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NET BARYONS IN HEAVY-ION COLLISIONSAND THE QCD CRITICAL POINT�N.G. AntoniouDepartment of Physis, University of AthensGR-15771 Athens, Greeee-mail: nantonio�.uoa.gr(Reeived April 29, 2002)The net-baryon density at midrapidity is proposed as an order param-eter in the searh for the QCD ritial point in heavy ion ollisions. Asa funtion of the initial energy and the total number of partiipants, thisquantity obeys a saling law, ditated by the ritial exponents of the appro-priate universality lass. The orresponding saling variable spei�es theproximity of a given experiment to the ritial point. Within this frame-work, measurements at the SPS are disussed and preditions for RHICand LHC are extrated.PACS numbers: 12.38.Mh, 25.75.�q1. IntrodutionA remarkable property of the QCD phase diagram (� � T ) is the exis-tene of an endpoint along the ritial line of the �rst order quark-hadronphase transition [1℄. It de�nes a ritial point of seond order, belonging tothe universality lass of a 3d Ising system and loated on a line of nonzerobaryoni density � = �. The QCD ritial point is assoiated with thehiral phase transition in the sense that it is the remnant of a triritialpoint orresponding to the hiral limit mu = md = 0 [2℄. In other words,the existene of a seond-order ritial point, at nonzero baryoni density, isa fundamental property of real QCD with small but nonzero quark masses(mu;md 6= 0). The QCD ritial point ommuniates with the hadroniworld through the �utuations of a salar �eld (�-�eld) whih arries thequantum numbers of an isosalar (�-meson) as the manifestation of a quarkondensate, � � h�qqi, in thermal environment. At the ritial temperature� Presented at the Craow Epiphany Conferene on Quarks and Gluons in ExtremeConditions, Craow, Poland, January 3�6, 2002.(1521)



1522 N.G. Antoniou(and in�nite volume) the isosalar has zero mass, in order to provide the in-�nite wavelength mode required by the divergene of the orrelation length.It remains, therefore, stable in the thermal environment of a nulear ollisionas long as the temperature stays lose to the ritial value. At the freeze-outstage the mass of the �-�eld may reah the two-pion threshold (m� & 2m�)and beome aessible to observation [2, 3℄. In the e�etive theory of theQCD ritial point, the lassial �-�eld is a natural order parameter, the�utuations of whih obey saling laws ditated by the ritial exponents ofthe 3d Ising system (� � 0; � � 13 ; Æ � 5; � � 23). In a baryoni environment,however, the hiral ondensate is expeted to have, at T = T, a strongdependene on the net-baryon density, driving the �-�eld lose to zero for� � �: h�qqi� � �� ���� � h�qqi0 + O[(� � �)2℄ where � is a dimensionlessonstant of the order of unity [4℄. This dependene suggests a new orderparameter, m = � � �, assoiated with the ritial properties of the bary-oni �uid reated in a quark-hadron phase transition. In fat, approahingthe ritial point in the phase diagram, both the �-�eld �utuations andthe �utuations of the order parameter m(~x) obey the same saling laws(h�qqi� � m(~x)).In this work we exploit the saling properties of the order parameterm(~x), properly adjusted to measurable quantities, in heavy ion ollisions.For this purpose we onsider net-baryon prodution in ollisions of heavynulei with total number of partiipants At and initial energy orrespondingto a total size in rapidity �y = L. The paper is organised as follows: InSetion 2 we disuss in detail the saling properties of the net-baryon �uidnear the ritial point. In Setion 3 we present shortly phenomenologialonsequenes of the presene of ritial �utuations in the baryoni setor.Finally in Setion 4 we present our onlusions onerning the possibility toapproah and observe the QCD ritial point in heavy-ion olliders.2. Net-baryon salingThe reated baryons in the proess of quark-hadron phase transitionoupy a ylindrial volume with transverse radius R? � A1=3? and longitu-dinal size L (in rapidity). The parameter A? spei�es the e�etive numberof partiipants, ontributing to the transverse geometry of the ollision, andit is assumed A? � At2 , valid both for entral (A? = Amin) and non-entralollisions. Projeting out the net-baryon system onto the longitudinal di-retion we end up with a 1d liquid on�ned in a �nite rapidity region ofsize L with loal density �(y) = nb(y)�R2?�f , diretly related to the measurablenet-baryon density in rapidity nb(y) = dNbdy . Putting R? = R0A1=3? , we in-trodue a harateristi volume V0 = �R20�f in terms of the freeze-out time



