 0.35
and (dnp) =~ 140). We have quantified this mechanism in a Monte-Carlo
simulation for the conditions of the experiments at RHIC (in RHIC the size of
the system is L &~ 11) in order to generate baryons with critical fluctuations.
The distribution of the order parameter |m(y)| describing the fluctuations
of the “critical” baryons in the rapidity space for a typical event as well as
the corresponding intermittency analysis in terms of factorial moments are
presented in Fig. 2. The intermittency exponent of the second moment Fy
in rapidity is fou?d to be s9 &~ 0.18 which is very close to the theoretécally

expected value (6) of a monofractal 1 — d set with fractal dimension g.
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Fig. 2.

1529

(a) The distribution of |m(y)| in rapidity for a MC-generated event.

(b) The first three factorial moments for the event shown in (a) in a log-log plot.
A linear fit determining the slope sa (& 0.18) of the second moment is also shown.
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4. Concluding remarks

In conclusion, we have shown that the baryonic sector in an experiment
with heavy ions, possesses valuable information regarding the proximity and
observation of the second order QCD critical point. Complementary sugges-
tions for the significance of net-baryon fluctuations in order to trace the
critical line of first order in the phase diagram are described in [12]. In
particular the measurements of net-baryon spectra in rapidity provide a
valuable set of observables in heavy ion experiments, in connection with the
phenomenology of the QCD critical point. The trend of the existing data
at the SPS suggests the presence of a critical point of second order in the

15

<dN/dy> |
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6 5 -4 -3 -2 -1 01 2 3 4 5

y

Fig.3. The inclusive net-baryon distribution in rapidity for 1000 MC generated
critical events. The parameters of the simulation have been chosen to meet the
conditions at RHIC.

phase diagram. A scaling law for the net-baryon density at midrapidity ny,
as a function of the initial energy and the number of participants, has been
established in the neighbourhood of the critical point. The scaling function
incorporates the indices of the universality class (critical exponents) whereas
the scaling variable gives a measure of the proximity of a given experiment
to the critical point. On the basis of this investigation, the experiments at
RHIC are very likely to reach the QCD critical point and as a first sign of this
new phenomenon we have predicted a flat net-baryon density in rapidity (in
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Au+Au collisions), associated with the presence of a critical point, nearby
(Fig. 3). Finally we have indicated the presence of strong intermittency ef-
fects in the rapidity spectrum of the net baryons which can in principle be
used to reveal experimentally the QCD critical point and confirm its uni-
versality class (Fig. 2). At the SPS, the QCD critical point is also within
reach, in collisions of medium-size nuclei (Si+Si, C+C).
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