Net Baryons in Heavy-Ion Collisions and the QCD Critial Point 1523sale �f � 6�8 fm [5℄ and the nulear-size sale R0 whih ontains also anygrowth e�ets near the ritial point (R0 � 1.2 fm). ). Using V �10 as asale for baryoni, freeze-out densities, the order parameter m(y) of the 1dbaryoni liquid is written:m(y) = A�2=3? nb(y)� � ; 0 � y � L : (1)In what follows, our basi assumption is that the deon�ned phase of quarkmatter, in heavy-ion ollisions, approahes the QCD ritial point in loalthermal equilibrium. In the framework of inside-outside mehanism, thisproess is implemented by onsidering the isothermal spae-time hyperbo-las t2 � x2k = �2 and employing the orresponding rapidity variable as theappropriate longitudinal oordinate. In this desription, the assumed loalequilibrium in the onventional geometry (xk; ~x?; t) is translated as globalequilibrium in the new geometry (y; ~x?; �) and one may onsistently im-pose, near ritiality, stati saling laws on the order parameter m(y). Inpartiular, the expeted singularity at T = T is inorporated in a generalexpansion of the form:m(y) = t� [F0(y=L) + tF1(y=L) + : : :℄ ; (2)where t � T�TT and � is the appropriate ritial exponent (� � 13). Theleading term F0(y=L) in the expansion (2) has a universal power-law be-haviour near the walls (y = 0; L), shared by all �uids belonging to the sameuniversality lass and on�ned in a �nite, one-dimensional region [6, 7℄. Atmidrapidity (y � L=2), Eq. (2) gives the deviation of the measurable, bulkdensity of net baryons, from the ritial value �, as we approah the ritialpoint, not along the ritial isohore (� = �) but along the freeze-out line:A�2=3? nb = � + t�f [F0 + tfF1 + : : :℄ ; (3)where tf = T�TfT , nb = nb(L=2), Fi = Fi(1=2) and Tf is the freeze-outtemperature. Integrating now Eq. (2) in the interval 0 � y � L we obtainat T = Tf : A�2=3? AtL�1 = � + t�f (I0 + tfI1 + : : :) ; (4)where Ii = R 10 Fi(�)d�. Introduing the variable z = A�2=3? AtL�1 we �ndfrom Eqs (3) and (4) a saling law for the net-baryon density at midrapidity:A�2=3? nb = 	(z; �) ; z � � ; (5)where the saling funtion 	(z; �) has the property 	(z = �; �) = �. Inthe rossover regime z < �, where ritial �utuations disappear, the loal



1524 N.G. Antonioudensity at midrapidity is, to a good approximation, nb � AtL�1 suggesting aontinuous extension of the saling law (5) in this region with 	(z; �) = z(z < �). It is of interest to note that although the saling funtion 	(z; �)is ontinuous at the ritial point (z = �), the �rst derivative is expetedto be disontinuous at this point in aordane with the nature of the phasetransition (ritial point of seond order).In order to study in detail the ritial behaviour of the baryoni �uidin terms of the new variables nb, z a further investigation of the strutureof the saling funtion 	(z; �) for z � � is neessary. For this purposewe approximate the nearby part of the freeze-out line, lose to the riti-al point (tf � 1), by trunating the series (2) keeping only the next tothe leading term F1(y=L). As a result, equations (3) and (4) are writtenorrespondingly: A�2=3? nb � � + t�f (F0 + tfF1) ; (6a)z � � � t�f (I0 + tfI1) : (6b)Negleting terms of order O(t2f ) in the power expansion of the quantity(I0 + tfI1)1=� and ombining Eqs (6) we �nally obtain:A�2=3? nb = � + F0F1 [f(z; �)℄� + C[f(z; �)℄�+1 ; (7a)A�2=3? nb = � + F0t�f 0�1 + tfCI1+ 1�0F0 1A ; (7b)f(z; �) = 1G ��1 +q1 + 2G(z � �)1=�� ; z � � ; (7)where C = F1I1+ 1�0 , G = 2I1�I1+ 1�0 .The omponent F0(y=L) whih dominates the order parameter m(y) inthe limit T ! T is approximately onstant in the entral region (y �L2 ; L� 1), far from the walls (at the points y = 0; L) due to the approxi-mate translational invariane of the �nite system in this region. On the otherhand, approahing the walls, F0(y=L) desribes the density orrelation withthe endpoints and obeys a universal power law. In summary:F0(�) � onst: �� � 12� ; (8a)F0(�) � ���=� (� � 0) ; (8b)F0(�) � (1� �)��=� (� � 1) : (8)



Net Baryons in Heavy-Ion Collisions and the QCD Critial Point 1525The solution whih ful�ls these requirements is:F0(�) = g[�(1 � �)℄��=� (0 � � � 1) ; (9a)F0I0 = 4�=�B �1� �� ; 1� ��� ; B(n;m) = � (m)� (n)� (m+ n) : (9b)Inserting the onstant F0I0 into the Eq. (7b), the �nal form of the salingfuntion 	(z; �) is obtained:	(z; �) = � + 4�=�B �1� �� ; 1� ��� [f(z; �)℄�+C [f(z; �)℄�+1 ; z � � ; (10a)	(z; �) = z ; z < � ; (10b)where f(z; �) is given by Eq. (7). It is straightforward to show that the dis-ontinuity of the �rst derivative of 	(z; �) at z = � is a nonzero universalonstant: dis� d	dz�� � 1 � 2� (�� � 12) as expeted from the harateristiproperties of a seond-order phase transition. Combining Eqs (5)�(10) onemay propose a framework for the treatment of ertain phenomenologial as-pets of the QCD ritial point. The saling law (5) ombined with Eq. (10)involves three nonuniversal parameters: (a) the ritial density � and (b)the onstants C;G whih give a measure of the nonleading e�ets, allowingto aommodate in the saling funtion (10) proesses not very lose to theritial point. We have used measurements at the SPS in order to �x theseparameters on the basis of Eqs (5) and (10). More spei�ally, in a seriesof experiments (Pb+Pb, S+Au, S+Ag, S+S) with entral and nonentral(Pb+Pb) ollisions at the SPS [8, 9℄ net baryons have been measured atmidrapidity whereas the saling variable z = A�2=3? AtL�1, assoiated withthese experiments, overs a su�iently wide range of values (1 � z � 2)allowing for a best �t solution. The outome of the �t is onsistent with thehoie G � 0 and the equations (7) are simpli�ed as follows:A�2=3? nb = � + 2� (z � �) + C(z � �)4 ; (11a)A�2=3? nb = � + 2I0� t1=3f (1 + tf �CI1=302 ) ; (11b)A�2=3? nb(y) = � + (z � �)L�py(L� y) +O[(z � �)4℄ : (11)In Eqs (11) we have used the approximate values of the ritial exponents� � 13 , �� � 12 in the 3d Ising universality lass [10℄. We have also added



1526 N.G. AntoniouEq. (11) whih gives the universal behaviour of the net-baryon densitynb(y), in the viinity of the ritial point (z � � � 1). The �tted valuesof the parameters in Eq. (11b) are � = 0:81, C = 0:68 and the overallbehaviour of the solution is shown in Fig. 1.
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Fig. 1. The saling law (10) is illustrated together with measurements at the SPS.The ritial point and the orresponding break in the slope of 	(z; �) are alsoshown.The di�erene d = jz��j in Fig. 1 is a measure of the proximity of a givenexperiment (At; L) to the ritial point. We observe that the entral Pb+Pbollisions at the SPS (d � 1:1) drive the system into the most distant freeze-out area, from the ritial point, as ompared to other proesses at the sameenergy. In fat, the most suitable experiments to bring quark matter lose



Net Baryons in Heavy-Ion Collisions and the QCD Critial Point 1527to the ritial point at the SPS are: S+S (d � 0:18), Si+Si (d � 0:20) andC+C (d � 0:06) ), entral ollisions. One may even reah the ritial point(d � 0) at the SPS with medium-size nulei, either in nonentral ollisions:S+S, Si+Si (At � 29) or at lower energies: C+C (P � 130 A GeV/. Also,the experiments at RHIC, with entral Au+Au (d � 0:27) ollisions, omelose to the ritial point and may even reah it exatly (d � 0) either withlighter nulei or with nonentral Au+Au ollisions (At � 165). Finally at theLHC (ps � 5:5 TeV), Pb+Pb ollisions are expeted to drive quark matterinto the rossover area (z < �, d � 0:13) where no ritial �utuationsour. At lower energies however (ps � 1:4 TeV), Pb+Pb entral ollisionsmay reah the ritial point even at the LHC. Obviously, in order to havea lear answer on the proximity of a given experiment to the ritial point,preision measurements of the net-baryon density at midrapidity, in a widerange of energies (between SPS and RHIC), are needed, both for entral andnonentral ollisions. With suh measurements, the saling law (5) may betested in its full extent and a sharp determination of the ritial density anbe ahieved through Eq. (7a).3. Baryoni ritial �utuationsOne the phase of quark matter has reahed the ritial point in a parti-ular lass of experiments, as disussed in the previous setion, strong ritial�utuations are expeted to form intermitteny patterns both in the pionand net-baryon setor. As already mentioned in the introdution, the originof these �utuations an be traed in the presene, at T = T, of a zero mass�eld with a lassial pro�le (�-�eld) whih, under the assumption of a phasetransition in loal thermal equilibrium, is desribed by an e�etive ation in3� d, the projetion of whih onto rapidity spae is written as follows [3℄:� � �R2?CA ZÆy dy "12 ����y�2 + 2C2A�4�Æ+1# ; CA = �� ; � = T�1 :(12)Equation (12) gives the free energy of the �-�eld within a luster of size Æy inrapidity and R? in transverse spae. The ritial �utuations generated by(12) in the pion setor have been studied extensively in our previous work [3℄,therefore, in what follows, we are going to disuss the �utuations induedby the �-�eld in the net-baryon setor, noting that a diret measurementof these �utuations may beome feasible in urrent and future heavy-ionexperiments. For this purpose we introdue in Eq. (12) the order parameterm(y) through the following equations:



1528 N.G. Antoniou�(y) � F�2m(y) ; F � ��h�qqi0� ; h�qqi0 � �3 fm�3 ;� � g1 ZÆy dy "12 ��m̂�y �2 + g2jm̂jÆ+1# ; m̂(y) = �3m(y) ; (13)where g1 = F 2 � �R?CA�2 �, g2 = 2C2AF 4. The partition funtion Z = R D[m̂℄�e��[m̂℄ for eah luster is saturated by instanton-like on�gurations [11℄whih for Æy � Æ lead to self-similar strutures, haraterised by a pair-orrelation funtion of the form:hm̂(y)m̂(0)i � 56 � (1=3)� (1=6) ��R2?CA�2 �F�1y� 1Æ+1 : (14)The size, in rapidity, of these fratal lusters is Æ � � �R2?16�2C2A�2=3 aord-ing to the geometrial desription of the ritial systems [11℄. IntegratingEq. (14) we �nd the �utuation hÆnbi of the net-baryon multipliity withrespet to the ritial oupation number within eah luster, as follows:hÆnbi � F�1��R2?CA2�2 � 22=3� (1=3)� (1=6) Æ5=6 : (15)The dimensionless parameter F is of the order 102 and the size Æ, on generalgrounds (R? . 2�) is of the order of one (Æ . 1). This is in agreement withthe fat that the rapidity separation of two ausally orrelated spae-timeevents is logarithmially bounded, Æy � ln�1 + Æ�� �, leading, pratially, toa diret orrelation length of the order of one (Æy . 1). However, in reality,the global baryoni system develops �utuations at all sales in rapidity sinethe diret orrelation (O(Æ)) propagates along the entire system through theooperation of many self-similar lusters of relatively small size (Æ � 0:35and hÆnbi � 140). We have quanti�ed this mehanism in a Monte-Carlosimulation for the onditions of the experiments at RHIC (in RHIC the size ofthe system is L � 11) in order to generate baryons with ritial �utuations.The distribution of the order parameter jm(y)j desribing the �utuationsof the �ritial� baryons in the rapidity spae for a typial event as well asthe orresponding intermitteny analysis in terms of fatorial moments arepresented in Fig. 2. The intermitteny exponent of the seond moment F2in rapidity is found to be s2 � 0:18 whih is very lose to the theoretiallyexpeted value �16� of a monofratal 1� d set with fratal dimension 56 .
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Fig. 2. (a) The distribution of jm(y)j in rapidity for a MC-generated event.(b) The �rst three fatorial moments for the event shown in (a) in a log-log plot.A linear �t determining the slope s2 (� 0:18) of the seond moment is also shown.



1530 N.G. Antoniou4. Conluding remarksIn onlusion, we have shown that the baryoni setor in an experimentwith heavy ions, possesses valuable information regarding the proximity andobservation of the seond order QCD ritial point. Complementary sugges-tions for the signi�ane of net-baryon �utuations in order to trae theritial line of �rst order in the phase diagram are desribed in [12℄. Inpartiular the measurements of net-baryon spetra in rapidity provide avaluable set of observables in heavy ion experiments, in onnetion with thephenomenology of the QCD ritial point. The trend of the existing dataat the SPS suggests the presene of a ritial point of seond order in the
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yFig. 3. The inlusive net-baryon distribution in rapidity for 1000 MC generatedritial events. The parameters of the simulation have been hosen to meet theonditions at RHIC.phase diagram. A saling law for the net-baryon density at midrapidity nb,as a funtion of the initial energy and the number of partiipants, has beenestablished in the neighbourhood of the ritial point. The saling funtioninorporates the indies of the universality lass (ritial exponents) whereasthe saling variable gives a measure of the proximity of a given experimentto the ritial point. On the basis of this investigation, the experiments atRHIC are very likely to reah the QCD ritial point and as a �rst sign of thisnew phenomenon we have predited a �at net-baryon density in rapidity (in



Net Baryons in Heavy-Ion Collisions and the QCD Critial Point 1531Au+Au ollisions), assoiated with the presene of a ritial point, nearby(Fig. 3). Finally we have indiated the presene of strong intermitteny ef-fets in the rapidity spetrum of the net baryons whih an in priniple beused to reveal experimentally the QCD ritial point and on�rm its uni-versality lass (Fig. 2). At the SPS, the QCD ritial point is also withinreah, in ollisions of medium-size nulei (Si+Si, C+C).REFERENCES[1℄ F. Wilzek, hep-ph/0003183.[2℄ M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998);J. Berges, D.-U. Jungnikel, C. Wetterih, Phys. Rev. D59, 034010 (1999);Eur. Phys. J. C13, 323 (2000).[3℄ N.G. Antoniou, Y.F. Contoyiannis, F.K. Diakonos, Nul. Phys. A661, 399(1999); N.G. Antoniou, Y.F. Contoyiannis, F.K. Diakonos, A.I. Karanikas,C.N. Ktorides, Nul. Phys. A693, 799 (2001).[4℄ R. Brokmann, W. Weise, Phys. Lett. B367, 40 (1996).[5℄ B. Müller, Nul. Phys. A661, 272 (1999).[6℄ A. Maiolek, R. Evans, C.R. Wilding, Phys. Rev. E60, 7105 (1999).[7℄ M.E. Fisher, P.G. de Gennes, C.R. Seanes Aad. Si. B287, 207 (1978).[8℄ The NA35 Collaboration, Eur. Phys. J. C2, 634 (1998); D. Röhrih (NA35Collaboration), Nul. Phys. A566, 35 (1994); F. Siklér (NA49 Collabora-tion), Nul. Phys. A661, 45 (1999).[9℄ G.E. Cooper (NA49 Collaboration), Nul. Phys. A661, 362 (1999).[10℄ S.K. Ma,Modern Theory of Critial Phenomena, Benjamin/Cummings, Read-ing, MA, 1976.[11℄ N.G. Antoniou, Y.F. Contoyiannis, F.K. Diakonos, C.G. Papadopoulos, Phys.Rev. Lett. 81, 4289 (1998); N.G. Antoniou, Y.F. Contoyiannis, F.K. Diakonos,Phys. Rev. 62E, 3125 (2000).[12℄ S. Gavin, nul-th/9908070.


